3,361 research outputs found

    Contractors Perspective on the Selection of Innovative Sustainable Technologies for Achieving Zero Carbon Retail Buildings

    Get PDF
    The use of innovative sustainable technologies (IST) has been regarded as an effective approach to enhancing energy efficiency and reducing carbon emissions of buildings. However, contractors face significant challenges in the selection of IST. The reported challenges in the literature include: lack of skills and knowledge, uncertainties, risks and the rapid development of a large number of technological alternatives and decision criteria. The selection process emerges as a multi-attribute, value-based task that includes both qualitative and quantitative factors, which are often assessed with imprecise data and human judgments. This paper aims to establish the decision criteria for the selection of IST for achieving low carbon existing retail buildings with a focus on the main contractor’s perspective. The arguments are informed by the combination of literature review and an in-depth case study with a UK leading contractor. Five broad decision criteria are identified systematically drawing on the contractor’s practice. The established criteria are weighted and ranked using the analytic hierarchy process and expert opinions; with ‘margin opportunity’ being the most important, followed by ‘repeat business’, ‘investment costs’, ‘differentiation’ and then ‘transferability’. The findings should facilitate the integration of various facets of the selection process and stimulate contractors to use IST

    End-of-life vehicle (ELV) recycling management: improving performance using an ISM approach

    Get PDF
    With booming of the automobile industry, China has become the country with increasing car ownership all over the world. However, the end-of-life vehicle (ELV) recycling industry is at infancy, and there is little systematic review on ELV recycling management, as well as low adoption amongst domestic automobile industry. This study presents a literature review and an interpretive structural modeling (ISM) approach is employed to identify the drivers towards Chinese ELV recycling business from government, recycling organizations and consumer’s perspectives, so as to improve the sustainability of automobile supply chain by providing some strategic insights. The results derived from the ISM analysis manifest that regulations on auto-factory, disassembly technique, and value mining of recycling business are the essential ingredients. It is most effective and efficient to promote ELV recycling business by improving these attributes, also the driving and dependence power analysis are deemed to provide guidance on performance improvement of ELV recycling in the Chinese market

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    Industry 4.0 enabling sustainable supply chain development in the renewable energy sector:A multi-criteria intelligent approach

    Get PDF
    The aim of this paper is to provide a multi-criteria decision-making intelligent approach based on Industry 4.0 and Triple Bottom Line principles for sustainable supply chain development in the renewable energy sector. In particular, the solar photovoltaic energy supply chain is used as a case study, encompassing the entire energy production process, from supply to disposal. An exhaustive literature review is conducted to identify the main criteria affecting social, economic and environmental sustainability in the photovoltaic energy supply chain, and to explore the potential impact of Industry 4.0 on sustainability. Subsequently, three Fuzzy Inference Systems combining quantitative and qualitative data are built to calculate the supply chain's social, economic and environmental sustainability. Experts' opinions are used to identify the impact of Industry 4.0 technologies on the three pillars of sustainability for each supply chain stage. Finally, a novel sustainability index, Sustainability Index 4.0, is formulated to compute the overall sustainability of the photovoltaic energy supply chain in seven countries. The results show the applicability and usefulness of the proposed holistic model in helping policy makers, stakeholders and users to make informed decisions for the development of sustainable renewable energy supply chains, taking into account the impact of Industry 4.0 and digital technologies

    Selection of biogas, solar, and wind power plants’ locations: An MCDA approach

    Get PDF
    This study discusses a multi-criteria approach to locating biogas, solar and wind power plants that significantly addresses the challenge of global warming caused by power generation. Because the utility of locations to build renewable energy power plants depends on economic, social and environmental dimensions, after reviewing literature, the sustainable frameworks of criteria affecting the location of biogas, solar and wind power plants were examined in this paper. The offered frameworks are applied to determining the site of biogas, solar, and wind power plants in Iran. The provinces of Iran are assessed as alternatives in this paper. To compute the weight of criteria in the offered framework, data from a sample of experts in Iran are used via an online survey form designed based on the best-worst method (BWM). Using the results of the BWM and the performance data, the overall score are calculated for the various provinces of Iran. The results of this study indicate that energy saving, effect on resources and natural reserves and wind flow, respectively, are the most effective factors for determining the place of biogas, solar and wind power plants, and South Khorasan, Khuzestan, and Khuzestan show the best result for establishing biogas, solar, and wind power plants in Iran respectively

    VIKOR Technique:A Systematic Review of the State of the Art Literature on Methodologies and Applications

    Get PDF
    The main objective of this paper is to present a systematic review of the VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR) method in several application areas such as sustainability and renewable energy. This study reviewed a total of 176 papers, published in 2004 to 2015, from 83 high-ranking journals; most of which were related to Operational Research, Management Sciences, decision making, sustainability and renewable energy and were extracted from the “Web of Science and Scopus” databases. Papers were classified into 15 main application areas. Furthermore, papers were categorized based on the nationalities of authors, dates of publications, techniques and methods, type of studies, the names of the journals and studies purposes. The results of this study indicated that more papers on VIKOR technique were published in 2013 than in any other year. In addition, 13 papers were published about sustainability and renewable energy fields. Furthermore, VIKOR and fuzzy VIKOR methods, had the first rank in use. Additionally, the Journal of Expert Systems with Applications was the most significant journal in this study, with 27 publications on the topic. Finally, Taiwan had the first rank from 22 nationalities which used VIKOR technique

    Role of the national energy system modelling in the process of the policy development

    Get PDF
    Strategic planning and decision making, nonetheless making energy policies and strategies, is very extensive process and has to follow multiple and often contradictory objectives. During the preparation of the new Slovenian Energy Programme proposal, complete update of the technology and sector oriented bottom up model of Reference Energy and Environmental System of Slovenia (REES-SLO) has been done. During the redevelopment of the REES-SLO model trade-off between the simulation and optimisation approach has been done, favouring presentation of relations between controls and their effects rather than the elusive optimality of results which can be misleading for small energy systems. Scenario-based planning was integrated into the MESAP (Modular Energy System Analysis and Planning) environment, allowing integration of past, present and planned (calculated) data in a comprehensive overall system. Within the paper, the main technical, economic and environmental characteristics of the Slovenian energy system model REES-SLO are described. This paper presents a new approach in modelling relatively small energy systems which goes beyond investment in particular technologies or categories of technology and allows smooth transition to low carbon economy. Presented research work confirms that transition from environment unfriendly fossil fuelled economy to sustainable and climate friendly development requires a new approach, which must be based on excellent knowledge of alternative possibilities of development and especially awareness about new opportunities in exploitation of energy efficiency and renewable energy sources

    Development of titanium dioxide nanoparticles/nanosolution for photocatalytic activity

    Get PDF
    Biological and chemical contaminants by man-made activities have been serious global issue. Exposure of these contaminants beyond the limits may result in serious environmental and health problem. Therefore, it is important to develop an effective solution that can be easily utilized by mankind. One of the effective ways to overcome this problem is by using titanium dioxide (TiO2). TiO2 is a well-known photocatalyst that widely used for environmental clean-up due to its ability to decompose organic pollutant and kill bacteria. Although it is proven TiO2 has an advantage to solve this concern, its usefulness unfortunately is limited only under UV light irradiation. Therefore, the aim of this work was to investigate the potential of TiO2 that can be activated under visible light by the incorporation of metal ions (Fe, Ag, Zr and Ag-Zr). In this study, sol-gel method was employed for the synthesis of metal ions incorporated TiO2. XRD analysis revealed that all samples content biphasic anatase-brookite TiO2 of size 3 nm to 5 nm. It was found that the incorporation of these metal ions did not change the morphology of TiO2 but the crystallinity and optical properties were affected. The crystallinity of anatase in the biphasic TiO2 was found to be decreased and favored brookite formation. PL analysis showed metal ions incorporation suppressed the recombination of electron-hole pairs while the band gap energy of TiO2 (3.2 eV) was decreased by the incorporation of Fe (2.46 eV) and Ag (2.86 eV). Among this incorporation, Ag-Zr incorporated TiO2 showed highest performance for methyl orange degradation (93%) under fluorescent xxv light irradiation for 10 h. This follows by Zr-TiO2 (82%), Fe-TiO2 (75%) and Ag�TiO2 (43%). Meanwhile, the highest antibacterial performance was exhibited by Ag�TiO2. TEM images showed that E.coli bacterium was killed within 12 h after treated with Ag-TiO2. The results obtained from the fieldwork study established that Ag-Zr incorporation have excellent performances for VOC removal and antibacterial test. The VOC content after treated with Ag-Zr-TiO2 fulfilled the Industry Code of Practice on Indoor Air Quality 2010 which is lower than 3 ppm. In addition, the percentage of microbes also found to be decrease around 45 % within 5 days of monitoring
    corecore