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RÉSUMÉ 

 
Les systèmes microélectromécaniques (MEMS) sont utilisés dans des nombreuses applications 
pour détecter les paramètres physiques et les convertir en signal électrique. Généralement, la 
sortie des transducteurs à base de MEMS ne convient pas pour être traitée directement dans le 
domaine numérique ou analogique. L’ordre de grandeur peut être aussi petit que des femto 
farad en détection capacitive ou des micro volts en détection résistive. Par conséquent, les 
exigences du conditionnement de signaux à haute sensibilité sont essentielles. Le bruit et la 
capacité d'entrée sont des paramètres importants de la détection capacitive. La source de bruit 
dominante dans le circuit de conditionnement MEMS est le bruit de scintillement et la 
technique de hachage est l’un des meilleurs moyens afin d’éliminer le scintillement. Trois 
techniques de hachage différentes sont utilisées : un amplificateur à hacheur simple (SCA), un 
amplificateur à hacheur double (DCA) et un amplificateur à hacheur simple à deux étages 
(TCA). De plus, leur sensibilité et leur consommation de puissance basée sur le gain total et la 
capacité de détection sont extraites. Nous montrons que la distribution du gain entre les deux 
étages du DCA et du TCA a un effet significatif sur la sensibilité et que la sensibilité et la 
consommation de puissance changent considérablement en fonction de cette distribution. À 
faible détection capacitive, le DCA pourrait atteindre la sensibilité la plus élevée en raison de 
sa capacité à réduire simultanément le bruit de fond et la capacité du capteur d'entrée. En outre, 
un nouveau DCA est proposé pour atteindre la plus grande sensibilité et la plus faible 
consommation de puissance. Dans ce DCA, deux tensions d’alimentation sont utilisées et le 
deuxième étage est composé de deux chemins parallèles qui améliorent le rapport signal sur 
bruit et fournissent deux réglages de gain. Ce circuit est fabriqué en technologie CMOS de 
0.13 µm. Les résultats de mesures ont montré une consommation de 2.66 µW pour la tension 
d'alimentation de 0.7V et de 3.26 µW pour la tension d'alimentation de 1.2V. Le DCA à simple 
trajet a un gain de 34 dB, une bande passante de 4 kHz et un bruit de fond de 25 nV / √Hz. Le 
DCA à double trajet a un gain de 38 dB, une bande passante de 3 kHz et un bruit de fond de 
40 nV / √Hz. Afin de pouvoir détecter le signal près de la fréquence DC, un autre circuit a été 
proposé, dans lequel une bande passante configurable et une fréquence de bruit de coin sous 
les µHz. Ce circuit est composé de trois étages et trois fréquences de hacheur sont utilisées 
pour éliminer le bruit de scintillement des trois étages. Le circuit simulé est conçu dans une 
technologie CMOS de 0.13 µm avec des tensions d'alimentation de 0.4 V et 1.2 V. La 
consommation totale est de 6.7 µW. Un gain de 68 dB et des bandes passantes de 1, 10, 100 et 
1000 Hz sont obtenues. Le seuil de bruit en entrée est de 20.5 nV / √Hz et la conception atteint 
un bon facteur d’efficacité énergétique de 4.0. En mode capacitif, le bruit de fond est de 3.6 zF 
pour un capteur ayant une capacité de 100 fF. 
 
Mots clés: hacheur, faible bruit, faible consommation, fréquence de coupure basse, 
          amplificateur à double hacheur, sensibilité à la capacité, sensibilité élevée
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ABSTRACT 
 
Microelectromechanical systems (MEMS) are used in many applications to detect physical 
parameters and convert them to an electrical signal. The output of MEMS-based transducers is 
usually not suitable to be directly processed in the digital or the analog domain, and they could 
be as small as femto farads in capacitive sensing and micro volts in resistive sensing. 
Consequently, high sensitivity signal conditioning circuits are essential. In this thesis, it is 
shown that both the noise and input capacitance are important parameters to ensure optimal 
capacitive sensing. The dominant noise source in MEMS conditioning circuits is flicker noise, 
and one of the best methods to mitigate flicker noise is the chopping technique. Three different 
chopping techniques are considered: single chopper amplifier (SCA), dual chopper amplifier 
(DCA), and two-stage single chopper amplifier (TCA). Also, their sensitivity and power 
consumption based on the total gain and sensing capacitance are extracted. It is shown that the 
distribution of gain between the two stages in the DCA and TCA has a significant effect on the 
sensitivity, and, based on this distribution, the sensitivity and power consumption change 
significantly. For small sensor capacitances, the highest sensitivity could be achieved by a 
DCA because of its ability to decrease the noise floor and the input sensor capacitance 
simultaneously. A novel DCA is proposed to reach higher sensitivity and reduced power 
consumption. In this DCA, two supply voltages are utilized, and the second stage is composed 
of two parallel paths that improve the SNR and provide two gain settings. This circuit is 
fabricated in the GlobalFoundries 0.13 µm CMOS technology. The measurement results show 
a power consumption of 2.66 µW for the supply voltage of 0.7 V and of 3.26 µW for the supply 
voltage of 1.2 V. The single path DCA has a gain of 34 dB with bandwidth of 4 kHz and input 
noise floor of 25 nV/√Hz. The dual path DCA has a gain of 38 dB with bandwidth of 3 kHz 
and input noise floor of 40 nV/√Hz. To be able to detect the signal near DC frequencies, 
another circuit is proposed which has a configurable bandwidth and a sub-µHz noise corner 
frequency. This circuit is composed of three stages, and three chopping frequencies are used 
to mitigate the flicker noise of the three stages. The simulated circuit is designed in the 
GlobalFoundries 0.13 μm CMOS technology with supply voltages of 0.4 V and 1.2 V. The 
total power consumption is of 6.7 μW. A gain of 68 dB and bandwidths of 1, 10, 100 and 
1000 Hz are achieved. The input referred noise floor is of 20.5 nV/√Hz and the design attains 
a good power efficiency factor of 4.0. In the capacitive mode, the noise floor is of 3.6 zF for a 
100 fF capacitance sensor. 
 

Keywords: Chopping, high sensitivity, low noise, low power, low corner frequency,  
        dual chopper amplifier. 
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INTRODUCTION 

 

Background and motivation 

 

Sensors are becoming more and more prevalent in a wide range of applications touching our 

daily lives. They are a crucial component in environment sensing (Maruyama, Taguchi, 

Yamanoue, & Iizuka, 2016; X. Wang et al., 2017), medical equipment (Lopez et al., 2018; 

Yazicioglu, Kim, Torfs, Kim, & Hoof, 2011), smart homes (Byun, Jeon, Noh, Kim, & Park, 

2012; Vujović & Maksimović, 2015), automotive electronics (Altaf, Zhang, & Yoo, 2015; 

Cooley, Wallace, & Antohe, 2002; Hilt, Gupta, Bashir, & Peppas, 2003; Luo et al., 2008; 

Vasilyev, Rewienski, & White, 2006), and smart portable electronics (Charlot, Sun, 

Yamashita, Fujita, & Toshiyoshi, 2008; Rashidi & Mihailidis, 2013; Shi et al., 2009; Yazdi, 

Mason, Najafi, & Wise, 1996). For example, smartphones include sensors such as face ID, 

barometer, three-axis gyro, accelerometer, proximity sensor, ambient light sensor and modern 

cars easily contain more than 100 sensors used for several functions such as basic operation 

(engine temperature, oil pressure), information and driving help (parking aid, tire pressure 

measurement), comfort (air conditioning, defogging), safety (airbag deployment, yaw rate 

sensing) and optimization (exhaust gas monitoring), etc. (Wilcox & Howell, 2005; J. Zhao, 

Jia, Wang, & Li, 2007).  

 

Among different kinds of sensors, MEMS (Micro-ElectroMechanical Systems) -based sensors 

are implemented broadly nowadays. They have the advantage of small size, low cost, low 

power consumption, and high reliability. This kind of sensor had a significant growth during 

the past years.   

 

The growth of revenues from MEMS systems in different applications from 2014 to 2024 is 

shown in Figure 0.1. As displayed, consumer electronics, automotive, and medical sensors 

have larger growth. In 2024, MEMS market revenues will come mostly from consumer 

electronic applications, estimated to reach US$13B. Moreover, automotive applications are 
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estimated to reach US$6B, and medical sensors are estimated to reach US$5B worldwide 

(Yole, 2017). 

 

To compare the growth of MEMS systems with other kinds of sensors, segmented revenues 

are shown from 2015 to 2021 in Figure 0.2. As shown, it is estimated that the market for MEMS 

and sensor devices will grow from US$49B in 2018 to US$66B in 2021. Such a figure is an 

impressive 12% compound annual growth rate (CAGR). Also, it is shown that the revenue of 

MEMS and contact image sensors (CIS) are remarkable in comparison with others. This 

revenue was US$10.5B for MEMS in 2015, and it is estimated to jump to US$21B in 2021. 

Moreover, new applications of MEMS sensors are also emerging with use in smart homes and 

buildings recently. The sensor market has a CAGR of 13.4% in smart homes and buildings 

from 2016 to 2022, and it is predicted to be US$1.7B U in 2022 (Muller, Gambini, & Rabaey, 

2012).  

 

MEMS sensors can respond to physical parameters such as radiation (Augustyniak et al., 2013; 

Buchner et al., 2007; Musca et al., 2005), pressure (Ge, Wang, Chen, & Rong, 2008; Mohan,  

 

Figure 0.1 Revenues from the global micro-electromechanical 
systems (MEMS) market from 2014 to 2024, by application,  

taken from (Yole, 2017) 
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Malshe, Aravamudhan, & Bhansali, 2004; Palasagaram & Ramadoss, 2006; Y. Zhang, , 

movement (Fitzmaurice, 1993; B. Lee, Bang, Kim, & Kim, 2011; Mehra, Werkhoven, & 

Worring, 2006; Rohs et al., 2007), flow (Kao, Kumar, & Binder, 2007; E. Meng & Yu-Chong, 

2003; Nguyen, Paprotny, Wright, & White, 2015; Shibata, Niimi, & Shikida, 2014; Y.-H. 

Wang, Lee, & Chiang, 2007), chemical (Holthoff, Heaps, & Pellegrino, 2010; Lavrik, 

Sepaniak, & Datskos, 2004; Saxena, Plum, Jessing, & Baker, 2006), or temperature (Khazaai, 

Haris, Qu, & Slicker, 2010; Que, Park, & Gianchandani, 1999; Sinclair, 2000). 

 

Problems and challenges statement 

 

The output of MEMS sensors usually are not proper for signal processing such as analog to 

digital conversion. Accordingly, signal conditioning circuits should be integrated at the outpout 

of the sensors before further signal processing. These circuits preserve the integrity of the 

sensor’s signal and properly amplify it while maintianing the signal to noise radio and 

minimizing distortion. Accordingly, signal conditioning circuits are implemented to amplify 

the signal with low added noise in order to make the signal ready to process in an analog or 

digital fashion. The frequency range of detected signals in MEMS-based sensors are up to a 

few kHz, and in biomedical applications it can be as small as a few Hz. For example, the 

 

Figure 0.2 MEMs and sensors market anticipation, 
 taken from (Yole, 2017) 
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frequency of brain waves can be small as 0.5 Hz and the amplitude can be as small as 5 µV. 

As a result, removing the flicker noise of the signal conditioning circuit is the most important 

challenge in these applications. In additon of the flicker noise, the thermal noise should be 

minimized to be able to detect the signal properly. Also, in capacitive sensors, the effect of 

input capacitance of signal the conditiong circuit should be considered, as it can negatively 

impact sensitivity. Accordingly, the signal conditioning circuit should be optimized for flicker 

and thermal noise, and for low input capacitance. At last, the power consumption should be 

minimized to be able to allow for the sensor to be deploed in battery-operated environments, 

where sensors are often needed. However, there is a tradeoff between decreasing the noise, 

power consumption, and input capacitance of the circuit, and this thesis aims at investigating 

this tradeoff and proposing signal conditioning circuit architectures that can provide a good 

tradeoff.  

 

 

 

Signal conditioning circuit overview 

 

The schematic of a typical sensor is shown in Figure 0.3. As shown, it consists of two main 

parts: MEMS transducer and signal conditioning circuit. The physical parameters such as 

temperature, pressure, position, movement, and vibration are detected and converted to an 

electrical signal in a MEMS transducer and then transferred to a signal conditioning circuit for 

amplification and filtering. Since the output signal produced by a sensor is usually not suitable 

to directly process in the digital or analog domain, signal conditioning is a method of preparing 

an analog signal for further processing. The signal conditioning usually involves amplification 

and filtering. The goal of the filtering stage is eliminating the noise from the signal of interest 

and the aim of the amplifier is to increase the performance of the circuit. MEMS sensors have 

different electrical characteristics. The principle of operation of the sensor determines the 

nature of sensor output, which in turn determines the signal conditioning circuit requirement. 

Thus, depending on the sensor output, a circuit can be designed in different configurations to 

extract the sensor output (Master, 2010). 
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To detect the signal in the transducer, a capacitive bridge, or a resistive bridge could be 

implemented to convert the physical parameters to the electrical signal. The output of resistive 

sensors usually varies from few hundreds of µV to tens of mV, and the output of the capacitive 

sensor can be as small as femto farad. Usually capacitive sensors are preferred to resistive ones 

because of their high sensitivity, low power consumption, and high reliability. In the capacitive 

(resistive) sensing, there is a nominal value for the capacitance (resistance) and with a physical 

variation, the value of the capacitance (resistance) is changed. By measuring this variation, the 

amount of physical parameter change will be defined. Performance of the MEMS sensors is 

dependent to both the MEMS transducer design and the signal conditioning circuit design. In 

this work, design of the signal conditioning part will be investigated. This circuit should be 

precise enough to be able to integrate with different MEMS transducers.   

 

A capacitive sensor and its integration with a signal conditioning circuit is shown in Figure 

0.4. The output voltage of this transducer equals to: 
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Figure 0.3 Schematic of a typical sensor 
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Where, C0 is the nominal capacitance sensor, Vm is the excitation voltage and ΔC is the 

capacitance variation.  

However, when this transducer is connected to a signal conditioning circuit, the input 

capacitance of the signal conditioning circuit will be affected on the performance of the 

transducer. As a result, the output voltage of capacitive sensor equals to: 
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where Cp is the parasitic capacitance of wiring, and Cin is the input capacitance of signal 

conditioning circuit. With the proper integration of the MEMS transducer with signal 

conditioning circuit, the Cp could be removed, but the value of Cin is dependent on the signal 

conditioning circuit design. For small sensor capacitances, the value of the input capacitance 

of a signal conditioning circuit is important, and it should be considered in the design of signal 

conditioning circuit. The voltage produced by the capacitive sensor is transferred to the signal 

conditioning circuit. Consequently, the value of this voltage should be larger than the input 

noise of signal conditioning circuit to be detectable. Thus, another important factor that should 

be considered in the design of a high sensitivity circuit is the input noise level of the signal 

conditioning circuit. It should be noticed that decreasing the noise level could be possible at 

the cost of increasing the input capacitance. As a result, the noise level of the signal 

conditioning circuit should be decreased while keeping the input capacitance low. Moreover, 

 

Figure 0.4 Capacitive sensing and its integration with signal 
conditioning circuit 
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the power consumption and area are the two other factors that should be considered for sensors 

in portable devices.  

To reach these characteristics, many different signal conditioning circuit architectures are 

possible. An appropriate choice of architecture is beneficial to detect the signal with enough 

sensitivity and gain and make it ready for processing. 

 

Research goals and objectives 

 

The goal of this research is to investigate novel signal conditioning circuits to enable the 

readout of several MEMS-based transducers. These circuits will have to feature low power 

consumption and noise reduction techniques, and also be agile (i.e., reconfigurable) to 

accommodate various capacitive and resistive MEMS transducer types. 

 

The following research objectives were tackled during this Ph.D.: 

• Design a best-fit signal conditioning circuit based on the sensor characteristics and required 

gain; 

• Enable energy efficient operation by targeting ultra-low power consumption to enable the 

use of multiple sensors in portable devices with a longer battery life and better 

performance; 

• Minimizing the noise in order to be able to detect the smallest variation in the sensors; 

• Minimizing the input capacitance in order to prevent the loading effect on the capacitive 

sensors and maintain the sensitivity; and 

• Improving the SNR of the signal conditioning circuit to maintain the input signal integrity; 

 

Our Approach 

 

In order to achieve the above-mentioned goals and objectives, various signal conditioning 

circuits are investigated and compared. For our desired application, a chopper technique is 

preferred to reach the small noise floor. Then, different chopping techniques, such as single 
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chopper amplifier (SCA), two-stage chopper amplifier (TCA), and dual chopper amplifier 

(DCA), are considered for capacitive and resistive sensors.  

 

First, the power consumption, the input noise floor, and the sensitivity of different chopping 

techniques are analysed for different gains and sensor capacitances. Then, a methodology is 

proposed to choose the proper chopping technique and design a circuit to reach the highest 

sensitivity or the desired sensitivity with minimum power consumption in each gain and sensor 

capacitance. It is shown that the input capacitance of the signal conditioning circuit is important 

to achieve the best capacitance sensitivity, and this factor is considered in the analysis of the 

sensitivity of different chopping techniques for the first time. It is shown that the minimum 

sensitivity factor is achievable by the DCA structure. The DCA has the freedom of distribution 

of gain between the two stages. As a result, based on the value of sensor capacitance, DCA can 

be designed in a way that minimizes both the input noise floor and the input capacitance.   

 

Based on the methodology, a novel circuit is designed to improve the sensitivity performance 

and minimize the power consumption in the signal conditioning circuit. In this design, a dual-

path dual-chopper amplifier with two different supply voltages is proposed and fabricated in 

the GlobalFoundries 0.13µm CMOS technology. A low-noise low-supply voltage amplifier is 

implemented at the first stage. In this amplifier, high current and low supply voltage are 

implemented to minimize the power consumption and the noise at the same time. Then, the 

second stage includes two paths of two high gain amplifiers and each of them is chopped 

separately. Enabling of one path or two paths together is possible in this design to reach 

configurable gain.  It is shown that utilising the dual paths helps to reach a higher gain and a 

higher SNR. A four-input gm-C filter is utilized to add the signals from the two paths, which 

helps to reduce the switch-nonidealities which are produced in the two paths too. 

 

In the last design, a signal conditioning circuit with the three stages and the triple-chopping is 

designed and simulated in the same 0.13 µm CMOS technology. The first stage is used to reach 

the low noise and low-input capacitance amplifier. The amplifier of this stage has a high current 

and low supply voltage to reach the low noise floor and the low power consumption. The 
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second and third stages are a resistive feedback amplifier and a capacitive feedback amplifier 

to attain low noise low pass filtering with a tunable bandwidth. The miller effect in the 

capacitive feedback amplifier helps to reach a bandwidth as small as 1 Hz without the need of 

a very large capacitance. A small bandwidth contributes to a lower integrated input noise and 

improves SNR. Since three blocks are chopped, there is no significant flicker noise in this 

circuit. The corner frequency of this circuit is 0.5 µHz and allows for near-DC high precision 

operation. 

Main Contributions and Novelties of the Thesis 

 

To the best of the author’s knowledge, the first signal conditioning circuit which considers the 

effect of input capacitance on the methodology design is presented in this research work. Based 

on the above objectives and methodologies, the main contributions of this work are: 

• Proposing a methodology to design an optimized signal conditioning circuit with a 

chopping technique based on the sensor capacitance and the required total gain. This 

methodology helps to design a circuit to reach the maximum possible sensitivity, or reach 

the desired sensitivity with the minimum power consumption.  

• Design and fabrication of dual path-dual chopper amplifier. A low-noise and ultra-low 

power circuit is achieved. The power efficiency factor (PEF) of this circuit is 11 for the 

single-path circuit and 13 for the dual-path circuit, which indicates a good trade-off of noise 

and power consumption. The small power consumption of this circuit is 2.66 µW from the 

0.7 V supply and 3.26 µW from the 1.2 V supply voltage. The noise floor achieved is of 

25 nV/√Hz. 

• Design and simulation of a low-power low-noise signal conditioning circuit with sub-µHz 

noise corner frequency and tunable bandwidth. This circuit has a low noise and a low power 

consumption. Simulation results show that with this circuit, a corner frequency of 0.5 µHz 

with a noise floor of 20.5 nV/√Hz is achievable. This structure helps to measure the signal 

around DC frequency. In addition, the bandwidth is tunable, and it can be set based on the 

application. A bandwidth as small as 1 Hz is achievable in this circuit, which helps to 

reduce the integrated input noise and improve the SNR. The power efficiency factor of 4 

and SNR of 115.7 dB for the bandwidth of 100 Hz is achievable with this circuit. 
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Thesis Organization 

 

The thesis has been divided into 6 chapters. The first chapter summarizes the literature review 

and the recent implemented architectures for relevant signal conditioning circuits. The most 

common implemented signal conditioning circuits are categorized, and their advantages and 

disadvantages, as well as common features, are be discussed.   

Chapter 2 explains the important factors in the design of a signal conditioning circuit for 

MEMS. An overview of chopping technique is explained. A brief discussion of the papers that 

compose this thesis is done in this chapter, and their relevance to the Ph.D. work is described.  

 

Chapter 3 is a methodology paper. In this paper, which was published in the Journal of Low 

Power Electronics and Applications in 2017, three different chopping techniques are 

considered, and their sensitivity and power consumption are extracted based on the required 

gain and sensor capacitance. Moreover, the proper chopping technique and the way of 

designing a chopping circuit to reach the optimum performance in each gain and sensor 

capacitance is shown in this paper. 

 

In chapter 4, a dual-path dual-chopper amplifier with two supply voltages is designed and 

fabricated in the GlobalFoundries 0.13µm CMOS technology. This chapter is a paper that was 

published in IEEE Transactions on Circuits and Systems I: Regular Papers in 2019.   

 

In chapter 5, a low-noise low-power signal conditioning circuit with configurable bandwidth 

and sub-µHz noise corner frequency for use in resistive and capacitive MEMS sensors that 

requires minimal capacitive loading is designed and simulated. This chapter is a paper that was 

submitted to IEEE Sensors Letters in 2019. 

 

Finally, the overall results and the contributions are discussed in chapter 6. The conclusion and 

suggestions for future work are presented at the end of the thesis. 

 



 

 
 
 

 LITERATURE SURVEY  

1.1 Different electrical readout techniques  

One of the most important parts of any sensor is a readout system capable of monitoring 

physical changes and converting them to an electrical signal. In this section, we discuss the 

details of sensor readout techniques that can be classified broadly as capacitive sensing and 

resistive sensing. 

 

1.1.1 Capacitive sensing  

Capacitive sensing is the dominant sensing mechanism in micro-electro-mechanical systems 

(MEMS) inertial sensors, since it has the advantages of low temperature coefficients, low 

power consumption, low noise, low cost and the potential of compatibility with integrated 

circuit (IC) fabrication technology. A simple configuration of capacitance is defined as shown 

in equation (1.1): 

 

 

 

(1.1) 

 

Where ɛr is the permittivity of the dielectric, ɛ0 is the permittivity of vacuum, A is the 

overlapping area, and g is the distance. Capacitive sensors are designed to detect a signal based 

on changing the size of a gap (Baxter, 1997), overlap area (Baxter, 1997), or dielectric 

properties (Heidari, 2010).  

 

In capacitive sensors based on changing the gap distance, the position is encoded as 

capacitance between two or more separate electrodes in the sense element. These capacitive 

sensors can be configured in different ways. One is a single variable capacitor where the 

g

A
C r 0.εε=
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capacitive sensors are designed such that they have two fixed plates and one movable plate in 

the middle. With an external acceleration the movable plate is displaced from its nominal 

position. The physical sizes of the gaps between the plates are changed and contributes to two 

different values of capacitance. The principal design objective of this capacitive sensor is to 

efficiently convert mechanical displacements and hence capacitive changes into an electrical 

signal. The other configuration is a capacitive half bridge where one capacitor with a positive 

positional dependency and other with negative positional dependency are connected at a 

common mode. Typically the change in capacitance is first converted to a voltage and then it 

can be further processed with various signal-conditioning blocks or an analog to digital 

converters (ADC). Capacitive sensing is widely used in pressure sensors, liquid-level gauges, 

accelerometers and humidity sensors, and proximity and position sensors (1998; Lazarus, 

Bedair, Lo, & Fedder, 2010; H. Lee, Chang, & Yoon, 2009; Lin et al., 2008; Yazdi, Ayazi, & 

Najafi, 1998; Y. Zhang, Howver, Gogoi, & Yazdi, 2011). 

 

1.1.2 Piezoresistive sensing  

In piezoresistive sensors, the resistivity is changed by the application of a physical stimulus, 

and the resulting resistance variation is measured to detect the value of physical stimulus. The 

change in resistance equals to: 

 

 
ttll σπσπ +=Δ

R

R
 

(1.2) 

 

where R is the initial resistance, ∆R is the change in resistance, πl and πt are the longitudinal 

and transverse piezoresistive coefficients, respectively, and σl and σt are the lateral and 

transverse stresses, respectively. The resistance can change in response to stimulus in two 

different categories: changes to the geometry or changes to the conductive properties of the 

resistor. Typically, a Wheatstone bridge circuit is implemented in resistive sensing as shown 

in Figure 1.1. 
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The output voltage is directly related to the change in the resistance with respect to the initial 

resistance R. The resistance change in the Wheatstone bridge is measured by the excitation 

voltage or current, and high excitation voltage or current is necessary for high bridge 

sensitivity, which results in high power consumption (Thanachayanont & Sangtong, 2007). 

 

Piezoresitive sensors have a simple structure. They are tolerant to high shock conditions. They 

have low measurement uncertainty, and low nonlinearity and hysteresis error. However, they 

have more power consumption compared to capacitive sensors and they are more sensitive to 

temperature variations. 

 

1.1.3 Comparison between methods by principle of output measurement  

The advantages and disadvantages of capacitive and resistive sensors are shown in Table 1.1. 

Between the above-mentioned methods, capacitive sensing is preferred since it has the 

advantages of low temperature coefficients, low power dissipation, low noise, low-cost 

fabrication, and compatibility with VLSI technology scaling. 

 

 

 

 

Figure 1.1 Wheatstone circuit taken from (Mutyala, 
Bandhanadham, Pan, Pendyala, & Ji, 2009) 
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Table 1.1 Comparison of different readout techniques 

 Advantages Disadvantages 

Capacitive sensing 

• High sensitivity 

• Low temperature 

dependence 

• Capable of measuring 

very low frequency 

signals 

• Low power circuit 

interface 

• High temperature range 

• Compatibility with 

VLSI technology 

• Low frequency range 

• More complex interface 

circuit 

Resistive sensing 

 

• Simple interface 

• High shock tolerance 

• Medium frequency 

range 

 

• Low sensitivity 

• Higher power 

consumption 

• Temperature 

dependence  

•  

1.2 Literature survey of signal conditioning circuits 

After detecting a signal in a sensor, the signal should be amplified in a signal conditioning 

circuit. Figure 1.3 shows the classification of signal conditioning circuits based on their 

outputs. As shown in this figure, output can be analog, semi-digital, and digital. Analog output 

can be achieved by discrete time or continuous time architectures. In a discrete time 

architecture, switched capacitor amplifiers are usually implemented. For continuous time 

amplification, an input stimulus is converted to a voltage or current and then amplified. 

Architecture such as chopping can be utilized in continuous time amplification to improve the 

performance of the circuit. Another category of amplification of the signal is based on the 

architecture that produces a semi-digital output. This category includes pulse-width 
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modulation and frequency modulation. To produce a digital signal at the output, an analog 

signal can be converted to digital signal using an analog to digital converter or digitalizing a 

semi-digital signal. 

 

In the design of a signal conditioning circuit, power, noise, and sensitivity are the three most 

important challenges that should be considered. Regarding the application, the output signal 

can be digital, analog or semi-digital. In the following, the methods to produce these kinds of 

outputs are briefly described, and at the end, the advantages and disadvantages of each will be 

explained.   

 

 

 

 

   output signal

analog

Continuous time

Current

Voltage

Discrete time 

Sample and hold

semi-digital

PWM

FM

digital

semi-digital to 
digital

analog to digital

Figure 1.2 Classification of signal conditioning circuit based on the output type 
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1.2.1 Techniques to produce an analog output signal  

An analog output signal from a signal conditioning circuit can be obtained by either continuous 

time or discrete time methods. Switched capacitor circuits are used in discrete time methods to 

amplify the detected signal. In the continuous time architecture, a detected signal is amplified 

in either voltage or current mode. Because of the low frequency range of the input signal, 

chopper modulation is often implemented in continuous time methods. Some of the state-of-

the-art design of signal conditioning circuits with analog outputs are described in the following 

sections. 

 

1.2.1.1 Discrete time signal conditioning circuit  

  A switched capacitor circuit can be implemented in a signal conditioning circuit to move the 

charge in the sensor to the output. In the switched capacitor circuit, the sensing and reference 

capacitors are charged with opposite polarity voltages, which causes charge to propagate due 

to the voltage created by the difference of the capacitances to the output. A model of switched 

capacitor circuit is shown in Figure 1.3.  

 

 

Figure 1.3 Switched capacitor circuit, taken from (Yazdi, Kulah, & Najafi, 2004) 
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Where ΔC is the capacitance difference between Cs and Cr are the sensing capacitance and 

reference capacitance, respectively, Vp is the excitation voltage, and Cint is the capacitance of 

the feedback capacitor. 

 

The switched capacitor circuit provides a virtual ground and robust dc biasing at the sensing 

nodes. As a result, the sensing node is insensitive to parasitic capacitances and undesirable 

changes (Reddy, 2011). Moreover, the switched capacitor circuit is insensitive to the 

temperature (Aezinia, 2014). This architecture is implemented in works such as (Chavan & 

Wise, 2000; Kajita, Un-Ku, & Temes, 2002; Kulah, Junseok, Yazdi, & Najafi, 2003; M. 

Lemkin & Boser, 1999; M. A. Lemkin, 1997; Lu, Lemkin, & Boser, 1995; Ogawa, Oisugi, 

Mochizuki, & Watanabe, 2001; Ranganathan, Inerfield, Roy, & Garverick, 2000; Smith, Nys, 

Chevroulet, DeCoulon, & Degrauwe, 1994). The main disadvantages of a switched capacitor 

is a high noise floor, which is caused by high kT/C noise at low capacitance, high thermal noise 

if resistive MOS switches are implemented, and noise folding (Jiangfeng, Fedder, & Carley, 

2004).  In addition, they need a precise design of non-overlapping clock  (Aezinia, 2014). 

 

To reduce the kT/C in switched capacitor circuit, correlated double sampling (CDS) is utilized 

(Du et al., 2015; Du et al., 2017; Ranganathan et al., 2000) . Although CDS reduces the kT/C 

noise, noise folding and the thermal noise of resistive MOS switches still exist. In conclusion, 

the discrete time method is not preferred for high resolution signal conditioning due to its noise 

performance being worse than other methods. 

 

1.2.1.2 Continuous time signal conditioning circuit 

In continuous time sensing, there are two ways to measure the signal at the output: continuous 

time voltage sensing and continuous time current sensing. In voltage sensing, the physical 
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sensed signal is converted to a voltage and then amplified, while in the current sensing mode, 

the physical sensed signal is converted to a current and then amplified. 

At low frequencies, flicker and offset are the dominant sources of noise in CMOS technology, 

and to achieve high sensitivity, it is important to remove them properly. Two methods are 

implemented in continuous voltage sensing to remove the flicker noise: auto zeroing and 

chopping. In auto zeroing, flicker noise is removed but the noise floor is increased because of 

noise folding (Enz & Temes; Rong Wu, Huijsing, & Makinwa, 2013). As a result, chopping is 

generally preferred in low-noise continuous time voltage sensing. The architectures of circuits 

using current sensing and voltage sensing are explained in the following sections. 

 

1.2.1.2.1 Continuous time current-mode signal conditioning circuit 

 

A current-mode signal conditioning circuit converts the capacitance difference to a current 

(Singh, Saether, & Ytterdal, 2009). A block diagram of a capacitance-to-current signal 

conditioning circuit is shown in Figure 1.4. In this figure, Cm and Cr represent the sensor 

capacitance and fixed capacitance, respectively. Both of these capacitances have the same 

nominal value. At zero, the charging current (Ib) splits equally between these two capacitances, 

 

Figure 1.4 Block diagram of a capacitance-to-current signal 
conditioning circuit taken from (Singh, Saether, & Ytterdal, 2009) 
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but with changes in the value of Cm the distribution of current between the two paths is altered. 

The current is converted to a voltage by a resistive feedback amplifier. The output voltage of 

this amplifier is proportional to 

 

 

Where Rf  is the resistive feedback, C is the nominal capacitance, and ΔC is the difference 

between the sensor capacitance (Cm) and reference capacitance (Cr). 

 

The advantages of current mode sensing is that adding signals as currents is simple. A current-

mirror-like scheme can be applied for improving the sensitivity while also simplifying the 

circuit (Haider et al., 2008). However, the disadvantage of this scheme is that nonlinearity can 

be produced by current leakage from the switches. Moreover, the parasitic capacitance at the 

common node electrode should be significantly smaller than the sensing capacitance to prevent 

degrading the performance (Banitorfian & Soin, 2011; Marcellis, Carlo, Ferri, & Stornelli, 

2009; Pennisi, 2005; Scotti, Pennisi, Monsurrò, & Trifiletti, 2014; Singh et al., 2009). 

 

1.2.1.2.2  Continuous time voltage-mode signal conditioning circuit with chopper 

stabilized amplifier 

 

A chopper-stabilized amplifier is generally preferred in continuous time voltage-mode signal 

conditioning method. In a chopper stabilized amplifier, the desired signal is modulated to a 

higher frequency, amplified, and then demodulated (Bakker, Thiele, & Huijsing, 2000; Enz & 

Temes, 1996; Enz, Vittoz, & Krummenacher, 1987). In this fashion, the DC offset and flicker 

noise are decreased significantly (Enz et al., 1987). Figure 1.5 shows the chopping amplifier 

with its ideal waveform. To remove the flicker noise effectively, the chopper frequency should 

be larger than the flicker noise corner frequency. 
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Although the chopping amplifier suppresses flicker noise, it is not an energy efficient 

technique. In (Fang, Qu, & Xie, 2006; Qu, Fang, & Xie, 2008; H. Sun et al., 2011), dual 

chopper amplifier (DCA) is implemented. In (H. Sun et al., 2011), a dual chopper amplifier 

design is proposed to minimize the power consumption and noise by chopping the sensed 

signals at two different clock speeds, the design of which is shown in Figure 1.6. The first clock 

is at a high frequency to remove the flicker noise while the second clock is at a significantly 

lower frequency to keep the unity gain bandwidth low. The optimized gain of the first amplifier 

to reach the minimum power consumption is given in Equation 1.5: 
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Figure 1.5 Chopping principle, taken from (Rong Wu, 
Huijsing, & Makinwa, 2013) 
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Where fL and fH are the second chopping frequency and first chopping frequency, respectively, 

CL and CH are the load capacitances of the second amplifier and first amplifier, respectively, 

WL/LL is the ratio of the width to length at the input to the transistor of the second amplifier, 

WH/LH is the same ratio but in the first amplifier, and G represents the total gain of the circuit. 

In the equation (1.5) it is assumed that the noise from the first amplifier is dominant over the 

noise from the second amplifier, and so the noise produced by the second amplifier is not 

considered in that formula. This circuit is optimized for the parasitic capacitances, while the 

effect of the capacitance of the input transistor is not considered in the optimization. The effect 

of this transistor will degrade the performance of the sensor capacitance while the sensing 

capacitance is small. 

 

As explained above, in a DCA two different frequencies are implemented to chop at two stages. 

Thus, there is a freedom of distribution of gain between the two stages that contributes to a 

reduced power consumption compared to a single chopper amplifier design. The drawbacks of 

this chopping technique is that clock non-idealities, such as charge injection and residual offset, 

 

Figure 1.6 Dual chopper amplifier proposed in (H. Sun et al., 2011) 
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can degrade the performance.  To remove clock non-idealities and improve the performance, 

a careful design of the clock is essential. Implementing properly designed switches, such as 

dummy or complementary switches, will improve the performance. Moreover, this chopping 

technique can be combined with other techniques such as the capacitively coupled technique 

(Denison et al., 2007; Fan, Huijsing, & Makinwa, 2012; Fan, Sebastianen, Huijsing, & 

Makinwa, 2010; Fan, Sebastiano, Huijsing, & Makinwa, 2011; P. Sun, Zhao, Wu, & Fan, 2012; 

R. Wu, Makinwa, & Huijsing, 2009), a ripple reduction loop (Kusuda, 2009, 2010; P. Sun, 

Zhao, Wu, & Fan, 2012; Yazicioglu, Merken, Puers, & Hoof, 2008), correlated double 

sampling (Belloni, Bonizzoni, Fornasari, & Maloberti, 2010; Belloni, Bonizzoni, Maloberti, & 

Fornasari, 2010; Enz & Temes, 1996; Shiah & Mirabbasi, 2014), the auto-zeroing technique 

(Witte, Makinwa, & Huijsing, 2007), and the multi-path chopping technique (Fan, Huijsing, 

& Makinwa, 2013; Fan, Huijsing, & Makinwa, 2012). 

 

As a result, the combination of a DCA with other techniques could be an effective way to reach 

a low-power, high-sensitivity signal conditioning circuit. 

 

1.2.2  Semi-digital signal conditioning circuit  

A semi-digital output can be achieved with pulse-width modulation (PWM) or frequency 

modulation (FM). The principle of these two conditioning architectures are described in the 

following sections.  

 

1.2.2.1   Frequency modulation based signal conditioning circuit  

Capacitance-to-frequency converters have simple and straightforward structures. They usually 

use relaxation oscillators (Coskun et al., 2013; J. Zhang, Zhou, & Mason, 2007) or ring 

oscillators (Kyriakis-Bitzaros, Stathopoulos, Pavlos, Goustouridis, & Chatzandroulis, 2011; J. 

Zhang et al., 2007) to convert the capacitance to the frequency. Moreover, crossed-coupled 

oscillators (M. Shamsul Arefin et al., 2014; M. S. Arefin, Redouté, & Yuce, 2016b; Hua, Yan, 

Hassibi, Scherer, & Hajimiri, 2009; Wang, Weng, & Hajimiri, 2013) can be implemented to 

provide highly stable and lower phase-noise output frequencies for specific applications. 



23 

A block diagram of a capacitance-to-voltage circuit with frequency modulation (FM) is shown 

in Figure 1.7. A voltage-controlled oscillator (VCO) is implemented to convert the capacitance 

or inductive variation to the frequency. A sine-to-square circuit (STS) is implemented to 

convert the frequency variation to a time variation, and a frequency-to-voltage converter (FVC) 

circuit is used to convert the ΔTVCO to the voltage changes. The FVC is implemented to convert 

an oscillation into a measurable voltage (M. Shamsul Arefin et al., 2014). The two main 

approaches for the implementation of FVC blocks are counter-based circuits (Hou, 2004; 

Kyriakis-Bitzaros et al., 2011) and integrator-based circuits (Bui & Savaria, 2008; Djemouai, 

Sawan, & Slamani, 2001). 

 

 

The benefits of using frequency-based modulation are reduced phase, flicker, and white noises 

at higher frequencies (Ko, Tseng, & Lu, 2006; Mohammadi, Yuce, & Moheimani, 2012; Wang 

et al., 2013). However, FM circuits consume more power than current-to-voltage converter 

circuits (Bui & Savaria, 2008; Djemouai et al., 2001). Moreover, non-idealities such as 

parasitic capacitances, and feedback through air and track paths result in undesirable 

oscillations and degrade the performance of the overall circuit (Awad, 1988; Tyagi & Sumathi, 

2017; Yili, Song, Nakayama, & Watanabe, 2000). 

 

Figure 1.7 Block diagram of capacitive (or inductive) 
sensor to voltage with FM circuit taken from (M. S. Arefin, 

Redouté, & Yuce, 2016) 
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1.2.2.2 Pulse-width modulation based signal conditioning circuit  

Pulse-width modulation (PWM)–based capacitive sensors are based on relaxation oscillators 

whose output period is proportional to the variation of the sensor capacitance. The operating 

principle of PWM circuits is reported in (Heidary & Meijer, 2008; Heidary, Shalmany, & 

Meijer, 2010; Tan, Shalmany, Meijer, & Pertijs, 2012), and Figure 1.8 shows a diagram of a 

signal conditioning circuit that converts capacitance to a pulse-width signal. In this structure, 

two phases are implemented. At phase Ø1, Vdrive is connected to a supply voltage, and the output 

of the integrator steps down because of the amount of charge VintCx is transferred to Cint, and 

then rises smoothly since a sinking current Iint,n discharges from Cint. To detect the moment 

that Vint returns to its initial value, a comparator is used. At that moment, the phase triggers to 

the phase Ø2. During Ø2, Vdrive is pulled to Vss and a sourcing current Iint,p charges Cint as in the 

previous phase, but with an opposite polarity. This process will repeat N times, and the time 

period of this process is (Y.  He, 2014) given by 

 

 

int

2

I

CNV
T xdd=  

(1.6) 

 

Figure 1.8 Typical ring oscillator for the measurement of a 
capacitive sensing element in pulse-width modulation, taken 

from (Y.  He, 2014) 
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Where T is the clock cycle, Vdd is the supply voltage, and Cx is the sensor capacitance. By 

counting the clock cycles the sensor capacitance of  Cx will be defined. 

 

Pulse-width modulation can be designed to have relatively high resolution and handle a very 

large input capacitance range (Heidary & Meijer, 2008; Meijer & Iordanov, 2001). Interfaces 

that are based on relaxation oscillators are operated asynchronously and thus do not require a 

clock signal. Period-modulation-based capacitive sensor interfaces can be quite flexible, and, 

by using a sample digital divider, they can be simply converted to measurement time by 

counting the duration of multiple output periods (Heidary et al., 2010; Xiujun & Meijer, 2002). 

However, the power consumption is high in this implementation and are therefore not suitable 

for use in energy-constrained applications (Pertijs & Tan, 2013). To reduce the power 

consumption, the pulse-widthmodulation is combined with other techniques such as negative-

feedback loops (Heidary & Meijer, 2008; Meijer & Iordanov, 2001), piece-wise charge transfer 

techniques (Y. He, Chang, Pakula, Shalmany, & Pertijs, 2015), and chopping and three-signal 

auto-calibration techniques (Tan et al., 2012). The output of PWM is strongly dependent on 

MOSFET transconductance, parasitic capacitance, and resistance values (M. S. Arefin, 

Redouté, & Yuce, 2016a; Bruschi, Nizza, & Piotto, 2007). 

 

1.2.3 Digital output  

To produce a digital output, analog-to-digital converters (ADCs) can be implemented to 

convert the voltage to a digital signal. These ADCs include successive approximation register 

(SAR) analog-to-digital converters (Brenk et al., 2011; Hsieh & Hsieh, 2018; Hwang, Park, 

Song, & Jeong, 2018; Mao, Li, Heng, & Lian, 2018; Sadollahi, Hamashita, Sobue, & Temes, 

2018; D. Zhang, Bhide, & Alvandpour, 2012; Zou, Xu, Yao, & Lian, 2009) and ΔΣ modulators 

(Jung, Duan, & Roh, 2017; Park, Cho, Na, & Yoon, 2018; Rout & Serdijn, 2018; Sanyal & 

Sun, 2017). Successive approximation register (SAR) ADCs have low power consumption and 

moderate resolution (Hariprasath, Guerber, Lee, & Moon, 2010; Liu, Roermund, & Harpe, 

2017; Tai, Hu, Chen, & Chen, 2014).  ΔΣ modulators are suitable for high resolution 

applications, but have low energy efficiency (Paavola et al., 2007; Shin, Lee, & Kim, 2011; 
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Tan et al., 2013). Semi-digital-to-digital converters include frequency-to-digital convertors 

(Brookhuis, Lammerink, & Wiegerink, 2015; Cardes et al., 2018; Chiu, Hong, & Wu, 2013; 

Elhadidy, Shakib, Krenek, Palermo, & Entesari, 2015) and time-to-digital convertors 

(Danneels, Coddens, & Gielen, 2011; S. Lee et al., 2007). Time-to-digital convertors have a 

simple structure (e.g., counters), but usually they do not have a high resolution as their iterative 

discharging process requires 2N cycles for N-bit resolution (Sanyal & Sun, 2017). The 

frequency-to-voltage convertors that VCO has implemented suffer from non-linearity 

problems and have a high sensitivity to process, voltage, and temperature (PVT) variations 

(Sanyal, Li, & Sun, 2018). Digital output can also be achieved by using the combination of 

frequency-to-voltage converters and ADCs (Elhadidy, Elkholy, Helmy, Palermo, & Entesari, 

2013; Gaggatur, Dixena, & Banerjee, 2016; Helmy et al., 2012; Matsumoto & Esashi, 1993). 

 

1.2.4 Comparison of different application areas  

In this section, a review of different application areas and the requirements of sensor circuits 

implemented in those areas is given. As discussed previously, MEMS applications work in a 

low frequency range of up to a few kHz, and circuits applied here also need to have high 

resolution and a low-power signal conditioning circuit is necessary to detect small variations 

in the sensors. Each architecture for signal conditioning circuits has its benefits and limitations, 

and the most important of these are shown in Table 1.2. Among these architectures, the 

chopping technique is a well-suited option for low noise and low frequency applications.  

 

Moreover, the power consumption of the chopping technique could be decreased significantly 

with the proper design of a dual chopper amplifier. The limitation of the chopper technique is 

that it is sensitive to clock non-idealities, and the input capacitance of the circuit can degrade 

the sensitivity performance. With a combination of the dual chopper technique with other 

techniques such as a ripple reduction loop, multi-path circuits, switch non-idealities can be 

decreased. Furthermore, the dual chopper amplifier gives us the freedom to design a circuit 

with a minimum input capacitance that also contributes to maximize the sensitivity during 

capacitive sensing. 
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Table 1.2 Summary of advantages and disadvantages of  

different signal condition circuit 

 Advantages Disadvantages 

Switched Capacitor 

• Insensitive to parasitic 

capacitance 

 

• High noise floor 

because of the noise 

folding 

• Need higher bandwidth 

• Need techniques to 

suppress offset and low 

frequency 

Chopper stabilized 

amplifier 

• Eliminating offset and 

flicker noise 

• Power reduction with 

DCA 

• Non-idealities problem: 

charge injection, clock 

feed-through and jitter.   

 

Pulse width modulation 

• Robustness against 

environmental noise , 

• Dynamic range is not 

limited by the supply 

voltage or currents 

• Relatively high 

resolution  

• Handle very large input 

capacitance range 

• Output affected by 

temperature and process 

variations 

• High  power 

consumption 

 

Frequency modulation 

• Less prone to amplitude 

noise 

• Having lower phase, 

flicker, and white noises 

at higher frequencies 

• Output affected by large 

temperature and process 

variations 

• High  power 

consumption 

 





 

 
 
 

 DESIGN CONSIDERATIONS OF SIGNAL CONDITIONING 
CIRCUITS FOR CAPACITIVE AND RESISTIVE SENSORS  

The goal of this work is designing a signal conditioning circuit to be applicable for MEMS 

sensors. This circuit should be able to read signals from both capacitive and resistive sensors. 

At the MEMS transducer, a physical stimulus is converted to an electrical signal, and the 

electrical signal is amplified in the signal conditioning circuit. To have a proper MEMS sensor, 

the transducer, signal conditioning circuit, and their integration should work well to have a 

high performance circuit. The design of the MEMS transducer is not the scope of this work. 

However, by considering the characteristics of the MEMS transducer, the signal conditioning 

circuit is designed to maximize the performance. 

 

The detected signal from the MEMS transducer could be as small as atto Farads in the 

capacitive sensor, and as small as micro volts in the resistive sensor for a frequency range of 

up to a few kHz. As a result, the signal conditioning circuit must have the capability of reading 

a low-amplitude low-frequency signal, and then amplify it properly to be suited to more 

processing. As a result, the input noise of the signal conditioning circuit should be smaller than 

the detected signal by the MEMS transducer. On the other hand, when a signal conditioning 

circuit is added to the capacitive sensor, it adds some parasitic capacitance to the transducer, 

and, based on the value of sensor capacitance, this parasitic could degrade the performance. 

The smaller sensor capacitance, the more important the input capacitance of signal 

conditioning circuit is.  

 

In other words, the signal could not be readable even with a very low noise signal conditioning 

circuit that has a large input capacitance. As a result, both the input noise and the input 

capacitance should be minimized. As the frequency range of signal conditioning circuit is from 

DC to few kHz, the dominant noise is the flicker noise. The formula of flicker noise for a 

CMOS transistor equals to: 
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 In the oxide capacitance, W and L are the width and the length of the transistor, respectively 

and kf is the flicker noise coefficient. With increasing dimension of the transistor, flicker noise 

is decreased. However, to have a low input noise in low frequencies, a technique should be 

implemented to suppress the flicker noise completely. Among the different techniques to 

remove the flicker noise, the chopping technique is preferable. In this technique, the signal is 

modulated to the higher frequency, amplified and then demodulated to the baseband as shown 

in Figure 2.2. As a result, flicker noise can be suppressed completely. 

 

 

There are many constraints that should be considered in the design of a chopper amplifier. The 

most important of them is choosing the proper chopper frequency. To prevent the flicker noise 

down-folding, the chopping frequency should be larger than the corner frequency (Nielsen, 

2004). Figure 2.3 shows the percentage of increasing noise floor regarding the ratio of 

chopping frequency to corner frequency. As shown, the chopping frequency should be at least 

ten times larger than the corner frequency to have less than a 10% increase in the noise floor. 

On the other hand, the chopping frequency should be in the bandwidth range not to degrade 

the signal amplitude. As a result, larger chopping frequency demands larger bandwidth that 

contributes to more power consumption.  

 

WLfC

k
V

ox

f
f =  

(2.1) 

Figure 2.1 Single chopper amplifier structure 
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In addition of flicker noise, a careful design should be done to minimize the thermal noise. The 

thermal noise of a CMOS transistor equals to:  

 

 

where k is Boltzmann’s constant, T is the absolute temperature, and gm is the transconductance, 

which can have a value that is different in the subthreshold and saturation region. At the 

saturation region, to reduce the thermal noise, transconductance of transistor should be 

increased which means more current and larger ratio of W/L. However, a larger ratio of W/L 

contributes to a larger dimension for the transistor and will increase the input capacitance.  

Because of the limitation in power consumption and input capacitance of a single-chopper 

amplifier, a dual-chopper amplifier is proposed as shown in Figure 2.4. As shown in this 

architecture, two different chopping frequencies are implemented to chop two amplifiers. In 

the dual-chopper amplifier, the signal is chopped with a high frequency modulator, then 

amplified, and subsequently, it will be chopped with another chopping frequency to send it to 

the lower frequency, and then will be amplified again at the second amplifier. At last, it is 

demodulated to the baseband. This structure gives a greater degree of freedom, and with the 

 

m
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kT
V

4=  
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Figure 2.2 Thermal noise increase based on 
normalized frequency fchop/fc, taken from 

(Nielsen, 2004) 
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proper distribution of the gain between the two stages, it can be optimized for noise, power 

consumption, and power-noise factor.   

  

 

2.1 Chopping amplifier signal conditioning circuit in resistive sensors  

In the design of a signal conditioning circuit, in resistive sensors, the input noise of the circuit 

is important with regards to the performance. However, the input capacitance is not an issue in 

this kind of sensing. As a result, to have a high resolution circuit, the input noise should be 

reduced as much as possible.  

 

Another factor that should be considered in the design is power consumption. There is a trade-

off between noise and power consumption. Distribution of the gain between the two stages in 

DCA gives us a greater degree of freedom, and it could contribute to a smaller power 

consumption than the SCA. Thus, regarding the total gain, there is an optimal distribution of 

gain between the amplifiers in DCA to reach the minimum noise, power consumption, or 

power-noise factor. Figure 2.5 shows the normalized power-noise factor in DCA based on the 

variation of the gain of the first amplifier. The overall gain of the DCA is considered to be 

40 dB, and GH-opt  is the gain of the first amplifier to reach the minimum power-noise factor. 

As shown, based on the value of the gain, the contribution of each stage in total noise and 

power consumption is different, and it could change the result significantly.  

 

 

Figure 2.3 Dual chopper amplifier structure 
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In addition to the distribution of the gain, the ratio of chopping frequencies is important on the 

DCA performance. Figure 2.6 compares the performances of the single- and the dual-chopper 

amplifiers by plotting the ratio of the power-noise product of the SCA and the power-noise 

product of the DCA vs. the overall gain, G, and Rf given by 

 

 

Where fH is the chopping frequency of the first amplifier, fL is the chopping frequency of the 

second amplifier. The region where the SCA has a better power-noise product than that of the 

DCA is outlined in blue in Figure 2.6. Conversely, in the region where the ratio is above 1, the 

DCA attains a better power-noise product than the SCA. When Rf is low, the SCA always 

exhibits a better performance independent of the value of G. When Rf and the overall gain is 

increased, the DCA provides a better performance. In this region, the power-noise product of 

the DCA will be improved over that of the SCA by a factor of G, the overall gain. As such, 

with an appropriately designed Rf, the DCA yields increasingly better power-noise 

performance as the total gain is increased. 

 

 

L

H
f f

f
R =  

(2.3) 

Figure 2.4 Normalized power consumption and input-referred 
noise of each stage of the DCA vs. the gain of first stage 

(overall gain set to 40 dB). 
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2.2 Design of signal conditioning circuit for capacitive sensing  

The design of a signal conditioning circuit for the capacitive sensing is more challenging. In 

this design, the input capacitance of the signal conditioning circuit should be considered, as it 

makes the design of the circuit more complicated. In this kind of signal conditioning, the circuit 

should be optimized for the noise, input capacitance and power consumption. As explained, to 

remove the flicker noise, a chopping technique is the best choice. Also to be able to remove 

the flicker noise properly, chopping frequency should be chosen carefully and it should be at 

least 10 times larger than the corner frequency. A large chopping frequency necessitates a 

larger bandwidth for the circuit which demands a higher power consumption. However, the 

corner frequency of a MOS transistor has a direct relationship with transconductance of the 

transistor and inverse relationship with the dimension of the transistor. To reduce the corner 

frequency, dimension of the transistor should be increased, as it causes a larger input parasitic 

capacitance, and it degrades the performance of the capacitive sensing. As a result, the 

chopping technique will remove the flicker noise, but there is a trade-off between the noise 

floor, the power consumption, and the input parasitic capacitance. A careful design is necessary 

to remove the flicker noise and optimize the power consumption and the sensitivity at the same 

time. As a result, it is important to find the best chopping technique and the best way of 

designing based on the required specifications for the capacitive sensing. 

 

Figure 2.5 Preferred chopping technique (SCA or DCA) depending on 
the overall required gain and RF value. 
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In our work, different analyses, simulations and measurements are done to propose a low-

noise, low-power, and high-sensitivity signal conditioning circuit which is applicable in both 

capacitive and resistive sensors and the results are explained in three papers, which are 

reproduced in the following chapters.  

 

The first paper (chapter 3), which is published at the Journal of Low Power Electronics and 

Applications, discusses the methodology of designing the chopping circuits. In this paper, three 

chopping techniques of single-chopper amplifier (SCA), dual-chopper amplifier (DCA), and 

two-stage single-chopper amplifier (TCA) are considered, and the sensitivity factor and power 

consumption for these three chopping techniques are calculated. The parameters related to the 

sensitivity factor are determined in this work. It is shown that the input noise and the input 

parasitic capacitance are the important factors to define the sensitivity. Sensitivity for different 

total gains and sensor capacitances are extracted in each chopping technique. Moreover, the 

minimum sensitivity for each technique based on the gain and the sensor capacitance is 

calculated. Then, a methodology to reach the maximum sensitivity in each chopping technique 

is described. As shown, designation of the amplifier and distribution of the gain in the TCA 

and DCA are the important factors to reach the highest sensitivity or the minimum power 

consumption for the desired sensitivity. It is shown that the DCA has the highest sensitivity 

and is the most suitable for a small sensor capacitance and large required gain. 

 

Based on these results, a DCA structure is chosen to reach the lower noise floor and the lower 

power consumption at the same time. In addition, some other techniques are combined with 

DCA to improve the performance.  

 

To reach the higher SNR and the lower power consumption, a novel circuit is proposed and 

fabricated in the 0.13 µm CMOS technology. Its measurement result is presented in a paper 

that is published in the IEEE Transactions on Circuits and Systems: TCAS-I Regular Papers 

(chapter 4). In this circuit, a dual-chopper and a dual-path signal conditioning circuit is 

presented to reach ultra-high sensitivity and ultra-low power consumption. The noise 

performance and the SNR improvement are explained in detail in this paper.  
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At the first stage of this circuit, an amplifier with low supply voltage and high current is 

implemented. This structure results in a lower noise floor and a lower power consumption at 

the same time. The second stage is designed to work in a single-path or a dual-path mode. In 

the dual path mode, a higher gain and a higher SNR are achievable. The amplifiers at the 

second stage are chopped to remove the flicker noise. These two paths are added together by 

an adder, which is a four-input fully differential gm-C filter. A gm-C filter is used at the end to 

remove the up-converted flicker noise and harmonics. The noise performance, frequency 

response, SNR, and THD of this circuit for single-path and dual-path are presented, and these 

results are compared to other works. It is shown that the power consumption of this circuit is 

significantly lower than the similar works. Moreover, the input capacitance of the circuit is 

minimized to be suitable for high-sensitivity fully-integrated capacitive mode sensors.  

 

To be able to detect the small signal at the sub-milli Hertz range and having a low power 

consumption, an architecture is proposed in the third paper (chapter 5), which is submitted in 

the IEEE Sensors Letters.  In this work, a circuit is presented wherein three different chopping 

frequencies are implemented to remove the flicker noise of the three different stages. The first 

stage of this circuit is a low-supply voltage and high-current amplifier to reach a low-noise 

floor and a low-power consumption. The second stage is a resistive feedback amplifier that is 

chopped, and the third stage is a capacitive feedback amplifier. The amplifier of this stage is 

chopped as well. With benefiting the Miller effect at the third stage and utilising capacitive 

bank at the feedback, a configurable bandwidth is achievable. This design helps to decrease 

the integrated input noise and improve SNR. Moreover, with this design, there is no need to 

use an extra gm-C filter, which adds extra flicker noise. Appropriate chopping frequencies and 

proper distribution of the gains between three stages are important to reach a low-noise, low-

power, and high-sensitivity circuit. Moreover, with utilising the nested chopper at the input of 

this circuit, the charge injection effect will be reduced. With the help of this circuit, corner 

frequency of 0.5 µHz is achievable and near-DC high precision operation is possible. In 

addition, the first amplifier is designed to have a low capacitance, which contributes to ultra-

high sensitivity in capacitive sensors. 
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Abstract 

 

 In this paper, parameters related to the sensitivity of the interface circuits for capacitive sensors 

are determined. Both the input referred noise and capacitance of the input transistors are 

important for capacitive sensitivity. Chopping is an effective technique for signal conditioning 

circuits because of its capability of reducing circuit noise at low frequencies. The capacitive 

sensitivity and power consumption of various chopping techniques including the dual chopper 

amplifier (DCA), single chopper amplifier (SCA), and two-stage single chopper amplifier 

(TCA) are extracted for different values of total gain and sensor capacitance. The minimum 

sensitivity for each technique will be extracted based on the gain and sensor capacitance. It 

will be shown that designation of the amplifier and distribution of gain in the TCA and DCA 

are important for sensitivity. A design procedure for chopper amplifiers that illustrates the steps 

required to achieve either the best or the desired sensitivity while minimizing power 

consumption will be presented. It will be shown that for a small sensor capacitance and large 

total gain, the DCA has the best sensitivity, while for a large sensor capacitance and a lower 

gain, the SCA is preferable. The TCA is the desired architecture for an average total gain and 

a large sensor capacitance. Moreover, when the power consumption is the key requirement and 
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the maximum sensitivity is not the goal; the TCA works best due to its potential to decrease 

the power consumption. 

 

Keywords: chopper amplifier; capacitive sensor; high sensitivity; low power 

 

3.1 Introduction  

 Consumer electronics are increasingly making use of multiple integrated sensors to enhance 

their functionalities. Microelectromechanical systems (MEMS) have enabled the design of 

sensors with very high sensitivities, enabling a range of sensing applications (Huang et al., 

2015). Sensors that convert a physical stimulus into a capacitance are widely used for different 

purposes including detecting motion, pressure, and acceleration (Han & Shannon, 2009; Hao 

et al., 2014; Liu, Hsiung, & Lu, 2012; Meng & Dean, 2016). Capacitive sensing has the benefits 

of a low temperature coefficient, low power dissipation, and low noise. Additionally, the 

devices can be easily integrated with CMOS circuits, and they are compatible with VLSI 

technology scaling (Hafizi-Moori & Cretu, 2015; Jiangfeng, Fedder, & Carley, 2004b; 

Tavakoli & Sarpeshkar, 2003). 

 

Typical capacitive sensor output signals are in the microvolt range and have bandwidths 

ranging from DC up to a few kilohertz (Witte, Makinwa, & Huijsing, 2007). Amplifying such 

signals requires low noise and low offset amplifiers. Due to this frequency range, flicker noise 

is the dominant noise source in CMOS technology. There are two methods to remove the 

flicker noise: auto-zeroing and chopping (Enz & Temes, 1996). Auto-zeroing is a sampling 

technique that removes flicker noise; but causes noise folding. Chopping is a continuous-time 

modulation technique in which the signal and offset are modulated to high frequencies. As a 

result, the chopping technique achieves low noise at low frequencies. Chopping techniques 

have been applied widely in recent publications to remove flicker noise and DC offsets 

(Belloni, Bonizzoni, Fornasari, & Maloberti, 2010; Fan, Huijsing, & Makinwa, 2012a; 

Hongzhi, Fares, Deyou, Kemiao, & Huikai, 2008; Jiangfeng, Fedder, & Carley, 2004c; Ong & 

Chan, 2014; Pertijs & Kindt, 2010; Qu, Fang, & Xie, 2008; Sun et al., 2011; Yaul & 
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Chandrakasan, 2016). One or more chopping frequencies can be applied when using chopping. 

An amplifier with a single chopping frequency is a single chopper amplifier (SCA) that can 

also be implemented as a two-stage chopper amplifier (TCA). In this system, the signal is 

modulated to a higher frequency, amplified and then demodulated to the baseband. When two 

different chopping frequencies are used, the system is a dual chopper amplifier (DCA). This 

technique can simultaneously remove flicker noise and reduce power consumption (Hongzhi 

et al., 2008; Sun et al., 2011). 

 

Figure 3.1 shows a signal conditioning circuit that is connected to a differential sensor 

capacitance, C0 that can vary by ΔC in the presence of a stimulus. An important factor that 

must be considered in systems with capacitive sensors is parasitic capacitances at the sensing 

nodes that include the input capacitance of the signal conditioning circuit, Cgg, and the 

interconnect parasitic capacitance, CP.  

 

 

Figure 3.1 Connection of differential sensor capacitance to an 
interface circuit with parasitic capacitances. 
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The sensed signal is sensitive to loading caused by parasitic capacitances at this node, which 

can degrade the circuit performance. In this paper, the effect of input capacitance of such an 

interface circuit on the sensitivity performance is investigated.  

 

Power consumption is another important factor when sensors are used in portable devices 

(Shiah & Mirabbasi, 2014). Adding this requirement means the power must be minimized 

while maintaining satisfactory sensitivity in the interface system. There is a tradeoff between 

the noise level and the power consumption, which poses a design challenge when trying to 

simultaneously obtain low noise and low power consumption. 

 

This paper presents an analysis of sensitivity and power consumption when using the three 

chopping techniques of the SCA, TCA and DCA. These architectures are described in Section 

3.2. Parameters related to the sensitivity of these systems are presented in Section 3.3, where 

a sensitivity factor used to extract the minimum detectable capacitance variation in the sensor 

capacitance is introduced. The sensitivity of the different chopping techniques is analyzed in 

Section 3.4. In each chopping technique, the achievable sensitivity and power consumption are 

extracted based on the total desired gain, the sensor capacitance, and the minimum sensitivity. 

Section 3.5 compares the sensitivity of the three techniques and the preferred chopping 

technique is identified based on design constraints. Section 3.6 provides a method to select the 

appropriate circuit architecture based on a sensor’s capacitance and desired total gain. Finally, 

conclusions are presented in Section 3.7. 

 

3.2  Architecture of the three different chopping techniques  

The system diagrams of the SCA, DCA and TCA are shown in Figure 3.2. In the SCA, the 

detected signal from the capacitive sensor is chopped at frequency fL, which is chosen to be 

higher than the 1/f noise corner frequency. After amplification, the signal is downconverted to 

the baseband and then filtered. In the TCA, the detected capacitive sensor signal is chopped at 

frequency fL, which is chosen to be higher than the 1/f noise corner frequency of the first and 

second stages, and is then amplified by the first and second stages. After amplification, the 
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signal is downconverted to the baseband and at last, the harmonics will be filtered. In the DCA, 

the sensed signal is modulated by frequency fM, which is a frequency that is generated by the 

mixing of two chopper frequencies, fH and fL. After chopping with frequency fM and 

amplification by the first stage A1, the signal is then chopped with frequency fH. In this step, 

the 1/f noise of the first stage can be filtered, as it is shifted to the odd harmonics of frequency 

fH. Finally, the signal is amplified by the second stage A2, and is then chopped by frequency fL, 

which is higher than the 1/f noise corner frequency of the second stage. With this latest 

chopping operation, the signal has been downconverted to the baseband and the 1/f noise of 

the second stage is moved to the odd harmonics of fL and can be filtered for further processing. 

This dual chopping technique has advantages that will be highlighted in Section 3.3. 

 

Figure 3.2 Diagram of the (a) single chopper amplifier, (b) two stage single 
chopper amplifier, and (c) dual chopper amplifier with a capacitive transducer 
connected to the input. The frequency domain signal and noise representation 

for each system is also presented. 
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3.3 Parameters related to the sensitivity of the chopping technique 

In the following sections, the effective parameters for the sensitivity of the chopping amplifiers 

are shown and a sensitivity factor is defined to be able to compare the capacitive sensitivity of 

the signal conditioning circuits. 

 

3.3.1 Noise and corner frequency 

One of the important effective factors on sensitivity is the noise. The dominant noises sources 

in MOS transistors are thermal and flicker noise, which are given as (Gray & Meyer, 1990): 

 
 ௡ܸଶ = ௠݃ߛܶܭ4  

(3.1) 

 
 ௙ܸଶ =  ݂ܮ௢௫ܹܥ௙ܭ

(3.2) 

 

where Vn is the thermal noise voltage, Vf is the flicker noise voltage, gm is the transconductance 

of the MOS transistor and K is Boltzmann’s constant. In (3.2), Kf is the flicker noise constant 

and W and L are the width and length of the transistor, respectively.  

 

The goal of the chopping technique is to remove the flicker noise such that small signals at low 

frequencies can be detected. To remove the flicker noise, a suitable chopping frequency must 

be chosen. In addition, the chopping frequency should be in the bandwidth of the amplifier to 

prevent suppression of the signal. A chopping frequency which is smaller than the noise corner 

frequency cannot remove the flicker noise properly. On the other hand, using a large chopping 

frequency requires a large amplifier bandwidth, which results in a higher power consumption. 

As a result, choosing the proper chopping frequency is important to optimize both the power 

consumption and the noise. Once the noise corner frequency is extracted, the appropriate 

chopping frequency can be selected. 
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The noise corner frequency is the frequency at which the thermal noise and flicker noise 

become equal (Fang, 2006a). Based on the relation of the thermal noise and flicker noise, the 

noise corner frequency can be extracted as:  

 
 ௖݂ = ߛܶܭ௙4ܭ × ݃௠ܹ. .ܮ  ௢௫ܥ

(3.3) 

 

As shown in (3.3), both dimensions of the transistor and its transconductance affect the noise 

corner frequency. Larger dimensions and a smaller transconductance result in a lower noise 

corner frequency. If the chopping frequency is 10 times larger than the corner frequency, then 

the flicker noise is 10% of the thermal noise and can be neglected (Fang, 2006a). In this 

analysis, a chopping frequency that is 10 times larger than the noise corner frequency is 

considered, and the amplifier bandwidth is chosen to be a slightly larger than the chopping 

frequency as shown below to optimize the power consumption: 

 
 10 × ௖݂ < ௖݂௛௢௣ <  (3.4) ܹܤ

 

where fchop is the chopping frequency and BW is the 3-dB bandwidth of the amplifier. 

 

3.3.2 Input capacitance  

The other determining factor on the capacitance sensitivity is the parasitic capacitance of the 

input transistor. Based on the value of the sensor capacitance and capacitance of the input 

transistor, the sensitivity can be decreased. The gate capacitance of a MOS transistor is equal 

to (Gray & Meyer, 1990): 

 
௚௚ܥ  = ܹ. .ܮ ௢௫ܥ + ܹ. .௢௩ܮ  ௢௫ (3.5)ܥ

 

where W and L are width and length of the transistor, Cox is the thin-oxide field-capacitance 

per unit area, and Lov is the gate overlap length. 
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Considering equations (3.5), (3.2) and (3.3), it is observed that the noise corner frequency and 

the flicker noise have an inverse relationship with the gate capacitance. If the dimensions of 

the input transistor are increased to decrease the flicker noise and the corner frequency, the 

input capacitance will increase. This effect can have a negative effect on the sensitivity, as will 

be shown in section 3.3. In an amplifier, the equations for the bandwidth and gain can be 

written as follows: 

 
ܹܤ  ≅ 1ܴ௢.  ௅ܥ

(3.6) 

 
ܩ  = ߙ ∙ ݃௠ ∙ ܴ௢ (3.7) 

 

where CL is the load capacitance, Ro is the output impedance, and gm is the transconductance 

of the input transistor. The coefficient α is included in (3.7) because the exact gain depends on 

the amplifier topology. In fully differential amplifiers, α is equal to 1, and in other types such 

as two stage amplifiers and folded cascode amplifiers, it is larger than 1. Substituting the 

equations for bandwidth (3.6) and the noise corner frequency (3.3) into equation (3.4), we 

obtain: 

 
 10 × ߛܶܭ௙4ܭ × ݃௠ܹ. .ܮ ௢௫ܥ < 1ܴ௢.  ௅ܥ

(3.8) 

 

We can rewrite (3.8) as: 

 
 ܹ ∙ ܮ ∙ ௢௫ܥ > 10. ߛܶܭ௙4ܭ . ݃௠. .௢ݎ  ௅ܥ

(3.9) 

 

In (9), ݃௠.  ௢ is the gain or part of the gain, and the left hand side can be considered as theݎ

capacitance of the input transistor (Cgg) if the value of ܹ ∙ ௢௩ܮ ∙  ௢௫ is negligible. If not, theܥ

input capacitance is larger than this value. As a result, the input capacitance and gain are related 

such that: 
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௚௚ܥ  > 10. .ߛܶܭ௙4ܭ ߙ .  ܩ
(3.10) 

 

This equation highlights the fact that the input capacitance and the gain are dependent on each 

other. For a given gain, the input capacitance is larger than the value in (3.10). As the gain is 

increased, the input capacitance will also increase, and this can degrade the sensitivity. 

 

3.3.3 Sensitivity factor  

 A sensitivity factor is introduced to extract the minimum variation in the sensor capacitance. 

A smaller sensitivity factor translates to a greater sensitivity for the sensing interface. 

The detected voltage signal from the capacitive sensor should be larger than the input noise 

floor of the circuit, as shown by: 

 
௡ݒ  × ඥܤ ௦ܹ௬௦௧௘௠ < ଴ܥ௠௜௡2ܥ∆ + ௣ܥ + ௚௚ܥ ௗܸௗ 

(3.11) 

 

where Vn is the noise floor voltage, C0 is the sensor nominal capacitance, Cp is the parasitic 

capacitance of the interconnects, Cgg is the capacitance of the interface circuit, ΔCmin is the 

minimum detectable variation at the sensor capacitance, Vdd is the excitation voltage, and 

BWsystem is the desired bandwidth of the system and is defined by the application. Equation 

(3.11) can be rewritten as: 

 
௡ݒ  × ඥܤ ௦ܹ௬௦௧௘௠ < (଴ܥ2)௠௜௡ܥ∆ × (1 + ௚௚ܥ ଴൘ܥ2 ) ௗܸௗ 

(3.12) 

 

Here, it is assumed that the parasitic capacitance of the interconnect can be neglected. This is 

a viable assumption in monolithically integrated sensors where very high levels of sensitivity 

are required and interconnect parasitics are minimal. In this analysis, a loading factor Kc is 

defined as: 
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௖ܭ  =  ଴ܥ௚௚2ܥ
(3.13) 

 

Based on (12) and (13), the following relationship can be derived: 

 
௡ݒ  × (1 + (௖ܭ < (଴ܥ2)௠௜௡ܥ∆ × ඥܤ ௦ܹ௬௦௧௘௠ ௗܸௗ 

(3.14) 

 

In this equation, C0, Vdd, and BWsystem are constants. As a result, 
∆஼೘೔೙ଶ஼బ , which is the ratio of the 

smallest detectable capacitance variation to the nominal capacitance, depends on the noise and 

the loading factor. A sensitivity factor can then be defined as: 

 
 ܵி = ௡ݒ × (1 +  ௖) (3.15)ܭ

 

As such, both the noise floor and the loading factor are influential in detecting the minimum 

variation in the sensor capacitance. Thermal noise has a direct effect on the sensitivity factor 

as it is multiplied by (1 + KC). Therefore, the value of the loading factor is important. If it is 

much smaller than 1, the thermal noise is the sole factor for determining the sensitivity factor; 

however if it is comparable with 1, it will affect the sensitivity factor.  

 

In this paper, the sensitivity factor is applied to extract the minimum detectable variation of 

capacitance in the SCA, TCA, and DCA configurations for different gains and sensor 

capacitances. 

 

3.3.4  Power-sensitivity factor  

To achieve a design suited to low-power operation, the effect of both sensitivity factor and 

power consumption should be considered. It is possible to achieve a very small sensitivity 

factor in a system, but this may demand high power consumption. As a result, a power-

sensitivity factor is defined as:  



47 

 ܲܵி = ܲ × ܵி (3.16) 

 

where P is the power consumption of the system. Based on the application, the system is 

designed to attain the minimum power-sensitivity factor, or the smallest possible value of 

sensitivity factor considering a constraint on the power-sensitivity factor. 

 

3.4  Sensitivity of the SCA, TCA, and DCA  

In this section, the sensitivity factor of the SCA, TCA and DCA are extracted based on the 

total gain and sensor capacitance. To design a chopper amplifier, it is important that the relation 

between the bandwidth and the noise corner frequency given in (4) is respected. As a result, a 

reference amplifier with a particular gain and a valid relationship between the bandwidth and 

the noise corner frequency is considered to compare the performance of different chopping 

techniques for different gains. 

 

3.4.1  Reference amplifier  

 It is assumed that the reference amplifier has a gain of G0 and the current and dimensions of 

the input transistors maintain a valid relationship between the bandwidth and the noise corner 

frequency.  

 

The characteristics of the chopping amplifiers for different gains are extracted based on 

characteristics of the reference amplifier. It is assumed that all amplifiers used in the chopping 

systems in this paper have a bandwidth of at least ten times larger than their noise corner 

frequency. There are different methods of changing the current and dimensions of the 

transistors to achieve an amplifier gain such that:  

 
ܩ  = ܭ ∙  ଴ (3.17)ܩ

where G is the amplifier gain which is K times the gain of the reference amplifier. The possible 

ways of changing the gain while maintaining the condition set in (4) are listed in Table 3.1 

along with the effect they have on different circuit metrics.  
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Table 3.1 Different methods of changing the gain of the SCA w.r.t. 
the reference amplifier. 

 

In all of these cases, the load capacitance CL is kept constant. It is noted that any second order 

non-idealities are neglected in Table 3.1 Moreover, the minimum allowed value of length and 

width of the transistors depend on the technology considered for the design. 

 

Figures 3.3 and figure 3.4 show the effect of changing the gain on the sensitivity factor for two 

values of the loading factor in the reference amplifier (kc =0.01 and 1). The sensitivity factor 

and gain of these figures are normalized based on the sensitivity factor and gain of the reference 

amplifier. In each figure, the sensitivities for the four possible cases in Table 1 are considered 

to achieve the desired gain. As shown in Figure 3.3, with increasing gain, the thermal noise 

and input capacitance vary as shown in Table 3.1. Cgg is changed by a factor of K in all of the 

cases which implies that the loading factor is increased by a factor of K. As a result of the gain  

variation, the loading factor is changed from 0.001 to 0.1, having a negligible impact on the 

sensitivity factor in this case as it remains much smaller than 1. Variation of the thermal noise 

depends on the considered case. As shown in Figure 3.3, with increasing K, the sensitivity 

factor is increased in case 1, decreased in cases 2 and 4, and almost constant in case 3. The 

trend in the sensitivity factor is thus the same as the trend of the thermal noise. This means that 

the effect of the loading factor on the sensitivity factor is negligible and the sensitivity factor 

is affected solely by the thermal noise.  

Case G Length Width Vn Cgg Gm Ro fc BW Power 

1 K K 1 K K K
1

 
2K  2

1
K  2

1
K  2

1
K  

2 K 1 K K
1

 K K 1 K
1

 K
1

 K 

3 K K  K  1 K 1 K 1 1 1 

4 K 4 K  4 3K  K
1

 
K K  K  K

1  
K

1
 K  
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The sensitivity factor based on varying K for a loading factor of 1 in the reference amplifier is 

shown in Figure 3.4. In this case, the loading factor varies from 0.1 to 10. As a result, it affects 

the sensitivity factor. As shown in Figure 4, with increasing K, the sensitivity factor is increased 

in case 1 but in cases 2, 3 and 4, there is an optimum value. This stems from both the thermal 

noise and loading factor variation with K. In case 1, both the thermal noise and loading factor 

are increased by increasing K, causing an ascending trend in the sensitivity factor. However, 

in cases 2, 3, and 4, the loading factor is increased but thermal noise is decreased. Since the 

Figure 3.4 Sensitivity factor of the chopper amplifier normalized 
by the reference amplifier for a loading factor of 0.01. 

 

Figure 3.3 Sensitivity factor of the chopping amplifier 
normalized by the reference amplifier for a loading factor of 1. 
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effect of loading factor in this case is not negligible; an optimum value of K to achieve the 

lowest sensitivity factor can be observed. Accordingly, when the loading factor is 1, the effect 

of the loading factor on the sensitivity factor cannot be neglected. 

 

To be able to compare the sensitivity factors of the different chopping techniques in the 

following analysis, the total gain of the circuit is considered to be set to Gt, and the gain of the 

reference amplifier is considered to be of G0. Equation (3.18) shows the relation between G0 

and Gt implying that the total gain is G0 times larger than the gain of the reference amplifier.  

 
௧ܩ  =  ଴ଶ (3.18)ܩ

 

In the following sections, the sensitivity factor and power consumption of the three chopping 

techniques considered in relation to the reference amplifier will be analyzed. 

 

3.4.2  Single chopper amplifier 

In the SCA, the signal is chopped at the frequency fchop. After modulation, the signal is 

amplified by the amplifier. Next, the signal is demodulated to the baseband where it will be 

filtered by a low pass filter. For an SCA gain of Gt, K is made to be equal to G0. Out of the 

four cases in Table 3.1, cases 1, 2, 4 can be applied in the SCA to vary the gain. Case 3 cannot 

be applied because achieving a large gain by changing the dimensions and keeping the power 

constant is not possible. The sensitivity factor of the SCA is given by: 

 
 ܵி,௞ = ௡ܸ,ௌ஼஺൫1 +  ௖,ௌ஼஺൯ (3.19)ܭ

 

where Vn,SCA is the thermal noise of the amplifier and KC,SCA is the loading factor of the 

amplifier. The sensitivity factor for cases 1, 2 and case 4 based on the reference amplifier are 

given below in (3.20), (3.21) and (3.22), respectively. 

 
 ܵி,ௌ஼஺ଵ = .଴ܩ ௡ܸ,଴(1 + .଴ܩ  ௖଴) (3.20)ܭ
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 ܵி,ௌ஼஺ଶ = ௡ܸ,଴ඥܩ଴ (1 + .଴ܩ  (௖଴ܭ
(3.21) 

 
 ܵி,ௌ஼஺ସ = ௡ܸ,଴ඥܩ଴ర (1 + .଴ܩ  (௖଴ܭ

(3.22) 

 

where Vn,0 is the reference amplifier noise floor voltage and KC0 is the reference loading factor. 

The sensitivity factor of the SCA versus the total gain is shown in Figure 3.5 for three sensor 

capacitances of 100 fF, 250 fF, and 800 fF and for cases 1, 2, and 4.  

 

As shown, increasing the gain increases the sensitivity factor and the increase is larger for a 

smaller sensor capacitance because it has a larger loading factor. Comparing these three cases, 

SF,SCA2 has the lowest sensitivity factor, since the thermal noise is smaller in case 2. 

 

 

Figure 3.5 Sensitivity factor of SCA for different total gains for sensor 
capacitance of 100fF, 250fF, and 800fF. 
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The power consumption is independent of the sensor capacitance and in cases 1, 2 and 4, it is 

equal to: 

 

 ௌܲ஼஺,ଶ = 1 ଴ଶൗܩ . ଴ܲ (3.23) 

 

 ௌܲ஼஺,ଶ = .଴ܩ ଴ܲ (3.24) 

 

 ௌܲ஼஺,ସ = ඥܩ଴. ଴ܲ (3.25) 

 

From these equations, it can be concluded that although SCA2 has better sensitivity, it 

consumes more power. The power-sensitivity factor for the SCA in cases 1, 2 and 4 is given 

by: 

 

 ܲܵி,ௌ஼஺ଶ = 1 ଴ൗܩ . ௡ܸ,଴(1 + .଴ܩ  ௖଴), (3.26)ܭ

 

 ܲܵி,ௌ஼஺ଶ = ඥܩ଴. ௡ܸ,଴(1 + .଴ܩ  ௖଴) (3.27)ܭ

 

 ܲܵி,ௌ஼஺ସ = ඥܩ଴ర . ௡ܸ,଴(1 + .଴ܩܩ  ௖଴). (3.28)ܭ

 

From these equations, it can be concluded that increasing the gain will increase the power-

sensitivity factor in cases 2 and 4 but in case 1 it depends on both the value of the gain and the 

loading factor. The power-sensitivity in case 2 is larger than in case 4. Moreover, a smaller 

sensor capacitance results in a larger power-sensitivity factor outlining the limitations of the 

SCA topology to accommodate small sensor capacitances.  

 

3.4.3  Two-Stage single chopper amplifier  

 In the TCA, the signal is also chopped by the frequency fchop. After modulation, the signal is 

amplified by the first and second amplifiers. Next, the signal is demodulated to the baseband 
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where it will be filtered by a low pass filter. Since both amplifiers in the TCA are operating at 

the same frequency, it is important to select a chopping frequency that is at least 10 times larger 

than both noise corner frequencies of the amplifiers. To analyze the performance of the TCA 

with the same total gain as the SCA, it is assumed that the first amplifier and the second 

amplifier have the gain of G1 and G2 that are varied from 1 to Gt (ܩ଴ଶ) as outlined in (3.29) and 

(3.30).   

 

ଵܩ  = ܭ ×  ଴ (3.29)ܩ

 

ଶܩ  = ܭ/1 ×  ଴ (3.30)ܩ

 

G1 and G2 are the gain of the first and second amplifiers and K (distribution of gain between 

two stages) should be in the range shown in (3.31) to have the total gain of each amplifier range 

from 1 to ܩ଴ଶ.  

 

 1 ଴ൗܩ ≤ ܭ ≤  ଴. (3.31)ܩ

 

The second amplifier in the TCA has a constant load capacitance of CL, but the load capacitance 

of the first amplifier is the input capacitance of the second amplifier. As a result, changing the 

dimensions of the second amplifier to change the gain will affect the characteristics of the first 

amplifier. A larger gain in the second amplifier will result in a larger input capacitance, and a 

larger load capacitance for the first amplifier. This will decrease the bandwidth of the first 

amplifier. As a result, the effect of changing the load capacitance of the first amplifier should 

be considered when distributing the gain between the two stages. The TCA is designed in such 

a way that the bandwidths of both amplifiers are at least 10 times larger than the noise corner 

frequency. The characteristics of the possible methods to change the gain of the first amplifier 

by the factor of K when compared to the reference amplifier and the gain of the second 

amplifier by a factor of 1/K are shown in Tables 3.2 and 3.3; respectively.  
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Table 3.2 Different methods of changing the gain of the TCA first amplifier w.r.t. the 
reference amplifier. 

Case G Length Width Vt Cgg Gm Ro Fc BW Power 

1 K K 1 K K K
1

 
2K  2

1
K  K

G 0

 2
1

K  

2 K 1 K K
1

 K K 1 1 KG .0  K 

3 K K  K  1 K 1 K K
1

 0G  1 

4 K 4 K  4 3K  K
1

 K K  K  K
1

 KG0  K  

 

Table 3.3 Different methods of changing the gain of the TCA second amplifier w.r.t. the 
reference amplifier. 

Case G Length Width Vt Cgg Gm Ro Fc BW Power 

1 K
1

 K
1

 1 K
1

 K
1

 K 2
1

K  
2K  2K  2K  

2 K
1

 1 K
1

 K K
1

 K
1

 1 1 1 K
1

 

3 K
1

 K
1

 K
1

 1 K
1

 1 K
1

 K K 1 

4 K
1

 4
1

K  4 3
1

K  K  K
1

 K
1

 K
1

 K  K  K
1

 

 

As shown in Tables 3.2 and 3.3, different combinations of cases for the first and second 

amplifiers are possible to attain the required gain from each amplifier. However, only case 

combinations where the chopping frequency fulfills (3.4) for both amplifiers can be 

considered. With these conditions, only the combinations of cases in Table 3.4 are suitable. 

The first case index in this table represents the applied case in the first amplifier and the second 

index shows the applied case in the second amplifier. Because of the limitation in the noise 

corner frequencies and the chopping frequency, all of these cases are valid for K larger than 1. 
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Table 3.4 Different case combinations (first amplifier and second amplifier) 
 for changing TCA total gain. 

Case 21 22 23 24 12 32 33 34 41 42 43 44 

Cgg K K K K K K K K K K K K 

Vn 
 

2
0

3

11

GKK
+

2
0

11

KGK
+

 
2
0

2

11

GKK
+

  

2
0

5.1

11

GKK
+

2
0

1

KG
K +

 
2
0

1
1

KG
+

 
2
0

2

1
1

GK
+

 
2
0

5.1

1
1

GK
+

  

2
0

3

11

GKK
+

2
0

11

KGK
+

  
2
0

2

11

GKK
+

 2
0

5.1

11

GKK
+

fchop 2K  1 K K  1 1 1 K  2K  1 1 K  

P K2  KK 1+  
1+K  KK +  K

2  
K

11+  2 K+1  
 

KK +1 KK +  
 

K+1  
K2  

 

This means that in the TCA, the gain of the first amplifier should be larger than the gain of the 

second stage. As a result, it is impossible to implement a small gain in the first stage to realize 

a small loading factor. Between these cases, the maximum sensitivity is achieved by applying 

case combination 21. However, the power consumption for this case combination is the largest.  

The sensitivity factor of the TCA for total gains of 60 dB and 40 dB and two different sensor 

capacitances of 100 fF and 500 fF versus K are shown in Figure 3.6. Since the second amplifier 

does not have a sizable effect on the sensitivity factor of the TCA, the sensitivity factors based 

on the possible cases for the first amplifier are shown. As shown at this figure, at the same gain 

and sensor capacitance, case 2 has a smaller sensitivity factor than case 4. With increasing K, 

the trend in sensitivity factor is dependent on both the gain and the sensor capacitance. At a 

gain of 40 dB and a sensor capacitance of 500 fF, the sensitivity factor decreases for an 

increasing K. This is because the effect of the loading factor is negligible and when the gain of 

first amplifier is increased; the thermal noise is decreased resulting in a decreasing trend in the 

sensitivity factor. However, for some larger total gain or smaller sensor capacitance, the 

loading factor is not negligible when the gain of the first amplifier is increased. This results in 

an optimum value based on the value of K. At a gain of 60 dB and a sensor capacitance of 

100 fF, where the effect of the loading factor is dominant over the thermal noise on the 

sensitivity factor. As a result, increasing the gain of the first amplifier causes the sensitivity 

factor to have an increasing trend.  
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Note that minimum power consumption is achieved when K equals 1, which occurs when both 

amplifiers have the same gain. Comparing the power consumption in different cases shows 

that case 4 in the first amplifier results in a lower power consumption, although its sensitivity 

factor is larger. 

 

The minimum sensitivity factor of the TCA for different total gains and different sensor 

capacitances is shown in Figure 3.7 (a) and the ratio of gain of the first amplifier to the total 

gain related to the minimum sensitivity of TCA is shown in Figure 3.7 (b). For each gain and 

sensor capacitance, the sensitivity factor is based on the possible gain adjustment cases, the 

range of K is considered, and the minimum sensitivity factor is extracted. As a result, for each 

gain and sensor capacitance, the value of K and the applied cases can be different. As shown 

in Fig. 3.7 (b), at a smaller Gt, the ratio of the first amplifier gain to the total gain is 1 which 

means that the minimum sensitivity factor is reached when all the amplification is done at the 

first stage and the second stage has the gain of 1. Note that this case corresponds to the SCA, 

since all gain is achieved using only one stage and the second gain stage is not necessary. As 

the total gain is increased, the ratio of gains starts to decrease based on the value of sensor 

capacitance. For a smaller sensor capacitance, the ratio starts to drop at a smaller gain, but for 

 

Figure 3.6 Normalized sensitivity factor of the TCA for different 
total gains and sensor capacitances. 
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the larger sensor capacitance, the ratio stays at 1 and then starts to drop at a larger gain. This 

is justified by the loading factor.  

 

Increasing the gain increases the power consumption, and the power consumption for a large 

sensor capacitance is higher. This is because in this condition, all amplification is done by the 

first amplifier which results in a larger power consumption. Systems with a smaller sensor 

capacitance can have lower power consumption because the amplification is distributed 

between the two stages. 

 

 

(a) 

 

(b) 

Figure 3.7 Minimum Sensitivity factor in the TCA for (a) 
different total gains and sensor capacitances and (b) ratio 

of first amplifier gain to total gain related to minimum 
sensitivity factor. 
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3.4.4  Dual chopper amplifier  

In the dual chopper amplifier, two different and independent chopping frequencies are applied. 

Each chopping frequency is defined by the corner frequency of the related amplifier. This 

characteristic gives an extra degree of freedom when distributing the gain between the two 

stages which makes it possible to have a smaller sensitivity factor. As with the TCA, the 

capacitance of the input pair of the second amplifier is the load capacitance of the first 

amplifier. As a result, changing the gain distribution between the two stages changes the load 

of the first amplifier, which affects its bandwidth and power consumption. If the first and 

second amplifiers have a gain of G1 and G2, respectively, as described in (3.29) and (3.30), 

there are different ways to change their gains and all of the combinations in Tables 3.2 and 3.3 

can be applied to reach the desired gain. The sensitivity factor of the DCA for sensor 

capacitances of 100 fF and 500 fF for gains of 40 dB and 60 dB are shown in Figures 3.8 (a) 

and 3.8 (b). In these two figures, the sensitivity factor based on K and three possible cases for 

the gain modification of the first amplifier are shown. Since the effect of the second amplifier 

on the sensitivity factor is small, it is not considered here. This is the case because the total 

gain can be distributed to ensure that the gain of the first amplifier is high enough to suppress 

the thermal noise of the second stage, or that the gain of the second amplifier is high enough 

to result in a small thermal noise from the second stage. 

 

As shown in Figure 3.8 (a), increasing K decreases the sensitivity factor for cases 2 and 4 and 

increases it for case 1. With increasing K, the thermal noise is decreased in cases 2 and 4 and 

increased in case 1, but the loading factor is increased in all cases. At this total gain, the effect 

of the thermal noise is dominant rather than the loading factor. As a result, the sensitivity factor 

has the same trend as the thermal noise. At a gain of 40 dB and a sensor capacitance of 500 fF, 

the minimum sensitivity factor is reached when K is maximized. In other words, all 

amplification is done in the first stage and the second stage has a gain of 1. This condition 

simplifies to the SCA. For a gain of 40 dB and a sensor capacitance of 100 fF, the minimum 

sensitivity factor is reached with the minimum possible K and applying case 1 for the first 

amplifier. The equation of sensitivity factor in this case is shown in given by:  
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஽஼஺ݏ݊݁ܵ  = ටܭ + ଵ௄ீబమ (1 +  ,(஼݇ܭ
(3.32) 

 

A minimum K means the gain of the first amplifier is equal to 1 and all amplification is done 

in the second stage. For a small sensor capacitance (i.e., 100 fF), the effect of the loading factor 

is more important and the first amplifier acts as a buffer to keep the parasitic capacitance at the 

sensor node low, while being able to drive the larger capacitance of the second amplifier that 

implements the required gain. 

 

 

(a) 

 

(b) 

Figure 3.8 Normalized sensitivity factor of the DCA for the 
gains of (a) 40 dB and (b) 60 dB for sensor capacitance of 

100 fF (red lines) and 500 fF (blue lines). 
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The sensitivity factor for a gain of 60 dB is shown in Figure 3.8 (b). For cases 2 and 4, 

increasing the K decreases the thermal noise and increases the loading factor, which creates 

the presence of an optimum value. When K is smaller than the optimum value, the effect of the 

thermal noise is dominant and when K is larger than the optimum value, the effect of the 

loading factor becomes dominant. A minimum sensitivity factor is reached when the first 

amplifier has the gain of 1 and case 1 is applied. This removes the effect of the loading factor 

and results in the smallest sensitivity factor. It should be emphasized that case 1 is reached by 

decreasing the transistor lengths, and it should be checked whether it is possible or limited by 

technology geometry. 

 

The power consumption of the DCA for the different cases can be extracted from Tables 3.2 

and 3.3 The DCA has the maximum power consumption when the first amplifier is in case 1 

and K is the smallest possible value, or when first amplifier is in case 2 and K is the maximum 

value. The optimum power consumption is reached for the DCA for the same gain in the first 

and second stages. 

 

The minimum sensitivity factor of the DCA versus the total gain and for different sensor 

capacitances is shown in Figure 3.9 (a). These values are obtained by analyzing the sensitivity 

factors for the different gain modification cases and different values of K. As shown in Figure 

3.9 (a), increasing the total gain decreases the minimum sensitivity factor. This can be 

explained by Figure 3.9 (b), which shows the ratio of the gain of the first amplifier to the total 

gain for the related minimum sensitivity factor. As shown, the ratio changes based on the total 

gain and the sensor capacitance, which is justified by the loading factor. Many distributions 

result in a negligible loading factor, but the minimum sensitivity factor is reached when the 

first amplifier has a gain of 1 which is attained by case 1 and all amplification is done at the 

second amplifier via case 2. At this condition, the minimum thermal noise is achieved. As 

shown in Figure 3.9 (a), increasing the total gain decreases the sensitivity factor because the 

thermal noise is decreased and the DCA has the ability to keep the loading factor small. 

 

 



61 

To reach the smallest sensitivity factor in the DCA when case 1 is applied, the length of the 

input transistors should be decreased to have a smaller loading factor. However, the technology 

can limit the level of scaling that can be achieved. As a result, another option is considered. 

The sensitivity factor of the DCA is extracted while the length of the input transistors is kept 

constant and this DCA is named DCA2. 

 

Figure 3.10 (a) shows the minimum sensitivity factor of DCA2 and Figure 3.10 (b) shows the 

ratio of the gain of the first amplifier to the total gain to achieve the minimum sensitivity factor. 

As shown in Figure 3.10 (a), for a small sensor capacitance, the sensitivity factor is increased 

by increasing the gain. For this condition, the effect of the loading factor is dominant over the 

 

(a) 

 

(b) 

Figure 3.9 (a) Normalized minimum sensitivity factor of the 
DCA for different total gains, and (b) ratio of gain of the first 
amplifier to the total gain to reach the minimum sensitivity. 
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thermal noise, and because of the assumed technology limitation, the loading factor cannot be 

reduced. For a larger sensor capacitance, an increasing gain leads to an initial decrease in the 

sensitivity factor, and then an increase is observed. This is because the effect of the thermal 

noise is dominant for small gain increases, but for a large increase, the effect of loading factor 

becomes important. As shown in Figure 10(b), for a small gain, the gain of the first amplifier 

is equal to the total gain. As the gain is increased, the ratio drops. The value of the total gain 

for which the ratio starts dropping depends on the sensor capacitance. However, the gain of 

the first amplifier cannot be as small as 1 because of the limitation in decreasing the transistor 

length, and this results in a larger sensitivity factor compared to the original DCA for the same 

condition. 

 

(a) 

 

(b) 

Figure 3.10 (a) Normalized minimum sensitivity factor of 
DCA2 for different total gain, (b) Ratio of the gain of first 

amplifier to the total gain to reach the minimum sensitivity. 
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To illustrate the difference in the minimum sensitivity factor between the DCA and DCA2, the 

ratio of the sensitivity factor of DCA to DCA2 is shown in Figure 3.11. Based on the sensor 

capacitance and the total gain, this ratio can be very different. For a small gain, this ratio is 1 

because all amplification is done in the first stage. When the gain is increased, this ratio is 

increased and becomes larger for a smaller sensor capacitance. This is because the DCA can 

be designed to have an insignificant loading factor, which is important in systems that require 

a high gain and have a small sensor capacitance.  

 

3.5 Comparison of the three chopping techniques  

Based on the total gain required and the sensor capacitance, the sensitivity factor of each 

chopping technique is different. For a given gain and sensor capacitance, one of the chopping 

techniques has the smallest sensitivity factor. In this section the suitable chopping technique is 

shown for different required gains and sensor capacitance in order to reach the best possible 

sensitivity. 

 

The minimum sensitivity factor is extracted for the particular value of K in each technique. 

Based on the total gain and sensor capacitance, each of these techniques can have the smallest 

sensitivity factor for a given range of K. To determine the best chopping technique, their 

sensitivities are compared to each other for different gains and sensor capacitances. For this 

 

Figure 3.11 Ratio of minimum sensitivity factor in DCA to DCA2 
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purpose, the sensitivity factors are compared, and the chopping technique with the smaller 

sensitivity factor within a given range of K is determined.  

 

For example, to achieve a better sensitivity factor in DCA2 compared to the SCA, the following 

should be valid: 

 

 ܵி,஽஼஺ଶ < ܵி,ௌ஼஺ (3.33) 

 

Rewriting (3.33) based on the minimum sensitivity of DCA2 and the SCA, the following is 

obtained: 

 

.௖ܭ  ܭ − (1 + .଴ܩ ଴ට1ܩ௖)ඥܭ + ଴ଶܩ ܭ√ + 1 < 0 
(3.34) 

 

Solving for K gives the values of K for which DCA2 has a better sensitivity factor than the 

SCA. The left side of (3.34) is a quadratic equation with variable √ܭ and (3.34) is valid if the 

discriminant of shown in (3.35) is larger than 0. 

 

 ∆= 1)ۇۉ + .଴ܩ ଴ට1ܩ௖)ඥܭ + ଴ଶܩ ۊی
ଶ − 4 × ݇௖ 

(3.35) 

 

If ∆ is smaller than 0, equation (3.34) cannot be valid which implies that the SCA has better 

performance than DCA2. If ∆ is larger than 0, DCA2 has better performance for that particular 

range of K. 

 

In a smaller fashion, by comparing the sensitivity factors of the chopping techniques, the 

equation related to their sensitivity can be derived and the preferred chopping technique can 

be determined for a given range of K. 
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Figure 3.12 shows the chopping technique with the smaller sensitivity factor based on the 

sensor capacitance and total gain. Sensitivity factors of the SCA, TCA and DCA2 are compared 

to each other and the chopping technique with the smaller sensitivity factor is shown in Figure 

3.12 (a). As shown in this figure, at the smaller gain, the SCA can have the better sensitivity, 

as shown in the blue region. The yellow region represent the area where both TCA and DCA2 

have the best possible sensitivity factor and are better suited than the SCA. At a larger gain 

and smaller sensor capacitance, DCA2 has a better possible sensitivity factor, shown in the red 

region. The sensitivity factors of the SCA, TCA and DCA are compared in Figure 3.12 (b). 

The red region is where the DCA has a better sensitivity factor. The TCA and DCA have the 

same sensitivity factor over the yellow region and the SCA has the smaller sensitivity factor 

 

(a) 

 

(b) 

Figure 3.12 (a) Preferred chopping technique between SCA, TCA 
and DCA2, and (b) preferred chopping technique between SCA, 
TCA and DCA for different total gain and sensor capacitance. 
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over the blue region. Accordingly, when the desired gain increases or the sensor capacitance 

decreases, the DCA achieves better performance. At a small required gain, the SCA is 

preferred. For an increased gain, both the TCA and DCA can be used to reach a smaller 

sensitivity factor. However, for a large gain and small sensor capacitance, the DCA is preferred 

because it can be designed to attain a better sensitivity because of its reduced loading factor.  

To show the scale at which the sensitivity factor can be improved with the DCA or TCA in 

comparison to the SCA, different ratios of sensitivity factors are shown in Figure 3.13. 

 

 

(a) 

 

(b) 

 

                   (c) 

Figure 3.13 Ratio of minimum sensitivity factor between (a) 
SCA/DCA2, (b) SCA/DCA, and (c) SCA/TCA 



67 

3.6  Design methodology  

 In this section, a methodology for designing a signal conditioning chopping circuit with the 

best performance is described. If the sensor capacitance and the desired gain are known 

specifications, the signal conditioning circuit can be designed with the proper chopping 

technique to have the minimum sensitivity factor or to have the desired sensitivity with the 

lowest power consumption.  

 

The design flow graph for this design is shown in Figure 3.14. As shown in this graph, a 

reference amplifier is considered based on the total required gain and the given sensor 

capacitance. This reference amplifier should have a valid relationship between the bandwidth 

and the noise corner frequency as defined in (3.4), and it is used to extract the characteristics 

of the amplifiers for different gains while also ensuring valid relationships between the 

bandwidth and noise corner frequency. Moreover, characteristics of the amplifier with the 

minimum possible length for the input transistors are extracted. In addition, the sensitivity 

factor of the circuit with the minimum power consumption is determined based on the 

reference amplifier.  

 

As shown in this flow graph, the preferred chopping technique in order to have the smallest 

sensitivity factor for a given total gain and sensor capacitance can be extracted based on Figure 

3.12. If the preferred chopping technique is the SCA, then the minimum sensitivity factor is 

calculated from (3.33), and if the preferred chopping technique is the DCA or TCA, the 

minimum sensitivity factor can be calculated based on (3.35) for the DCA or (3.34) for the 

TCA. It is noted that in designing the minimum sensitivity factor of the DCA, the input 

transistor length of the first amplifier must be compatible with the minimum length allowed in 

the chosen technology. 

 

In the next step, the calculated minimum sensitivity factor is compared with the desired 

sensitivity factor. It is impossible to have a sensitivity factor smaller than the calculated 

minimum sensitivity factor; but if the desired sensitivity factor is larger, then circuit can be 
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designed to optimize power consumption for the desired sensitivity factor. In the case of the 

TCA, minimum power consumption is reached by setting the same gain for the two stages. If 

the desired sensitivity factor is larger than the sensitivity factor of the amplifier with optimized 

power consumption, then the preferred chopping technique with the smallest power 

consumption is the TCA with the same amplification in each stage. However, if the desired 

sensitivity factor is smaller than the sensitivity factor of the optimized power consumption 

amplifier; then the sensitivity factor will be defined based on the preferred chopping region. If 

the preferred chopping region warrants the use of the SCA, then the value of the sensitivity 

factor is constant and defined by the relevant equation (i.e., (3.21)). If the preferred chopping 

region requires the use of the TCA or the DCA, then based on the distribution of gain between 

the two stages, there is a range for which the sensitivity factor can be equal or smaller than the 

desired sensitivity factor. In this case, K must be chosen properly to achieve the desired power 

consumption and sensitivity factor. 
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Figure 3.14 Flow graph of the preferred chopping technique 
based on total gain and sensor capacitance. 
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3.7 Conclusion  

In this work, it was shown that both the noise and input parasitic capacitance are important 

factors in determining the sensitivity factor of an interface circuit for a capacitive sensor. A 

sensitivity factor was defined based on the noise and input parasitic capacitance to be able to 

compare the sensitivity factor obtained in different conditions. The three chopping techniques 

of the DCA, SCA and TCA were considered, and their sensitivities for different gains and 

sensor capacitances were analyzed. Different possible designs were analyzed and the resulting 

sensitivity factor was extracted. It was shown that the distribution of gain between the two 

stages in the DCA and TCA has a significant effect on the sensitivity factor and based on this 

distribution, the sensitivity factor and power consumption vary significantly. For a large gain 

and small sensor capacitance, the effect of the loading factor is dominant and the DCA has an 

extra degree of freedom to decrease the input capacitance of the first amplifier and decrease 

the loading factor; which contributes to a smaller sensitivity factor. For a small gain and large 

sensor capacitance, the capacitance loading factor is small so the SCA can be suitable. The 

DCA has the smallest sensitivity factor, and is the most suitable for a small sensor capacitance 

and large required gains. In this condition, the gain of the first amplifier of the DCA can be set 

1 to act as a parasitic capacitance buffer and reduce the capacitive loading effect of the 

amplifier to minimize the sensitivity factor. For a moderate gain and large sensor capacitance, 

the TCA is preferred. Moreover, the lowest power consumption is obtained by using the TCA 

with the same gain for the first and second amplifiers, if that architecture is well suited to the 

required sensitivity.  

 

Accordingly, this work has presented an analysis of three chopping architectures that can be 

selected when designing a capacitive interface circuit, and it has outlined the design constraints 

and guidelines to achieve a well-designed sensing system that ensures that the required gain 

can be achieved without degrading sensitivity because of capacitive loading. It has also 

outlined considerations to reduce the power consumption of the designed circuit by preventing 

the over-design of the amplifier characteristics.  
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Abstract 

 

 A dual chopper amplifier (DCA) signal conditioning circuit with ultra-low power 

consumption is presented for microelectromechanical systems (MEMS) transducers. In the 

first stage, a low voltage high current amplifier is implemented, which improves the power 

consumption and noise floor. The second stage is composed of two parallel paths that improve 

SNR and provide two gain settings. To mitigate flicker noise, the amplifiers are chopped at 

two different frequencies, also providing an additional degree of freedom to the design. The 

circuit is designed in a 0.13 µm CMOS technology with 0.7 V and 1.2 V supplies. The power 

consumption is of 2.66 µW at the 0.7 V supply and 3.26 µW at the 1.2 V supply. For a 1.6 mV 

input, in single path mode, the DCA has a gain of 34 dB, a bandwidth of 4 kHz and achieves 

an SNR of 89.06 dB in the frequency range of 0.5-4 kHz. In dual path mode, the DCA has a 

gain of 38 dB, a bandwidth of 3 kHz and achieves an SNR of 92.85 dB in the frequency range 

of 0.5-4 kHz. The effect of the chopper at the second amplifier in the single path and dual path 

modes is detailed. 

 

Index Terms: Chopper amplifier, capacitive sensor, high sensitivity, low power, dual chopper, 

high signal to noise ratio, low power efficiency factor, signal conditioning circuit. 
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4.1  Introduction 

Today, CMOS-MEMS based sensors are implemented in a wide range of applications such as 

smart phones, communications, health care, automobiles, navigation systems, chemical 

reactors, and guidance systems (Blaschke et al., 2006; Mohammed, Moussa, & Lou, 2011; S. 

Wang et al., 2016; J. Zhao, Jia, Wang, & Li, 2007). This is due in part to their high sensitivity, 

low power consumption and high reliability (Jiangfeng, Fedder, & Carley, 2004a).  

 

Different sensing techniques have been used to detect the signals stemming from MEMS 

transducers. These include capacitive sensing (Nizza, Dei, Butti, & Bruschi, 2013; Scotti, 

Pennisi, Monsurrò, & Trifiletti, 2014; Shiah & Mirabbasi, 2014; Sun et al., 2011; H. Xu, Liu, 

& Yin, 2015) and piezoresistive sensing (Bazaei, Maroufi, Mohammadi, & Moheimani, 2014; 

Stassi, Cauda, Canavese, & Pirri, 2014), for instance. Detected signals in MEMS sensors are 

typically in the microvolt range in voltage mode sensors or in the attofarad range in capacitive 

mode sensors (Tan et al., 2011). Therefore, signal conditioning circuits are designed to respond 

to microvolt-level signals at frequencies near DC. This poses stringent requirements on the 

near-DC performance of these sensors, notably with regard to flicker noise mitigation. For 

these applications, different methods have been proposed to detect signals at low frequencies 

and improve the noise performance. Chopper amplifiers are well suited for this purpose, 

because they mitigate flicker noise and DC offset (Shiah & Mirabbasi, 2014; Witte et al., 

2007).  

 

Single chopper amplifiers generally require high power consumption to achieve the necessary 

gain, and also have a large input parasitic capacitance (P. Vejdani, Allidina, & Nabki, 2016). 

Alternatively, dual chopper amplifiers (DCAs) reduce the power consumption by using two 

different chopping frequencies, which provides an additional degree of freedom for the design . 

(Hongzhi et al., 2011). In DCA architectures, there are many parameters that influence each 

other and many trade-offs should be considered in order to yield an optimized design for 

sensing applications. These parameters include the capacitance of the input transistors, the 

overall gain, the bias currents, the relation of the flicker noise corner frequency to the chopping 
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frequencies, and the thermal noise floor. The flicker noise corner frequency directly defines 

the chopping frequency, as it should be much larger than the corner frequency in order to 

prevent down-folding of flicker noise (Nielsen, 2004). Importantly, the chopped amplifier must 

provide sufficient bandwidth to support the chopping frequency. Moreover, the ratio of 

chopping frequencies to each other and to the input frequency should be large enough to 

prevent intermodulation harmonics. A low pass filter, integrated in the proposed circuit, is 

needed to remove the harmonics at the output.  

 

In addition, chopper switch non-idealities are important to consider, mostly with respect to 

charge injection that causes additional noise currents. This poses constraints on the size of the 

switches and the chopping frequency (J. Xu et al., 2013). A larger chopping frequency results 

in larger current noise and if a large impedance is connected to the switches, large voltage 

noise is observed. Nested chopping can be implemented between stages to reduce these non-

idealities. Improper design of these parameters can lead to larger power consumption, higher 

noise or degraded sensitivity. 

 

In (Qu et al., 2008), a DCA is presented, but it is not optimized based on the distribution of the 

gain between the two stages, and the minimization of the input capacitance is not considered 

in the circuit design and noise optimization. Moreover, no integrated filter is added at the end 

of the circuit to remove the harmonics, and the effect of current noise is not considered. In 

(Hongzhi et al., 2011), a DCA is implemented where it is assumed that the noise of the first 

amplifier is dominant and the DCA is optimized based on the total power consumption and the 

noise of the first amplifier only, not considering the second stage. However, the total noise 

performance of the DCA depends on the gain distribution between its two stages, and it is 

possible that the noise of the second stage is not mitigated completely by the gain of the first 

amplifier (Parisa Vejdani, Allidina, & Nabki, 2017). As such, careful design is important in 

order to achieve optimal performance. 

Accordingly, the aim of this paper is to present a DCA circuit architecture to provide high gain 

along with ultra-low power consumption as well as low thermal noise in order to improve 

sensitivity. The design is optimized for power consumption and noise performance, while 
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minimizing its input capacitance to be well suited to capacitive mode MEMS sensors as well. 

Additionally, by applying dual paths at the second chopping frequency, a higher gain setting 

and higher SNR can be achieved at the cost of additional power consumption, if required. In 

(P. Vejdani, Bouchami, & Nabki, 2017), a dual path DCA and its simulation results were 

presented. This paper expands on that work and presents an expanded analysis and the 

measurement results of the fabricated circuit.  

 

The paper is structured as follows. First, the proposed circuit architecture is described in 

section 4.2. This is followed in section 4.3 by a description of the circuitry designed to 

implement the architecture in a standard 0.13 μm CMOS technology. Finally, measurements 

are presented in section 4.4, and are followed by a conclusion.   

 

4.2 Architecture of the proposed circuit  

 Figure 4.1 depicts the block diagram of the proposed signal conditioning circuit, as well as 

conceptual plots of the signal and noise spectrum at different points throughout the circuit. The 

circuit is composed of two cascaded parts. The first part consists of a chopped amplifier A1. 

This part is followed by a dual-path structure that can have either one or two paths activated. 

This dual path consists of two identical amplifiers A2 and A3, followed by an adder. The output 

of the adder is filtered with an active low-pass filter to attenuate spurs at the output. To reduce 

the noise and improve the SNR, both paths can be enabled, which is beneficial on two fronts: 

firstly, to reduce the noise by a noise correlation effect, and secondly, to improve the SNR. 

These benefits will be discussed in this section. 

 

4.2.1 Circuit overview 

As shown in Figure 4.1, a capacitive mode sensor or voltage mode MEMS sensor is configured 

to output a signal at a frequency fH. The sensor is configured in either a capacitive or resistive 

bridge, not covered in this work.  
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In the first stage, A1 amplifies the resulting signal, which is centered at fH. Then the signal is 

chopped by frequencies fH and fL consecutively (note that fH > fL). This nested technique is used 

to remove the charge injection of the fH clock (Wu, Huijsing, & Makinwa, 2013). In the second 

stage, one or two parallel paths can be active. When the second path is disabled, the signal only 

passes through the top path in Figure 4.1 (a), and is then centered at fL, amplified by the second 

stage, A2, and chopped by frequency fL toward baseband. When the second path is enabled, the 

signal is amplified in both paths, and then down-converted to baseband and added. In this work, 

fH is selected to be 1 MHz and fL is selected to be 100 kHz to ensure sufficient flicker noise 

mitigation and low enough power consumption in each stage. N1 represents the input noise of 

first amplifier, N2 and N3 represnets the input noise of second amplifier in first and second 

paths of dual path respectively. N4, and N5, represents the input noise of adder and gm-C filter, 

respectively. 

 

Figure 4.1 Diagram of (a) the modified DCA with an input 
capacitive MEMS transducer, and (b) the spectrum of signals and 

noise at key nodes of the circuit. 
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The proposed architecture is designed to sense signals in the range of microvolts in voltage 

mode, while having an ultra-low power consumption. The lowest detectable voltage signal is 

reduced by the minimizing the input-referred noise. Thus, the gain distribution between the 

two stages is of significant importance, as it affects the power consumption, input parasitic 

capacitance as well as the input noise level. Note that minimizing the input parasitic 

capacitance is especially important in fully-integrated capacitive mode sensors, where 

interconnect parasitics are minimized, and the input capacitance of the signal conditioning 

circuit is the dominant parasitic, limiting sensitivity. 

 

Thermal and flicker noise are the dominant noise sources in CMOS circuits. The chopping 

frequency is chosen to be 10 times larger than each amplifiers’ flicker noise corner frequency 

in order to reduce the flicker noise to 10% of the thermal noise level (Fang, 2006b). The 

bandwidths of the amplifiers are chosen to be marginally larger than the chopping frequency 

in order to reduce their power consumption.  

 

The use of a DCA structure allows for the choice of the first and second amplifiers’ gains 

independently. Given that the first amplifier dominates the noise response and is designed to 

buffer the sensor from parasitic capacitance (for capacitive mode sensors), it is necessary to 

provide adequate gain to suppress the noise of the following stages, while maintaining thermal 

noise performance. The resulting small size of the input transistors increases the first 

amplifier’s flicker noise corner frequency. Thus, a relatively high chopping frequency, fH, is 

required which is in turn associated with elevated power consumption. Accordingly, in order 

to reduce the first amplifier’s input-referred thermal noise while significantly reducing its 

power consumption, the input stage of the first amplifier is biased at a high input stage current 

and low supply voltage (i.e., 3.8 μA, 0.7 V). A low supply voltage can be used, as the input 

signal is relatively small. As previously stated, the parallel paths of the second stage are 

controlled such that one or two paths can operate. This enables two different gain settings and 

improved SNR in the dual-path mode. In each path, the signal is chopped at fL, and also 

amplified and demodulated to the baseband. As the second stage input transistors do not 

contribute to the input capacitance of the circuit, their sizes can be increased, yielding a lower 
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flicker noise corner frequency. This in turn allows for a lower chopping frequency, fL, and a 

reduced power consumption. 

 

4.2.2 Noise overview  

In Figure 4.1, amplifiers A2 and A3 have the same structure and their output signals are chopped 

with the passive mixers and then are summed at the adder. The noise of each path includes the 

thermal noise of the amplifiers and the noise that is produced by switch non-idealities. The 

latter includes residual offsets, charge injection and clock feedthrough. Charge injection is the 

dominant noise related to switch non-idealities (J. Xu et al., 2013). It causes current noise that 

converts to voltage through the impedance that is connected to the switches. The charge 

injection noise can be reduced by choosing small dimensions for the switch transistors and 

choosing a low chopping frequency. In (Nielsen, 2004), it was shown that to prevent flicker 

noise down-folding, the chopping frequency should be at least 10 times larger than the flicker 

noise corner frequency. However, the flicker noise corner frequency will be decreased by 

increasing the current and transistor sizes. As such, decreasing the charge injection effect is at 

the cost of more power consumption of the amplifiers if a single path structure is used. In the 

dual path structure, the noise of the amplifiers are uncorrelated. However, matched layout of 

the switches and of the amplifiers results in a similar offset and charge injection in the two 

paths, correlating much of the switching noise. The noise related to switch non-idealities can 

then be removed in the adder. Moreover, other sources of common-mode noise which exist in 

the two paths can be mitigated in the adder (e.g., supply noise). 

 

The noise structure composed of the two paths and the adder is shown in Figure 4.2 (a), and 

the current noise summation is shown in Figure 4.2 (b). 
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The noise of both paths are converted to a current in the adder through transconductances. The 

adder is a gm-C filter with two differential pairs that yield the transconductances, and each path 

is connected to one of its input pairs with an opposite polarity. The noise currents are added 

together and then converted to a voltage by a resistive load and the output of the adder. The 

related noise formula is given by:  

  

 ( ) 22
)(32)(21

2
)(, ... RVGVGV rmsnrmsnrmseqn −=

 
(4.1) 

 

where G1 and G2 are the transconductances of the input transistors in the adder, and are of the 

same value, R is the output load of the adder, Vn2 and Vn3 are the output noise voltages of the 

first and second path, respectively. Considering some correlation between the noise sources of 

these paths, the equivalent noise at the output of adder can be given by:   
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(a) 

 

(b) 

Figure 4.2 Diagram of (a) the noise voltage summation of the 
amplifiers in the dual path, and (b) the resulting equivalent 

summation of their noise current. 
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where A4 is the gain of the adder, α is the correlation coefficient, between the paths’ noise 

sources, ranging from 0 to 1. For uncorrelated values, α is 0, and for fully correlated values, α 

is 1 (Stein, 2001). As was mentioned, in this circuit, a correlation between both parallel paths 

exists, so α is expected to be larger than 0, but there are some uncorrelated sources between 

two paths, so α cannot be 1. The exact value of α is dependent on the ratio of the noise of the 

switches to that of the amplifiers. If the noise of the switches is more important that than of the 

amplifiers, then α is expected to be larger. The output noise of the dual path DCA is given by: 
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(4.3) 

 

where A2 is the gain of amplifiers A2 and A3, which have identical gains, A5 is the gain of the  

low pass filter and Vn4 and Vn5 are the output noises of the adder and the low-pass filter, 

respectively. 

 

4.2.3 SNR improvement 

In Figure 4.3, three different structures of cascaded amplifiers are shown for comparison. In 

this figure, A1 and N1 represent the gain and input noise of the first amplifier, respectively. A2 

represents the gain of the second amplifier. N2 and N3 represent the input noise of first path and 

second path in the second stage, respectively. Since the paths are symmetric, N2 and N3 have 

the same value. Finally, N4 and N5 represent the input noise of the adder and the low pass filter, 

respectively. 

 

Figure 4.3 (a) represents a single-path structure, and Figure 4.3 (b) represents a signal-path 

structure with doubled gain in the second amplifier. In Figure 4.3 (c), the higher gain comes at 

the cost of increasing the power consumption, while the noise level is reduced by a factor of √2. This is an estimation for the noise reduction, and it is assumed that the transconductance 

of the input transistors and the output resistors are increased by the same ratio, and that the 

noise of the input transistors is dominant. This is the optimal value of the reduction in noise 
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and this reduction can be lower in reality. The structure in Figure 4.3(c) yields similar gain, 

but has a noise benefit as is shown in Table 4.1, where the gain, output noise and SNR related 

to these three structures are listed. As shown in this table, the structures in Figure 4.3 (b) and 

Figure 4.3(c) have the same gain, but the output noise of the structure in Figure 4.3 (c) includes 

a 2X reduction in the first noise term and a correlation effect in the second noise term. When 

comparing the SNR related to each of these two higher gain structures, the dual-path structure 

improves the SNR by a factor of about two, without considering any correlation effect (i.e., 

3 dB). This SNR improvement can increase if there is correlation between the noise sources of 

each path.  

 

 

Table 4.1 Gain, output noise and SNR of the Structures in Figure 4.3. 

Structure Gain Output Noise SNR 
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Figure 4.3 (c) 212 AA  

 

2
2

2
2

2
2

2
1

2
1 )1(22 ANAAN α−+  

2
1

2
22

1
)1(

2

A
NN α−+

 

 

Figure 4.3 Different cascaded amplifier structures: (a) 
single-path, (b) single-path with doubled second stage 

gain, and (c) dual-path. 
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4.3 Proposed circuit description  

Figure 4.4 depicts the circuit-level schematic of the proposed signal conditioning circuit. 

Complementary switches are used as passive mixers to implement the chopping operations. To 

set the DC bias of the amplifiers, AC-coupling capacitances (Cac) are used in combination with 

either diode connected transistors or pseudo-resistors (Rbias). In addition, the capacitors and 

bias branches act as high-pass filters to attenuate low frequency spurs caused by the chopping 

of the amplifiers’ DC offset (P. Vejdani et al., 2017). The Rbias value implemented is of 

200 MΩ. To produce a resistor in this range, two series diode connected PMOS transistors are 

used. Using such pseudo resistors instead of large resistors reduces the required area and 

mitigates the large parasitic capacitances associated with large resistor values. 

 

After demodulation to baseband, signals from the two paths are added together using an adder 

implemented as a two differential input gm-C low-pass filter. In this fashion, the adder also 

filters the out-of-band harmonics and the up-converted flicker noise. To enable two paths, a 

controllable switch mixer is used and described below. 

   

 

 

Figure 4.4 Schematic of the proposed circuit. The Rbias resistors are 
implemented as pseudo-resistors to achieve high resistance values. 
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4.3.1 Controllable complementary-switch mixer  

The controllable switch mixer shown in Figure 4.5 (a) is used to enable or disable one of the 

paths in the DCA. To chop the signal, a passive switch mixer is implemented with two signals 

Ø1 and Ø2. These two signals are produced by a control circuit shown in Figure 4.5 (b). The 

inputs of this circuit are a control signal, Ctrl, and a 100 kHz clock running at the same 

frequency as second chopper frequency, fL. To disable the second path, the Ctrl signal is pulled 

down to ground so that the outputs go to VDD or ground. These outputs are connected to the 

gates of the mixer and disconnect the second path. To enable the second path, the Ctrl signal 

is pulled up to VDD, so that the outputs of the control circuit provide the appropriate clocks to 

drive the mixer and chop the signal. In the chopping technique, clocks non-idealities result in 

residual offsets. To ensure effective offset cancellation, the two complementary chopping 

clocks must both exhibit a 50% duty cycle (Wu et al., 2013). In the proposed design, all clocks 

have near-50% duty cycles and clock skew is less than 0.004% of the different clock periods. 

Moreover, the coupling capacitors that are added after the amplifiers remove offsets and 

mitigate clock non-idealities-related offsets. 

 
(a) 

  
(b) 

Figure 4.5 Schematic of the (a) controllable complementary-switch 
mixer, and (b) its control circuit. 
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4.3.2 First stage amplifier  

The first amplifier is designed to have a small input capacitance of 10 fF. As detailed in our 

previous work in (Parisa Vejdani et al., 2017), the input capacitance of a sensor interface circuit 

can be important to maintain capacitance sensitivity of the circuit in Figure 4.6. To reduce the 

thermal noise and increase the transconductance, NMOS input transistors are used. However, 

NMOS transistors have a larger transconductance and larger flicker noise coefficient in 

comparison to PMOS transistors. As a result, NMOS transistors require a larger chopping 

frequency than for PMOS transistors. By choosing a proper chopping frequency, flicker noise 

can be mitigated in this amplifier. Biasing the transistors in the subthreshold region contributes 

to maximize the gm/ID ratio and also minimize the gate noise voltage (Binkley, 2008; Fonstad, 

2009; H. Wang, Mora-Puchalt, Lyden, Maurino, & Birk, 2017). As a result, the input 

transistors are biased in the subthreshold region to lower their thermal noise, and to mitigate 

the thermal noise of the load transistors. Their bias current is also increased to make their 

transconductance larger.  

 

 

 

 

 

Figure 4.6 Schematic of the first stage amplifier. 
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The equation of the input-referred thermal noise for this amplifier is given by: 
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where K is the Boltzmann constant, T is temperature, and gm1 and gm3 are the transconductances 

of the input transistors and load transistors, respectively. As the noise of the input transistors 

is dominant, careful design of the first amplifier to minimize the thermal noise of the input 

transistors is the most effective way to reduce the noise floor of the DCA. The larger bias 

current allows for a larger bandwidth, which allows for a sufficiently large chopping frequency 

to mitigate this stage’s flicker noise. As previously discussed, this stage has a large flicker 

noise corner frequency because of the need to minimize capacitive input loading. 

 

The equations of transistor current and transconductance in subthreshold region are given by: 
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where IS is the sub-threshold saturation current (Fonstad, 2009), respectively, VT is the thermal 

voltage, and VA is the Early voltage. In weak inversion, n is related to the capacitive voltage 

division between the gate voltage and silicon surface potential resulting from the gate-oxide, 

depletion, and interface state capacitances. In weak inversion, n is expressed by: 
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where C’
OX is the gate oxide capacitance, and C’

DEP and C’
INT are the depletion and interface 

state capacitances per unit area, respectively. In weak inversion, n is approximately 1.4–1.5 for 

typical bulk CMOS processes. 

 

Note that the tail current of the differential amplifier is set by a current mirror, and that its 

current is controllable by an off-chip resistor which can be tuned to adjust the gain of the stage 

and compensate the sensitivity to PVT variations. In order to accommodate a larger bias 

current, without a large penalty in power consumption, this amplifier is designed to operate 

from a lower supply voltage of 0.7 V. This also contributes to reduce the thermal noise. 

 

4.3.3 Second stage amplifier  

A folded cascode topology, shown in Figure 4.7, is used for the second stage amplifier. The 

input transistors are increased in size in order to reduce the flicker noise corner frequency. This 

enables the use of a lower chopping frequency, resulting in a smaller bandwidth requirement 

and reduced power consumption. The input stage of this amplifier is composed of NMOS 

transistors which are biased in the subthreshold region to have larger transconductance and 

reduce the noise impact of the other transistors in order to attain reduced thermal noise. Biasing 

the input transistors in the saturation region could contribute to better matching at the cost of 

added power consumption and increased noise. In this design, these transistors are biased in 

the subthreshold region to decrease the power consumption and noise.  This amplifier operates 

at a supply voltage of 1.2 V as it must provide better linearity. This does not significantly 

increase this stage’s power consumption, as its bias current can be kept low by making the 

input transistors bigger. M9 and M10 are utilized as common mode feedback transistors and 

are biased in the triode region. Their gates are connected to the output voltage and they control 

the tail current to set the output bias. This makes the output bias relatively independent of 

device parameters and lowers the sensitivity to bias Vb (Razavi, 2001). 

 

 

 



88 

 

4.3.4 Adder and gm-C low pass filter  

The adder circuit is shown in Figure 4.8. This circuit also includes an embedded gm-C low-

pass filter to attenuate spurs caused by the chopping. To add signals from the two paths, two 

differential-input pairs are used and their output currents are added in the polarity previously 

outlined. Source degeneration transistors M5-M8 are used in order to increase the linearity of 

the input transistors. The gm-C low-pass filter is implemented by adding a capacitance between 

the branches where the currents from both input differential pairs are added. Capacitance Cf is 

set to 15 pF to provide a sufficiently low bandwidth of 10 kHz. The adder operates from a 

1.2 V supply. 

 

Another gm-C low-pass filter is cascaded to this adder in order to attenuate further out-of-band 

frequency spurs. This second filter has the same structure as the adder but with only one 

differential input pair. The simulated power consumption of the adder is of 0.91 µW, and the 

simulated power consumption of the low pass filter is of 0.48 µW.  

 

Figure 4.7 Schematic of the second stage amplifier. 
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4.3.5 Measurement results and comparison 

The proposed circuit was designed in Global Foundries 0.13 µm CMOS technology with 0.7 V 

and 1.2 V supplies. The circuit occupies an active area of 550 × 250 µm, outlined in Figure 4.9. 

The frequency response of the DCA in single path and dual path modes are shown in Figure 

4.10. For this measurement, the input signal is a sine wave that is mixed on-chip with a square 

wave chopping signal. The spectrums were computed using MATLAB by using time-based 

measurements that were taken with an oscilloscope. This figure shows gains of 34 dB and 

38 dB for the single path mode and dual path mode, respectively. The DCA in dual path mode 

improves the gain by 4 dB over that of the single path mode. The bandwidth of the dual mode, 

3 kHz, is slightly lower than the single path mode, 4 kHz. Parasitic capacitances that are 

switched into the circuit when the second path is enabled cause the reduction in bandwidth 

seen in dual path operation. These mismatches also cause the gain of the dual path mode to be 

4 dB higher that the single path mode, rather than the 6 dB expected from the ideal analysis 

presented in Table 4.1. 

 

 

Figure 4.8 Schematic of the adder with embedded gm-C filter. 
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The output voltage resulting from a 1 kHz sine input of 1.25 mV in single path mode with and 

without the second chopper stage activated is shown in Figure 4.10. The second chopper stage 

results in more high frequency signal noise. Note that part of this high frequency noise is due 

to 100 kHz clock feedthrough. In the package, the output pin was unfortunately placed too 

close to this clock pin, causing capacitive feedthrough of this clock to the output signal. This 

was confirmed by measuring the impact of this feedthrough without bonding a die in the 

package and observing the output with the clock applied to the clock pin. This capacitive 

feedthrough represents most of the high frequency noise seen Figure 4.10. When plotting the 

spectrum of the output, this feedthrough was removed mathematically. To do this, the clock 

feedthrough is measured without bonding a die within the package to isolate package-related 

feedthrough. The measured feedthrough is used as the baseline to subtract it from the 

measurement result with the wire bonded die. 

 

 

   

Figure 4.9 Micrograph of die active area of 550 × 250 µm. 
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The input-referred noise voltage over frequency of the DCA in single path and dual path modes 

is shown in Figure 4.11. The accurate measurement of the noise is not possible at frequencies 

below 1 kHz. This is because the flicker noise of an off-chip amplifier used to amplify the 

noise sufficiently to capture it impacts the noise performance recorded at these lower 

frequencies. The noise floor at 2 kHz is observed to be around 40 nV/√Hz for the DCA in 

single path mode and of around 55 nV/√Hz in dual path mode. Comparing the noise of the 

single path and dual path mode outlines that the noise of second amplifier has some effect on 

the total noise. As a result, when the second path is activated, the total noise increases. On the 

other hand, the dual path mode increases the gain as well, which ultimately results in an 

improved SNR, as will later be discussed. 

 

The integrated input-referred noise voltage of the DCA in single path and dual path modes for 

different 500 Hz frequency integration ranges is shown in Figure 4.12 with the second 

amplifier either chopped or not. As shown in this figure, chopping of the second stage reduces 

the noise overall. Here as well, the off-chip amplifier used to measure the noise level does not 

allow an accurate measurement of the noise at low frequencies (i.e., below ~1 kHz). 

 

 

 

Figure 4.10 Output voltage the DCA in single path mode with 

and without the second stage chopper being active. 
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Table 4.2 shows the integrated input-referred noise voltage of the DCA in single path and dual 

path modes with and without chopping of the second stage. Noise values are listed over the 

0.5 – 4 kHz and 1 – 4 kHz integration frequency ranges. The related SNR is also listed over 

the same frequency ranges for an input signal of 1.6 mV at a frequency of 1 kHz. As shown in 

this table, the chopping of the second stage improves the SNR by 2.6 to 3.7 dB, as a result of 

the reduced noise level. Also, the SNR in the single path mode is lower than that of the dual 

path mode by 3.3 to 4.9 dB. This is because of the fact that, in addition to increasing the gain 

 

(a) 

 

(b) 

Figure 4.11 Input-referred noise voltage over frequency of the DCA in (a) single 
path mode, and (b) in dual path mode. 
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in dual path mode, the noise correlation between the paths causes smaller integrated noise. 

Moreover, the DCA in dual path mode exhibits lower charge injection related spurs due to the 

addition operation. This also contributes to the enhancement of the SNR. 

 

 

Table 4.2 Integrated Input-referred Noise Voltage (Int. Noise) and SNR of the DCA 

Structure 
Int. Noise(μV)  

0.5-4 kHz 

Int. Noise(μV) 

1-4 kHz 

SNR(dB) 

0.5-4 kHz 

SNR(dB) 

1-4 kHz 

Single path mode 

with 2nd chopper 
4.74 3.16 89.06 93.09 

Single path mode 

without 2nd chopper 
6.83 4.41 85.40 90.20 

Dual path mode 

with 2nd chopper 
5.15 3.45 92.85 96.33 

Dual path mode 

without 2nd chopper 
6.65 4.73 90. 3 93.59 

  

Figure 4.12 Integrated input-referred noise voltage of the DCA in single path 
mode and in dual path mode within 500 Hz integration ranges. 
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The SNR and THD of the DCA in single path and dual path modes for different 1 kHz inputs 

signal amplitudes and over a bandwidth ranging from 1 kHz to 4 kHz is shown in Figure 4.13 

As shown in this figure, the dual path mode has higher SNR over all the signal amplitudes 

tested. The THD is similar between both modes except at the highest tested input amplitude 

where the larger gain of the dual mode starts to exert the non linearity of the later stages. As 

expected, with an increasing input amplitude, the SNR is increased while THD is degraded. 

The maximum SNR is reached for a 4.75 mV input signal amplitude. Beyond this point, the 

SNR decreases because of the compression of the DCA gain (not shown in the figure). 

 

The output spectra of the DCA in single path and dual path modes are shown in Figure 4.13 

for a 1 kHz 1.25 mV input. These spectra are shown with and without chopping of the second 

stage. As shown in this figure, the choppers do not have any significant effect on the amplitude 

of the amplified signal, and the chopping of the second stage improves performance (e.g., 

mitigates DC offset of the second stage), albeit adding a spur at 100 kHz. When the second 

chopper is disabled, the intermodulation between the input signal and the offset yields more 

spurs at low frequencies. The signal is amplified more in the dual path mode, by a factor of 

1.6X. An even harmonic spur at 2 kHz can be seen in all of the spectra plotted. It is due to the 

mismatches between the differential circuitry. When the second stage chopper is activated, a 

spur is generated at 100 kHz, the second chopping frequency.  

 

The charge injection of the first chopper is mitigated with the nested chopper technique, and 

the gm-C filter attenuates the out of band harmonics and charge injection of the second chopper. 

Although this charge injection is reduced partially, it cannot be removed completely. To 

attenuate these spurs further, a higher order filter can be implemented at the cost of higher 

power consumption.   

 

The DCA performance in single-path and dual-path mode is summarized in Table 4.3, and is 

compared to others works. As can be seen, the power consumption is decreased significantly 

in comparison to other works. As shown in the table, the dual path increases the gain and 

improves SNR. High current and low supply voltage biasing of the first stage contributes to 



95 

increasing the achieved gain and lowering the noise. The power efficiency factor (PEF) is used 

to describe the power/noise trade-off and a lower PEF indicates a more efficient design 

(Muller, Gambini, & Rabaey, 2012b). 

  

 

In the proposed DCA, the PEF is less than that of the other works, indicating that this circuit 

is optimized for both noise and power consumption. In all of the works which are shown in 

Table 4.3, a single chopper amplifier is used, which results in more power consumption. In 

(Maruyama et al., 2016), an optimized chopping frequency and the biasing of the transistors in 

the subthreshold region results in a low noise floor. However, the input capacitance is not 

considered in the design, so integrating of this circuit with a capacitance transducer may cause 

degradation of the sensitive due to capacitive loading. In (H. Wang et al., 2017) a combination 

of chopping and auto zeroing is proposed. Implementing the auto zeroing results in noise 

aliasing and an increased noise floor. Moreover, the capacitance feedback degrades the 

capacitive sensing performance (i.e., reduced sensitivity), as it increases the circuit’s input 

capacitance. The work in (S. Wang et al., 2016) is a capacitive signal conditioning circuit 

where a single chopping amplifier with an input capacitance parasitic cancellation circuit. 

 

Figure 4.13 SNR (0.5 – 4 kHz) and THD of the DCA in single path 
mode and dual path modes for different input signal amplitudes. 
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However, this circuit will add extra flicker noise to the input referred noise and the power 

consumption is relatively high, because of the SCA structure. In (Jiang et al., 2017), an ultra-

low noise circuit is designed for resistive sensing. The PEF of 44.1 for this circuit shows that 

a relatively high power consumption is needed to reach this reduced noise floor.  

 

Overall, the proposed circuit compares favourably to other works and presents well-rounded 

performance tailored to capacitive sensing and with consideration for noise and power 

consumption metrics. 

 

Table 4.3 DCA measured performance summary and comparison 

 This work (Maruyama, 
Taguchi, 

Yamanoue, 
& Iizuka, 

2016) 

(H. 
Wang 
et al., 
2017) 

(S. 
Wang 
et al., 
2016) 

(Jiang, 
Makinwa, 

& 
Nihtianov, 

2017) 

1 path 2 paths 

Technology 
(nm) 

130 160 180 350 180 

Supply  
(V) 

0.7, 1.2 1.55 2.7-
3.6 

- 1.8 

Power 
(µW) 

2.66 (0.7 V) 
3.26 (1.2 V) 

2015 270 92 2160 

Bandwidth 
(kHz) 

4 3  - - 0.1 to 10 

Gain 
(dB) 

34 38 - 0-42 29.6 

Noise Floor 
(nV/√Hz) 

40  
@2 
kHz 

55 
@2 kHz 

8.2 19 1960 - 

SNR (dB) 
(0.5 – 4 kHz) 

89.06* 

98.82** 
92.85* 

101.90** 
- - 31.28 - 

PEF 11.04 13.8 14.2 - - 3.7 

1-dB comp. 
(mV) 

4.75 3.95 - - - - 

 

 Notes: *for a 1 kHz sine input of 1.6 mV; **for a 1 kHz sine input of 4.75 mV



 

4.4 Conclusion  

A DCA signal conditioning circuit with low noise and ultra-low power consumption for 

MEMS transducers was proposed. Two supply voltages are used to reduce the power 

consumption while minimizing the noise floor. The sub 6-μW power consumption is 

significantly lower than similar works. The first amplifier is chopped with a nested chopper to 

remove its flicker noise and prevent charge injection. The performance of the DCA was shown 

with and without the chopping stage of the second amplifier to outline the advantages of the 

second chopping stage, notably improving SNR by 2.6 to 3.7 dB. The chopping of the second 

amplifier improves the noise but results in charge injection at the output. Implementing a 

higher order filter and smaller amplitude for the chopping signal can improve this.  

 

Two parallel paths are implemented in the second stage of the DCA to achieve improved SNR 

and enable a configurable gain. It was shown that the dual-path mode improved SNR by 3.3 to 

4.9 dB and increases gain by 4 dB. In the dual path mode, some noise correlation was observed 

to enhance the SNR improvement due to the noise current addition performed. 

 

Moreover, the input capacitance of the circuit is minimized to be suitable for high sensitivity 

fully-integrated capacitive mode sensors. The impact of this input capacitance reduction on the 

noise performance is minimized by leveraging the added design freedom provided by the DCA 

structure.  

 

Overall, the proposed circuit enables a high SNR with minimal capacitive loading in order to 

be amenable to direct integration with MEMS capacitive mode and voltage mode transducers. 
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Abstract 

 

 This letter introduces a low noise and highly power efficient signal conditioning circuit with 

configurable bandwidth and sub-µHz flicker noise corner frequency for use in integrated 

voltage-mode sensors and capacitive-mode sensors that require minimal capacitive loading. 

Three chopping frequencies are used to remove the flicker noise of three amplifiers stages, and 

nested chopping in used in the first stage to mitigate switching non-idealities. A resistive 

feedback amplifier and a capacitive feedback amplifier are used to attain low noise low pass 

filtering with tunable bandwidth. The simulated circuit is designed in a 0.13 μm CMOS 

technology with 0.4 V and 1.2 V supplies in order to reduce the power consumption. The total 

power consumption is of 6.7 µW. A gain of 68 dB and bandwidths of 1, 10, 100 and 1000 Hz 

are achieved. The input-referred noise floor is of 20.5 nV/√Hz, and the integrated input noise 

is of 205 nV over a 100 Hz bandwidth. The design attains a low power efficiency factor of 4.0. 

In capacitive mode, the noise floor is of 3.6 zF for a 100 fF sensor capacitance. 

 

Index Terms: high-resolution sensors, high SNR, low flicker noise corner frequency, low 

noise, ultra-low power, signal conditioning circuits. 
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5.1  Introduction  

The use of high sensitivity and low power consumption sensors has increased significantly 

during the past few years in applications such as health care, smart homes, smart phones, 

automobiles, and environmental sensing (X. Wang et al., 2017; Y. Zhao et al., 2015). These 

sensors require signal conditioning circuits that must be compatible with multi-type inputs and 

have high sensitivity to be able to distinguish capacitance variations in the femto farad range 

or voltage variations in the microvolt range at frequencies near DC. For example, the 

sensitivity of a gas sensor signal conditioning circuit should be on the order of sub-femto 

Farads in order to be able to detect extremely small levels of gas concentraitons, or the 

resolution of a pressure sensor signal conditioning circuit for drone control should be as small 

as a few micro volts in order to be able to sense height changes in the range of a few centimeters 

(Maruyama et al., 2016). The overall noise of a sensor is often dominated by the front-end 

amplifier. To suppress this noise below a certain value, it is necessary to consume more 

power (Shen, Lu, & Sun, 2018). Therefore, the design of a signal conditioning circuit that can 

attain a good noise and power tradeoff is crucial in energy-constrained applications 

(Yazicioglu, Kim, Torfs, Kim, & Hoof, 2011).  

 

The chopping technique is an effective method to remove the offset and flicker noise of an 

amplifier near DC in order to meet low noise requirements (Fan, Huijsing, & Makinwa, 

2012b). In the single chopping amplifier, flicker noise and offset are mitigated, but power 

consumption is high. In a dual chopper amplifier, noise and power consumption can be 

optimized with a proper distribution of gain between the two stages (Parisa Vejdani et al., 

2017). In addition, the first amplifier can be designed while considering the sensor capacitance 

in order to maximize the sensitivity (Parisa Vejdani et al., 2017). In (Parisa Vejdani et al., 

2017), a gm-C filter is used to remove up-converted harmonics resulting from the dual 

chopping, but it adds flicker noise at low frequencies which is not suppressed completely by 

the gain of the previous stages. Moreover, this filter requires relatively large current and 

capacitance to filter small enough bandwidths with sufficiently low noise. A drawback of the 

chopper technique is that the non-idealities of the CMOS switches, such as charge injection 
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and clock feedthrough, contribute to input current noise (J. Xu et al., 2013). This plays an 

important role when a chopper amplifier is used with high impedance sensors, and it can cause 

substantial amounts of input-referred voltage noise. Accordingly, this paper presents a multi 

chopper circuit with nested chopper and dual supply voltages to remove the flicker noise, 

suppress switch non-idealities to decrease input current noise, and reduce the thermal noise 

and power consumption. It also minimizes input capacitance. 

 

5.2 Architecture of the proposed circuit  

Figure 5.1 shows the schematic of the proposed circuit. The design is consists of three cascaded 

blocks. Each block is chopped at a different frequency. The first block consists of a sensor that 

produces a chopped signal at frequency fh that can also stem from a capacitive bridge (not 

shown), and is followed by a chopped amplifier. A fully differential NMOS input stage with 

diode-connected loads implements the first amplifier block. In order to accommodate highly 

integrated capacitive-mode sensors, small input transistors are used to minimize input 

capacitance, yielding a high noise corner frequency. As the noise of the first amplifier is the 

dominant input-referred noise in the circuit, it is important to mitigate it. 

 

 

 

 

Figure 5.1 Schematic of the proposed circuit 
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A relatively large bias current of 5.25 µA allows for a lower thermal noise and larger 

bandwidth. This requires a sufficiently high chopping frequency to mitigate this stage’s flicker 

noise, in this case 1 MHz. To sustain this larger current without significantly increasing the 

power consumption, the input stage of the first amplifier is biased at a low supply voltage of 

0.4 V. Moreover, to reduce the thermal noise of the input transistors, NMOS transistors biased 

in subthreshold are used to maximize the transconductance to current ratio (H. Wang et al., 

2017). 

 

The second block consists of an amplifier with resistive feedback. A folded cascode topology 

is used, and the input transistors are designed to be bigger and operate in the subthreshold 

region to decrease the thermal noise floor and increase the transconductance. The chopping 

frequency at this stage, fm, is chosen to be of 100 kHz. This block acts as a high pass filter 

having a low cutoff frequency that is defined by R2 and C2. The chopped signal is located at a 

frequency larger than the cutoff frequency, and is thus amplified. The resulting DC gain of this 

stage considering the chopping effect is given by: 

  

 
222 )..2.( RfCG m ×= π , (5.1) 

 

where C2 is the coupling capacitance, and R2 is the resistive feedback. The third block consists 

of a capacitive feedback amplifier. In this block, the amplifier is chopped with a frequency fl 

of 20 kHz to mitigate the flicker noise and offset of the third amplifier. The topology of this 

amplifier is a folded cascode as well. Notably, larger input transistors are used to decrease the 

flicker corner frequency so that the lower chopping frequency can be used. In addition, an 

output capacitance CL of 5 pF mitigates the charge injection of this block. The Miller 

capacitance, Ceq, at node V2 is given by: 

  

 ( )33 1 ACC eq +=  (5.2) 

 

where C3 is the feedback capacitor, and A3 is the gain of the third amplifier. A capacitor bank 

implements C3 in order to allow for a configurable bandwidth. As the bandwidth of the first 
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amplifier is relatively large, an approximation of the bandwidth of the signal conditioning 

circuit is given by: 

  

 
( )[ ]2332 1.

1

CACR
BW

++
=  

(5.3) 

 

As shown in (5.3), the Miller capacitance allows to reach a smaller bandwidth without the need 

for implementing a large capacitance that would occupy prohibitively large chip area and have 

significant parasitic capacitance. Accordingly, the cascade of the second block with the third 

block results in a low pass filter with a very low cut-off frequency. This cascade avoids the 

requirement for a gm-C filter to remove the harmonics. In this fashion, all of the harmonics are 

filtered with a configurable bandwidth without adding extra flicker noise at low frequencies.  

Chopping mitigates DC offsets, but it can degrade the performance of the circuit because of 

the residual ripple that is produced by periodic charge injection and clock feed-through at the 

chopping frequency that cause transient current with an average value given by (J. Xu et al., 

2013): 

 

 )(.2, clkolodoxchopclkinj VCVWLCfI +=  (5.4) 

 

where fchop is the chopping frequency, W and L are the width and length of the chopper switches, 

Cox is the gate oxide capacitance, Col is the overlap capacitance between the gate and source 

(drain), Vod is the overdrive voltage, and Vclk is the clock signal swing amplitude. Among 

different switch non-idealities, charge injection is the dominant current noise contributor 

(Yazicioglu et al., 2011). From (5.4), it can be seen that the effect of the charge injection current 

can be decreased by reducing the size of the switches, and decreasing the chopping frequency. 

Also, chopping the signal at low impedance nodes results in a smaller charge injection voltage. 

Therefore, the chopping frequency should be optimized to remove the flicker noise properly 

and to minimize the charge injection effect. The input transistors of the first amplifier are small 

to minimize the loading on a capacitive sensor, necessitating a large chopping frequency to 

compensate for the resulting high flicker noise corner frequency. As a result, a nested chopping 
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technique is implemented at the input of this amplifier to suppress the charge injection effect, 

as shown in Fig. 1. Thus, charge injection is reduced by a factor of fH / fM, which is set to 10 in 

this design (J. Xu et al., 2013). The input capacitance of the second stage does not have any 

effect on the input capacitive loading. As a result, it can be increased to reduce the flicker noise 

corner frequency, resulting in lower chopping frequency and lower power consumption. The 

former reduces charge injection. Moreover, because of the Miller capacitance, the impedance 

at node V2 is small which results in reduced charge injection due to the chopper switches. 

 

5.3 Simulations results  

 This circuit was designed in a 0.13 µm CMOS technology from Global Foundries with 1.2 V 

and 0.4 V supplies. The frequency response of the circuit is shown in Figure 5.2, outlining the 

gain of 68 dB and four bandwidths settings of 1, 10, 100 and 1000 Hz, determined by the C3 

capacitor bank. 

 

 

 

Figure 5.2 Frequency response of the circuit for different capacitor bank 
(C3) values. 
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Figure 5.3 shows the simulation results of the output spectrum for a 150 Hz sine input signal 

of -81 dBV. The spurious tones are 63 dB below the fundamental output signal. The input-

referred noise of the circuit with and without chopping of the third amplifier is shown in Figure 

5.4.  

 

 

Figure 5.4 Input-referred noise with enabled and 
disabled third chopper. 

 

   

Figure 5.3 Output spectrum for a 150 Hz input signal of -81 dBV 
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The noise floor of this circuit is 20.5 nV/√Hz when the third amplifier is chopped. The 

contribution of the first stage on the noise floor is 60% and the contribution of the second stage 

is 40%, while the noise of the third stage is negligible. The corner frequency of circuit without 

chopping of the third amplifier is of 0.2 Hz, which is much higher than the corner frequency 

of 0.5 µHz when the third amplifier is chopped. At frequencies lower than 1 Hz, the noise 

difference with and without the third chopper becomes significant because the flicker noise of 

the third amplifier is not completely suppressed by the gain of the first and second stages. For 

instance at 10 mHz, the input-referred noise of the circuit with disabled third chopper is of 

2.5 µV/√Hz, and the contribution of the third amplifier flicker noise represents 100% of the 

noise at this frequency. Accordingly, even by choosing large transistors in the third amplifier 

to reduce the flicker noise, the flicker noise in the sub-mHz frequency range remains 

significant, and chopping of the third amplifier is required to mitigate it.  

 

Figure 5.5 shows the flicker noise contribution percentage with respect to the total noise with 

enabled and disabled third chopper at different frequencies. The dark blue and light blue bars 

represent the flicker noise contribution percentage of the third amplifier and the other circuit 

components, respectively, when the third chopper is disabled. The yellow bar presents the 

flicker noise contribution percentage of the total circuit the when the third chopper is enabled.  

 

Figure 5.5  Noise contribution of the third amplifier and other 
circuits with enabled and disabled third chopper. 
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The flicker noise of the other circuits dominates when the third chopper is enabled. However, 

when the third chopper is disabled, the third amplifier flicker noise dominates the total noise 

at frequencies smaller than 1 Hz. 

 

Table 5.1 shows the integrated input noise, power efficiency factor (PEF) and SNR for the four 

different bandwidth settings with the enabled and disabled third chopper. The PEF is used to 

describe the power / noise trade-off and it is given by (Muller et al., 2012b):  
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where VT is the thermal voltage, K is Boltzmann’s constant, T is the temperature, Ptot is the 

total power drawn by the circuit, BW is its bandwidth, and Vrms,in is its input-referred noise. 

Lower PEF indicates a more efficient design. As shown in this table, the effect of the third 

amplifier chopping on the integrated input noise, PEF and SNR is significant at low 

bandwidths. 

 

Table 5.1 Integrated input-referred noise, PEF and SNR for different bandwidths with 
enabled and disabled third chopper 

 Third  

chopper 

Bandwidth (Hz) 

 1 10 100 1000 

Integ. input noise 

(nV) 

Enabled 20.5 64.9 205 649 

Disabled 145 162 270 750 

PEF 
Enabled 4.0 4.0 4.0 4.0 

Disabled 207.3 26.0 7.3 5.3 

SNR (dB) 
Enabled 135.7 125.7 115.7 105.7 

Disabled 118.8 117.8 113.4 104.5 
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Table 5.2 lists the circuit performance with enabled and disabled third chopper and compares 

it with a capacitive sensor in (S. Wang et al., 2016), and a voltage sensor in (Altaf, Zhang, & 

Yoo, 2015). 

Table 5.2 Simulated circuit performance overview and comparison. 

 This work* 

(Muller, 

Gambini, 

& Rabaey, 

2012a) 

(S. Wang 

et al., 

2016) 

(Maruya

ma et al., 

2016) 

(Altaf et 

al., 2015) 

(H. Wang 

et al., 

2017) 

Supply 

(V) 
0.4, 1.2 - 1.8 1.55 1.8 2.7-3.6 

Technology 

(nm) 
130 350 180 180 180 180 

Gain 

(dB) 
68 29.6 40 - - 0-42 

Power cons. 

(μW) 

2.1 @ 0.4 V 

4.6 @ 1.2 V 
165 1.62 2015 2160 270 

Noise Floor 

(nV/√ࢠࡴ) 

20.5 

23 
-  8.2 3.7 19 

Integ. Input 

Noise (nV) 

205** 
- 900*** 171++ - - 

270** 

Noise corner 

(Hz) 

0.5μ 
100 0.5 - - - 

0.2 

Cap. noise 

floor (zF) 

3.6+ 
19.8 - - - - 

4.7+ 

PEF 4 - 19.5 201.4 44.1 - 

 *First row enabled 3rd chopper, second row disabled 3rd chopper. 
 **Over a 1 nHz-100 Hz bandwidth.  
 ***Over a 0.5 Hz-100 Hz bandwidth. 
+Assuming a 100 fF sensor capacitance. 
++Over a 0.1 Hz-10 Hz bandwidth. 
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A low power consumption of 6.7 µW is achieved here, and the noise performance compares 

favorably. A PEF of 4.0 in this circuit in comparison to the higher PEF of the other references 

outlines the ability of the architecture to support power efficient operation while attaining low 

noise performance. In addition, the noise corner frequency of 0.5 µHz is very low, allowing 

for near-DC high sensitivity operation such that microvolt signals can be detected. For 

capacitive sensors, the10 fF input capacitance and low noise floor result in a capacitance noise 

floor of 3.6 zF, in comparison to 19.8 zF in (S. Wang et al., 2016). 

 

5.4 Conclusion 

A low noise and low power triple chopper signal conditioning circuit was proposed for 

capacitive-mode and voltage-mode high efficiency sensors. The input capacitance of the circuit 

is minimized to be suitable for high sensitivity fully-integrated capacitive sensors. Two supply 

voltages are used to reduce the power consumption while minimizing the noise floor. A nested 

chopper technique is used at the input of the circuit to minimize the input current noise due to 

charge injection. The configurable bandwidth can decrease the integrated input noise and 

improve SNR for given applications. The third stage chopping enables a very low corner 

frequency for high sensitivity measurements at DC.  
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CHAPITRE 6 
 
 

DISCUSSION OF THE RESULTS  

The purpose of this work was designing a signal conditioning circuit for MEMS sensors which 

meets the following criteria: 

• Enabling agile functionality: a signal conditioning integrated circuit with variable 

performance, supporting different input sensor types.  

• Minimizing the power consumption for portability. 

• Maximizing the sensitivity to be able to detect low-frequency signals in the micro-volt 

range in resistive sensors and in the atto-Farad range in capacitive sensors.  

 

To reach the mentioned criteria, the following steps were carried-out: 

• A design methodology: since the sensing conditions define the required specifications for 

the signal conditioning circuit, a methodology is necessary to choose the best architecture 

and design the circuit to have the best possible performance. 

• System level analysis of the chosen signal conditioning circuit architecture to improve the 

performance. 

• A circuit level implementation of the signal conditioning circuit: this includes choosing the 

proper architecture for the amplifiers, while considering the power consumption, and 

dimension and operation region of the transistors. 

• Fabrication and testing the signal conditioning circuit to validate the design, and find and 

solve the problems that could be faced in practice.  

 

Based on the required specifications, different architectures are compared. Because of the low 

frequency of the detected signal, the chopping technique was chosen to remove the flicker 

noise and making it possible to sense the small signals. Chopping can be done with single 

chopping frequency or more chopping frequencies. Each of these chopping techniques has its 

advantages and disadvantages.  
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To reach the optimized performance, three different chopping techniques of SCA, TCA, and 

DCA are considered, and the sensitivity and power consumption for each of them is extracted. 

A sensitivity factor is defined and the lower sensitivity factor means the higher sensitivity in 

the circuit. It is shown that the input noise and the ratio of input capacitance to the sensing 

capacitance are important in the sensitivity factor. Then, the sensitivity factor and the power 

consumption of the three chopping techniques are extracted for the different total gains and 

sensor capacitances. It is shown that the sensitivity factor in the SCA is increased in 

correspondence with increasing the gain, and it is worst for the smaller sensor capacitance 

because of the larger ratio of input capacitance to sensor capacitance.  

 

Also, the minimum sensitivity factor of the TCA based on total gains and sensor capacitances 

is extracted. In this architecture, the distribution of the gain between the two stages is important 

and it will change the sensitivity and power consumption significantly. It is shown that for the 

smaller total gain and sensor capacitance, all of the amplification is done at the first stage. As 

the total gain is increased, the ratio of the gain of first amplifier to the total gain starts to 

decrease based on the value of the sensor capacitance, and this is justified by the loading factor. 

It is shown that at the smaller sensor capacitance, most of the amplification is done at the 

second stage. However, because of the limitation in the design of a TCA, input capacitance 

could not be decreased enough at the small sensor capacitance and high gain. This limitation 

contributes to an increased sensitivity factor and a reduced performance. 

 

From the analysis of sensitivity factor in the DCA, it is concluded that there is an extra degree 

of freedom in the DCA. The gains of the two stages and their chopping frequencies could be 

chosen in a way that makes a small input capacitance and also a small input noise floor which 

result in a smaller sensitivity factor. As a result, with increasing the total gain and a small 

sensing capacitance, most of the amplification can be done at the second stage and the first 

amplifier can be implemented as a capacitance buffer.  

 

To be able to choose a proper chopping technique, a figure was presented in Figure 3.13 in 

chapter 3. The preferred chopping technique was based on the total gain, and sensor 
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capacitance can be chosen from this figure. As shown, for a small gain and a large sensor 

capacitance, the SCA can be suitable. The DCA is the most suitable for a small sensor 

capacitance and large required gains. For a moderate gain and large sensor capacitance, the 

TCA is preferred. Moreover, the lowest power consumption is obtained by using the TCA with 

the same gain for the first and second amplifiers, if that architecture is well suited to the 

required sensitivity. Moreover, the flow graph in figure 3.14 was proposed. In this flow graph, 

the steps to design an optimized chopping techniques were shown. Based on the total gain and 

sensing capacitances, the chopping technique will be chosen. Then, based on this flow graph, 

the circuit will be designed to have the minimum sensitivity factor or desired sensitivity factor 

with the minimum power consumption. 

 

To improve DCA performance and to reach more sensitivity and less power consumption, a 

novel dual-chopper amplifier was designed and fabricated in the 0.13 µm CMOS technology. 

The circuit occupies an active area of 550 × 250 µm. This structure provides two gain settings, 

and it can be implemented in both capacitive and resistive modes. In this circuit, two supply 

voltages are utilized. A low supply voltage, high current amplifier is implemented in the first 

stage, which improves the power consumption and the noise floor. The input transistors of this 

amplifier have small dimensions, and they are set in the subthreshold region. This helps to 

minimize the input capacitance and maximize the gm/ID ratio, which means the higher gain 

with utilizing less power consumption. The input capacitance is 10 fF for this circuit. The 

corner frequency in this amplifier is high and a chopping frequency of 1 MHz is implemented 

to remove the flicker noise. The second stage of this design is composed of two parallel paths. 

The folded cascade amplifier is implemented at the second stage, and they are chopped with 

the frequency of 100 kHz. The second path in the dual-path can be enabled and disabled with 

a controllable switch mixer that gives us the possibility of two gain settings. 

 The dual-path improved SNR in two faces. Firstly, because of the fact that signals are added 

in voltage and noise is added in power. Secondly, SNR is improved because of the correlation 

noise at the second path. The current noise in two paths is subtracted in the adder that results 

in a smaller integrated noise. The charge injection of the first chopper is mitigated with the 
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nested chopper technique, and the gm-C filter attenuates the out of band harmonics and the 

charge injection of the second chopper.  

 

The measurement results show a power consumption of 2.66 µW for the supply voltage of 

0.7V and 3.26 µW for the supply voltage of 1.2V. The single-path DCA has the gain of 34dB 

with bandwidth of 4kHz and an input noise floor of 25 nV/√Hz. The dual-path DCA has the 

gain of 38dB with bandwidth of 3kHz and an input noise floor of 40 nV/√Hz. Comparing these 

results with the other similar works shows that the power consumption is reduced significantly, 

which is yielded because of the proper design of the DCA. Moreover, the input capacitance is 

considered in the design of the DCA, but it is not included in the design of other works. 

 

At last, to be able to detect the ultra-small variations in a very low frequency range of sensor, 

a novel signal conditioning circuit is proposed. This design consists of three cascaded blocks 

and each block is chopped at a different frequency. Utilizing three chopping frequencies to 

chop three stages helps to remove the flicker noise completely. The implemented chopping 

frequencies are 1 MHz, 100 kHz and 20 kHz, which are defined by the corner frequencies of 

amplifiers. The input signal is chopped with a 100 kHz and then 1 MHz to suppress the charge 

injection effect of the higher chopping frequency at the input. The first amplifier is a NMOS-

input fully differential amplifier, which is biased with a higher current and lower supply 

voltage to reduce the power consumption and input noise floor. The second stage is composed 

of a resistive feedback amplifier and the third stage is an amplifier with Miller capacitance 

feedback. A combination of the second and the third stages composes a low-pass filter with 

configurable bandwidth. The miller effect helps to reach the small bandwidth without 

increasing the capacitance, which is beneficial in two faces. First, it prevents the extra parasitic 

capacitance, and second, ultra-small bandwidth is possible that leads to a lower integrated input 

noise and a higher SNR. A folded cascade amplifier with NMOS input is implemented at the 

second and the third stages.   

 

 The simulated circuit is designed in a 0.13 μm CMOS technology with 0.4 V and 1.2 V 

supplies to reduce the power consumption. The total power consumption of 6.7 μW and gain 
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of 68 dB is achieved. Based on the value of miller capacitance, bandwidths of 1, 10, 100 and 

1000 Hz are achieved. The noise performance of this circuit was extracted for both a disabled 

and an enabled third chopper. With enabling the third chopper, the input referred noise floor is 

20.5 nV/√Hz. The input referred noise floor with a disabled third chopper is 23nV/√Hz. The 

simulation results show a significant difference in the corner frequency between an enabled 

and a disabled third chopper. With a disabled third chopper, the corner frequency is 0.2 Hz 

while in an enabled chopper it becomes to 0.5 µHz. This small value of corner frequency helps 

to detect ultra-small signals at DC.  

 

Table 5.1, which was presented in chapter 5, shows the integrated input noise, PEF and SNR 

of the proposed circuit with an enabled and a disabled third chopper for four bandwidths of 1, 

10, 100, and 1000 Hz. Comparing the results reveals that the effect of chopping throughout the 

amplifier chain has significant impact. For example, for the 1 Hz bandwidth, the integrated 

input noise of the circuit with an enabled third chopper is 7 times smaller than the one of the 

circuit with a disabled third chopper. Also, PEF in the chopped circuit is 6 times smaller than 

the disabled chopper for the 10 Hz bandwidth. As a result, for the small bandwidth circuit, it 

is very important to chop all stages, and it will contribute to a big difference in the noise results. 

The design with three chopper frequencies attains a low power efficiency factor of 4.0, which 

presents the great optimization of noise and power consumption at the same time. In the 

capacitive mode, the noise floor is of 3.6 zF for a 100 fF capacitance sensor, which makes 

possible to sense the capacitance variation in the zepto farad range.  

  





 

CONCLUSION 

 

MEMS-based sensors are experiencing large growth in various applications such as 

communications, medical, industry and consumer electronics. Because of their applications, 

developing high-performance signal conditioning circuit is essential to detect the physical 

stimulus more precisely. Based on the application, the requirement of signal conditioning 

circuit varies. In portable devices, power consumption is a critical feature and some 

applications need more sensitivity rather than the others. The goal of this research was to design 

a high-resolution, low-power signal conditioning circuit for MEMS, which is applicable in 

both capacitive and resistive sensors. With this goal, this project was started by investigating 

different circuit architectures to find the most effective way to design a signal conditioning 

circuit with these features. Among them, a chopping technique was preferred because of the 

ability to remove the flicker noise and reach low-noise floor in low frequencies. Then, three 

different chopping techniques were considered and their sensitivity and power consumption 

were analysed based on the total gain and different sensor capacitances. The characteristics of 

each chopping technique can be summarized as below: 

• SCA: simpler structure, higher power consumption, fixed sensitivity, and the worst 

sensitivity in the small sensor capacitance, and large gain; 

• TCA: flexible sensitivity and power consumption based on the distribution of gain, 

capability of having the minimum power consumption; 

• DCA: capability of having the maximum sensitivity in small sensor capacitance, flexible 

in power and sensitivity, complexity in the design.  

 

It was shown that the distribution of gain between the two stages in the DCA and TCA has a 

significant effect on the sensitivity. Based on this distribution, the sensitivity factor and the 

power consumption vary significantly. For a large gain and a small sensor capacitance, the 

DCA has a degree of freedom to decrease the input capacitance of the first amplifier and 

contributing to a smaller sensitivity factor. For a small gain and a large sensor capacitance, the 

SCA can be suitable. Moreover, it was shown that the lowest power consumption is obtained 

by using the TCA with the same gain for the first and the second amplifiers if that architecture 
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is well suited to the required sensitivity. Based on these analyses, an ultra-low power dual-

chopper circuit was designed and fabricated in the 0.13 µm CMOS technology. 

 

Moreover, to improve the performance of the dual-chopper amplifier and reduce the power 

consumption, a novel architecture was proposed and fabricated in the 0.13 µm CMOS 

technology. The first stage of the dual-chopper amplifier in this design is a low supply voltage, 

and a high current amplifier to improve the noise floor and power consumption at the same 

time. Small input transistors were implemented at this amplifier to decrease the parasitic 

capacitance and improve the sensitivity. At the second stage, two parallel paths were utilized 

to provide improved SNR and gain configurability, and they were added by a two-differential 

input gm-C low-pass filter. The flicker noises of the both stages were removed with the 

chopping technique, and the up-converted flicker noise was filtered by a gm-C filter. Although 

this filter suppresses the up-converted flicker noise of the first and second stages, it added some 

flicker noise in sub-Hz frequency.  

 

To remove the flicker noise completely and to improve the SNR, the triple-chopping technique 

was proposed. In this circuit, the first stage is a low supply voltage high current amplifier the 

same as the previous design which is chopped with a high frequency. However, at the second 

and third stages, a resistive feedback amplifier and a capacitive feedback amplifier is used 

respectively to attain a low-noise, low-pass filtering with a tunable bandwidth. All of these 

stages were chopped to remove the flicker noise completely, which contributes to a sub-µHz 

corner frequency. The bandwidth of this circuit was configurable and could be as narrow as 

1 Hz which contributes to an ultra-small integrated input noise and improved SNR. A nested 

chopper technique is used at the input of this circuit to minimize the input current noise to 

charge injection. As a result, an ultra-high sensitivity and an ultra-high power consumption are 

achievable with this circuit that can detect small signals in the capacitive and resistive sensors 

in the DC frequency. 

 

To sum up, the first step to design a signal conditioning circuit is to identify the required 

specifications, such as the values of the capacitive or resistive sensors, desirable resolution, 
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required total gain, and frequency range of the input signal. After that, the type of chopping 

could be defined. The SCA is utilized when a lower resolution is needed. The TCA can be 

implemented to decrease the power consumption, while the highest sensitivity can be 

achievable with the DCA. Distribution of the gain between the two stages in the TCA and DCA 

contributes to different power consumptions and sensitivities. In addition, a triple-chopping 

technique could be implemented to remove the flicker noise at sub-Hz frequency. The desig of 

the amplifier is important in the chopping technique. To reach the ultra-low-noise amplifier 

with low-power consumption, a high-current low-supply voltage amplifier could be 

implemented at the first stage. This has the most contribution at the input noise floor. To 

improve performance of the chopping amplifier, this technique can be combined with the other 

techniques. For example, a multi-path can be applied to reach a configurable gain and 

improvement in SNR. A configurable and narrow bandwidth can be reached with 

implementation of the resistive and capacitive feedback amplifiers. For the applications near 

the DC frequency range, the flicker noise should be suppressed completely. Accordingly, all 

stages should be chopped properly to remove the flicker noise maximally.  

 

The main contributions of this thesis are: 

1) A methodology was proposed to design an optimized signal conditioning circuit with 

chopping technique based on the sensor capacitance and the required total gain. This 

structure is beneficial because the circuit could be designed to reach the maximum possible 

sensitivity, or reach the desired sensitivity with minimum power consumption.  

2) A dual-path dual-chopper amplifier was designed and fabricated. In this circuit, low-noise 

and ultra-low-power circuit was achieved. Power efficiency factor (PEF) of this circuit is 

11 for a single-path circuit and 13 for a dual-path circuit, which indicates a good trade-off 

of noise and power consumption. The power consumption of this circuit is 2.66 µW from 

the 0.7 V supply voltage and 3.26 µW from the 1.2 V supply voltage that make this signal 

conditioning circuit a proper choice for portable devices. 

3) A low-power low-noise signal conditioning circuit with sub-µHz noise corner frequency 

and tunable bandwidth was designed. Simulation results show that with this circuit, a 

corner frequency of 0.5 µHz and noise floor of 20.5 nV/√Hz are achievable. This structure 
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helps to measure near DC signals. In addition, the bandwidth is tunable, and it can be set 

based on the application. A bandwidth as small as 1 Hz is achievable in this circuit, which 

helps to reduce the integrated input noise and to improve the SNR. A power efficiency 

factor of 4 and SNR of 115.7 dB for the bandwidth of 100 Hz is achievable with this circuit. 
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RECOMMANDATIONS  

 

MEMS designers and researchers are increasingly encouraged to focus on improving the 

performance of the MEMS sensors to make the most information out of a physical signal. As 

a result, the design of the signal conditioning circuit, transducer, and their proper integration 

is important to achieve a high performance sensor. 

 

In this design, a high performance signal conditioning circuit is designed. However, it is 

important to consider the performance of this circuit in the integration with a capacitive or 

resistive sensor. In the design, a capacitive emulator could be considered and added to the input 

of the circuit to see the sensitivity result. Moreover, this circuit could be fabricated with a 

MEMS sensor in a package. The integration could be done with a pressure sensor that is a 

resistive sensor or accelerometer, which is a capacitive sensor. For example, integration of this 

circuit with pressure sensor in (Arunachalam, Gupta, Izquierdo, & Nabki, 2018) could be 

carried out. The input capacitance of the signal conditioning circuit is not important in the 

integration with resistive sensors. Moreover, because of the small value of the impedance in 

this pressure sensor, the noise that is produced in chopping modulation and converted to 

voltage noise in the sensor, does not have an important effect on the performance. However, 

for the large sensing impedances, this could be important. 

The integration of this circuit with capacitive sensor, such as (Alfaifi, Alhomoudi, Nabki, & 

El-Gamal, 2019), could be challenging. To integrate with this sensor which has the nominal 

capacitance of 500 fF, the input capacitance of the signal condition circuit should be smaller 

than 10 fF to prevent more than 5% degradation in the performance. 

 

In addition to integration with sensors, there are some points that could be considered in the 

design of a signal conditioning circuit, which are explained in the following: 

 

1) improvement in the system level:  

In this work, a complete methodology design of a low-noise low-power circuit with different 

chopping techniques has been discussed. The sensitivities and power consumptions of the 
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SCA, TCA, and DCA for different total gain and sensor capacitances were analysed. In future 

works, the effect of switch non-idealities such as charge injection, clock feedthrough, and 

residual offset can be considered in the SCA, TCA, and DCA. Their effects on the performance 

of the circuit in different gains and different sensors can be extracted and the circuit with the 

minimum non-idealities can be extracted based on the distribution of gain between the two 

stages in the DCA and TCA. Then based on these results, the circuit can be optimized for noise, 

power consumption, and non-idealities of the switches at the same time.  

 

In our design, chopping is implemented to remove the flicker noise. However, chopping could 

contribute to the input current noise and the value of the current noise is dependent on the 

chopping frequency and switch dimensions. As a result, if a highly-resistive sensor is 

implemented, the input current noise can degrade the sensing performance. In future works, 

the effect of input current noise of the circuit can be considered in the design, and the circuit 

can be optimized based on both the input voltage noise and the input current noise.  

 

2) improvement in the circuit level: 

In our design of the DCA, a gm-C filter is utilised to mitigate the upconverted harmonics. 

However, this filter mitigated the harmonics partly. A higher order low-pass filter can be 

implemented instead of this filter to suppress the out of band harmonics completely which 

results in a better performance. In addition, in the case that switch non-idealities are 

destructive, extra circuits can be added to the signal conditioning circuit to mitigate the effect 

of the residual offset. Besides, a structure could be implemented to minimize the PVT 

variations. 

 

3) improvement at the layout level: 

Improving the layout of the signal conditioning circuit can be considered in future works to 

reach more matching and decreasing the non-idealities. For example, mismatches in the 

transistors of the amplifiers result in nonlinearity and offset, and mismatches in the transistors 

of the switches results in charge injection and clock feedthrough. As a result, a better layout 

results in a better performance and a higher sensitivity to make the circuit more reliable. 
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The design of a signal conditioning circuit becomes more challenging in modern CMOS 

technology nodes. In the smaller CMOS technology, flicker noise becomes larger. As a result, 

with utilizing the smaller technology, the effect of flicker noise becomes more challenging. As 

shown, a chopping technique is the best way to remove the flicker noise, and this structure is 

recommended to remove the flicker noise. However, in the smaller technology, the corner 

frequency become larger, which necessitates a larger chopping frequency or a larger dimension 

for the transistors. On the other hand, decreasing the size of the sensors, leads to a nominal 

sensor capacitance that is smaller. So, the need to have a smaller input capacitance becomes 

more essential. This means to remove the flicker noise completely, a large chopping frequency 

should be implemented. Since the charge injection of the switches has a direct relationship 

with chopping frequency, the charge injection will be increased that causes a higher current 

noise. As a result, in the next generation, the values of input capacitance, flicker noise, current 

noise, and power are the most important factors that should be considered. In our work, we 

showed the techniques to remove the flicker noise, decrease the input capacitance, and 

minimize the power consumption. 

 

To reduce the current noise, it is important that the performance of the switches be improved. 

The following actions could be considered to reduce the current noise: 

1) Studying the clocks: considering their shape, duration, and overlaps and proposing the best 

clock structure to reduce the charge injection as much as possible; 

2) Improvement in the switch design and proposing a novel switch structure to minimize the 

charge injection; 

3) Studying a structure at the system level of the signal conditioning circuit to remove the 

produced charge injection effect. 

 

Moreover, to have a reliable circuit, it is important that a circuit is designed that has stability 

in PVT variation. 

 

The following topology is proposed for the next generation of the signal conditioning circuits. 

As shown, it is composed of two main stages, and each stage is chopped separately. 
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It is suggested that: 

1) The first amplifier is improved and optimized in the circuit level to be stable in the PVT 

variation; 

2) A new architecture is proposed in the system level of the second stage to minimize the PVT 

variation and reduce the current noise; 

3) A new methodology is implemented in the mixers to reduce the charge injection effect. 

 

 

Figure 8.1 Proposed topology for the next generation of signal conditioning 
circuit 
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