4,948 research outputs found

    An Investigation into the Interrelationship between Aircraft Systems and Final Assembly Process Design

    Get PDF
    Modern aircraft are more integrated with advanced systems functionalities, which result in ever-increasing aircraft complexity, further development difficulties and development delays. These system complexities are mostly in the form of system interactions that make it difficult to understand the overall system characteristics. At the early stages of final assembly line (FAL) design, one of the most important objectives is to arrange the installation and test tasks from components to sub-systems and systems in the proper sequence to meet the designed functions and prevent hazards from the integration process. Improper sequencing of the final assembly process will cause rework, time delays, cost and potential safety risk in development. In the field of final assembly line design, previous research has mostly focused on assembly line balancing or supply chain design based on structural parts assembly. However, these approaches do not consider the early final assembly line definition or test allocation for system functions. In this paper, the research proposes a method based on a systems engineering view and integrated computer aided design (CAD) to help better understand system interactions and generate viable final assembly process sequencing. This research aims to develop a concept of unified master data for final assembly design, which contains 3D geometrical CAD, system functions and interaction characteristics. The paper will present the methodology framework, key concepts and associated industrial software packages for implementation. The paper concludes with further discussion of an initial case study

    Impact of low gravity on water electrolysis operation

    Get PDF
    Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 323)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1989. Subject coverage includes; aerospace medicine and psychology, life support systems and controlled environments, safety equipment exobiology and extraterrestrial life, and flight crew behavior and performance

    Application of root cause analysis in improvement of product quality and productivity

    Get PDF
    Root-cause identification for quality and productivity related problems are key issues for manufacturing processes. It has been a very challenging engineering problem particularly in a multistage manufacturing, where maximum number of processes and activities are performed. However, it may also be implemented with ease in each and every individual set up and activities in any manufacturing process. In this paper, root-cause identification methodology has been adopted to eliminate the dimensional defects in cutting operation in CNC oxy flame cutting machine and a rejection has been reduced from 11.87% to 1.92% on an average. A detailed experimental study has illustrated the effectiveness of the proposed methodologyPeer Reviewe

    A strategic planning methodology for aircraft redesign

    Get PDF
    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and tools that are identified within these research areas have been abstracted and adapted into the proposed SPEC method to meet the research goals. The proposed SPEC method is shown to be promising in improving the overall efficiency of the derivative aircraft planning process through two notional aircraft system redesign case studies that are presented in this study.Ph.D.Committee Chair: Prof. Dimitri Mavris; Committee Member: Dr. Elena Garcia; Committee Member: Dr. Neil Weston; Committee Member: Mathias Emeneth; Committee Member: Prof. Daniel P. Schrag

    Lean, premixed, prevaporized fuel combustor conceptual design study

    Get PDF
    Four combustor concepts, designed for the energy efficient engine, utilize variable geometry or other flow modulation techniques to control the equivalence ratio of the initial burning zone. Lean conditions are maintained at high power to control oxides of nitrogen while near stoichometric conditions are maintained at low power for low CO and THC emissions. Each concept was analyzed and ranked for its potential in meeting the goals of the program. Although the primary goal of the program is a low level of nitric oxide emissions at stratospheric cruise conditions, both the ground level EPA emission standards and combustor performance and operational requirements typical of advanced subsonic aircraft engines are retained as goals as well. Based on the analytical projections made, two of the concepts offer the potential of achieving the emission goals; however, the projected operational characteristics and reliability of any concept to perform satisfactorily over an entire aircraft flight envelope would require extensive experimental substantiation before engine adaptation can be considered

    NASA-STD-(I)-6016, Standard Materials and Processes Requirements for Spacecraft

    Get PDF
    This document is directed toward Materials and Processes (M&P) used in the design, fabrication, and testing of flight components for all NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements. All flight hardware is covered by the M&P requirements of this document, including vendor designed, off-the-shelf, and vendor furnished items. Materials and processes used in interfacing ground support equipment (GSE); test equipment; hardware processing equipment; hardware packaging; and hardware shipment shall be controlled to prevent damage to or contamination of flight hardware
    • …
    corecore