7 research outputs found

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Design of agile signal conditioning circuits for microelectromechanical sensors

    Get PDF
    Microelectromechanical systems (MEMS) are used in many applications to detect physical parameters and convert them to an electrical signal. The output of MEMS-based transducers is usually not suitable to be directly processed in the digital or the analog domain, and they could be as small as femto farads in capacitive sensing and micro volts in resistive sensing. Consequently, high sensitivity signal conditioning circuits are essential. In this thesis, it is shown that both the noise and input capacitance are important parameters to ensure optimal capacitive sensing. The dominant noise source in MEMS conditioning circuits is flicker noise, and one of the best methods to mitigate flicker noise is the chopping technique. Three different chopping techniques are considered: single chopper amplifier (SCA), dual chopper amplifier (DCA), and two-stage single chopper amplifier (TCA). Also, their sensitivity and power consumption based on the total gain and sensing capacitance are extracted. It is shown that the distribution of gain between the two stages in the DCA and TCA has a significant effect on the sensitivity, and, based on this distribution, the sensitivity and power consumption change significantly. For small sensor capacitances, the highest sensitivity could be achieved by a DCA because of its ability to decrease the noise floor and the input sensor capacitance simultaneously. A novel DCA is proposed to reach higher sensitivity and reduced power consumption. In this DCA, two supply voltages are utilized, and the second stage is composed of two parallel paths that improve the SNR and provide two gain settings. This circuit is fabricated in the GlobalFoundries 0.13 μm CMOS technology. The measurement results show a power consumption of 2.66 μW for the supply voltage of 0.7 V and of 3.26 μW for the supply voltage of 1.2 V. The single path DCA has a gain of 34 dB with bandwidth of 4 kHz and input noise floor of 25 nV/√Hz. The dual path DCA has a gain of 38 dB with bandwidth of 3 kHz and input noise floor of 40 nV/√Hz. To be able to detect the signal near DC frequencies, another circuit is proposed which has a configurable bandwidth and a sub-μHz noise corner frequency. This circuit is composed of three stages, and three chopping frequencies are used to mitigate the flicker noise of the three stages. The simulated circuit is designed in the GlobalFoundries 0.13 μm CMOS technology with supply voltages of 0.4 V and 1.2 V. The total power consumption is of 6.7 μW. A gain of 68 dB and bandwidths of 1, 10, 100 and 1000 Hz are achieved. The input referred noise floor is of 20.5 nV/√Hz and the design attains a good power efficiency factor of 4.0. In the capacitive mode, the noise floor is of 3.6 zF for a 100 fF capacitance sensor

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)

    Approaches to Building a Quantum Computer Based on Semiconductors

    Get PDF
    Throughout this Ph.D., the quest to build a quantum computer has accelerated, driven by ever-improving fidelities of conventional qubits and the development of new technologies that promise topologically protected qubits with the potential for lifetimes that exceed those of comparable conventional qubits. As such, there has been an explosion of interest in the design of an architecture for a quantum computer. This design would have to include high-quality qubits at the bottom of the stack, be extensible, and allow the layout of many qubits with scalable methods for readout and control of the entire device. Furthermore, the whole experimental infrastructure must handle the requirements for parallel operation of many qubits in the system. Hence the crux of this thesis: to design an architecture for a semiconductor-based quantum computer that encompasses all the elements that would be required to build a large scale quantum machine, and investigate the individual these elements at each layer of this stack, from qubit to readout to control

    An ASIC for readout of post-processed thin-film MEMS resonators by employing capacitive interfacing and active parasitic cancellation

    No full text
    corecore