1,072 research outputs found

    Entity reconciliation in big data sources: A systematic mapping study

    Get PDF
    The entity reconciliation (ER) problem aroused much interest as a research topic in today’s Big Dataera, full of big and open heterogeneous data sources. This problem poses when relevant information ona topic needs to be obtained using methods based on: (i) identifying records that represent the samereal world entity, and (ii) identifying those records that are similar but do not correspond to the samereal-world entity. ER is an operational intelligence process, whereby organizations can unify differentand heterogeneous data sources in order to relate possible matches of non-obvious entities. Besides, thecomplexity that the heterogeneity of data sources involves, the large number of records and differencesamong languages, for instance, must be added. This paper describes a Systematic Mapping Study (SMS) ofjournal articles, conferences and workshops published from 2010 to 2017 to solve the problem describedbefore, first trying to understand the state-of-the-art, and then identifying any gaps in current research.Eleven digital libraries were analyzed following a systematic, semiautomatic and rigorous process thathas resulted in 61 primary studies. They represent a great variety of intelligent proposals that aim tosolve ER. The conclusion obtained is that most of the research is based on the operational phase asopposed to the design phase, and most studies have been tested on real-world data sources, where a lotof them are heterogeneous, but just a few apply to industry. There is a clear trend in research techniquesbased on clustering/blocking and graphs, although the level of automation of the proposals is hardly evermentioned in the research work.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Named Entity Resolution in Personal Knowledge Graphs

    Full text link
    Entity Resolution (ER) is the problem of determining when two entities refer to the same underlying entity. The problem has been studied for over 50 years, and most recently, has taken on new importance in an era of large, heterogeneous 'knowledge graphs' published on the Web and used widely in domains as wide ranging as social media, e-commerce and search. This chapter will discuss the specific problem of named ER in the context of personal knowledge graphs (PKGs). We begin with a formal definition of the problem, and the components necessary for doing high-quality and efficient ER. We also discuss some challenges that are expected to arise for Web-scale data. Next, we provide a brief literature review, with a special focus on how existing techniques can potentially apply to PKGs. We conclude the chapter by covering some applications, as well as promising directions for future research.Comment: To appear as a book chapter by the same name in an upcoming (Oct. 2023) book `Personal Knowledge Graphs (PKGs): Methodology, tools and applications' edited by Tiwari et a

    End-to-End Entity Resolution for Big Data: A Survey

    Get PDF
    One of the most important tasks for improving data quality and the reliability of data analytics results is Entity Resolution (ER). ER aims to identify different descriptions that refer to the same real-world entity, and remains a challenging problem. While previous works have studied specific aspects of ER (and mostly in traditional settings), in this survey, we provide for the first time an end-to-end view of modern ER workflows, and of the novel aspects of entity indexing and matching methods in order to cope with more than one of the Big Data characteristics simultaneously. We present the basic concepts, processing steps and execution strategies that have been proposed by different communities, i.e., database, semantic Web and machine learning, in order to cope with the loose structuredness, extreme diversity, high speed and large scale of entity descriptions used by real-world applications. Finally, we provide a synthetic discussion of the existing approaches, and conclude with a detailed presentation of open research directions

    Mining complex trees for hidden fruit : a graph–based computational solution to detect latent criminal networks : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Technology at Massey University, Albany, New Zealand.

    Get PDF
    The detection of crime is a complex and difficult endeavour. Public and private organisations – focusing on law enforcement, intelligence, and compliance – commonly apply the rational isolated actor approach premised on observability and materiality. This is manifested largely as conducting entity-level risk management sourcing ‘leads’ from reactive covert human intelligence sources and/or proactive sources by applying simple rules-based models. Focusing on discrete observable and material actors simply ignores that criminal activity exists within a complex system deriving its fundamental structural fabric from the complex interactions between actors - with those most unobservable likely to be both criminally proficient and influential. The graph-based computational solution developed to detect latent criminal networks is a response to the inadequacy of the rational isolated actor approach that ignores the connectedness and complexity of criminality. The core computational solution, written in the R language, consists of novel entity resolution, link discovery, and knowledge discovery technology. Entity resolution enables the fusion of multiple datasets with high accuracy (mean F-measure of 0.986 versus competitors 0.872), generating a graph-based expressive view of the problem. Link discovery is comprised of link prediction and link inference, enabling the high-performance detection (accuracy of ~0.8 versus relevant published models ~0.45) of unobserved relationships such as identity fraud. Knowledge discovery uses the fused graph generated and applies the “GraphExtract” algorithm to create a set of subgraphs representing latent functional criminal groups, and a mesoscopic graph representing how this set of criminal groups are interconnected. Latent knowledge is generated from a range of metrics including the “Super-broker” metric and attitude prediction. The computational solution has been evaluated on a range of datasets that mimic an applied setting, demonstrating a scalable (tested on ~18 million node graphs) and performant (~33 hours runtime on a non-distributed platform) solution that successfully detects relevant latent functional criminal groups in around 90% of cases sampled and enables the contextual understanding of the broader criminal system through the mesoscopic graph and associated metadata. The augmented data assets generated provide a multi-perspective systems view of criminal activity that enable advanced informed decision making across the microscopic mesoscopic macroscopic spectrum

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    Entity Resolution with Active Learning

    Get PDF
    Entity Resolution refers to the process of identifying records which represent the same real-world entity from one or more datasets. In the big data era, large numbers of entities need to be resolved, which leads to several key challenges, especially for learning-based ER approaches: (1) With the number of records increasing, the computational complexity of the algorithm grows exponentially. (2) Quite a number of samples are necessary for training, but only a limited number of labels are available, especially when the training samples are highly imbalanced. Blocking technique helps to improve the time efficiency by grouping potentially matched records into the same block. Thus to address the above two challenges, in this thesis, we first introduce a novel blocking scheme learning approach based on active learning techniques. With a limited label budget, our approach can learn a blocking scheme to generate high quality blocks. Two strategies called active sampling and active branching are proposed to select samples and generate blocking schemes efficiently. Additionally, a skyblocking framework is proposed as an extension, which aims to learn scheme skylines. In this framework, each blocking scheme is mapped as a point to a multi-dimensional scheme space where each block-ing measure represents one dimension. A scheme skyline contains blocking schemes that are not dominated by any other blocking schemes in the scheme space. We develop three scheme skyline learning algorithms for efficiently learning scheme skylines under a given number of blocking measures and within a label budget limit. While blocks are well established, we further develop the Learning To Sample approach to deal with the second challenge, i.e. training a learning-based active learning model with as mall number of labeled samples. This approach has two key components: a sampling model and a boosting model, which can mutually learn from each other in iterations to improve the performance of each other. Within this framework, the sampling model incorporates uncertainty sampling and diversity sampling into a unified process for optimization, enabling us to actively select the most representative and informative samples based on an optimized integration of uncertainty and diversity. On the contrary of training with a limited number of samples, a powerful machine learning model may be overfitting by remembering all the sample features. Inspired by recent advances of generative adversarial network (GAN), in this paper, we propose a novel deep learning method, called ERGAN, to address the challenge. ERGAN consists of two key components: a label generator and a discriminator which are optimized alternatively through adversarial learning. To alleviate the issues of overfitting and highly imbalanced distribution, we design two novel modules for diversity and propagation, which can greatly improve the model generalization power. We theoretically prove that ERGAN can overcome the model collapse and convergence problems in the original GAN. We also conduct extensive experiments to empirically verify the labeling and learning efficiency of ERGAN

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Multi-Source Spatial Entity Extraction and Linkage

    Get PDF

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems
    corecore