10 research outputs found

    Extragradient methods for elliptic inverse problems and image denoising

    Get PDF
    Numerous mathematical models in applied mathematics can be expressed as a partial differential equation involving certain coefficients. These coefficients are known and they describe some physical properties of the model. The direct problem in this context is to solve the partial differential equation. By contrast, an inverse problem asks for the identification of the variable coefficients when a certain measurement of a solution of the partial differential equation is available. One of the most commonly used approaches for solving this inverse problem is by posing a constrained minimization problem which can be written as a variational inequality. The main contribution of this thesis is to employ various variants of extragradient methods to solve the inverse problem of parameter identification by posing it as a variational inequality. We present a thorough comparison of projected gradient method, scaled projected gradient method and several extragradient methods including the Marcotte variants, He-Goldstein type method, the projection- contraction methods proposed by Solodov and Tseng, and the hyperplane method developed by Iusem. We also test the performance of the extragradient methods for the image debluring problem

    An APPA-based descent method with optimal step-sizes for monotone variational inequalities

    No full text
    To solve monotone variational inequalities, some existing APPA-based descent methods utilize the iterates generated by the well-known approximate proximal point algorithms (APPA) to construct descent directions. This paper aims at improving these APPA-based descent methods by incorporating optimal step-sizes in both the extra-gradient steps and the descent steps. Global convergence is proved under mild assumptions. The superiority to existing methods is verified both theoretically and computationally. © 2007 Elsevier B.V. All rights reserved.Link_to_subscribed_fulltex

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Aeronautical engineering: A continuing bibliography with indexes (supplement 193)

    Get PDF
    This bibliography lists 682 reports, articles and other documents introduced into the NASA scientific and technical information system in October 1985

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore