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Abstract

Web data sources contain large amounts of geo-social data, consisting of
users, friendship/follower networks, check-ins, reviews, locations, etc., which
are of great interest to academia and industry. There are publicly available
datasets of samples of this web data, but they are very old (over ten years),
not large, and not rich in attributes. Alternatively, one could use the public
APIs to access and download web data. Unfortunately, this process is chal-
lenging due to the APIs limitations (e.g. the amount of data retrieved in a
request, the number of requests performed within a timeframe, etc.). Thus,
there is a need for algorithms that, given the limitations, are able to retrieve a
good quality dataset from web sources, a need that the current state-of-the-art
does not address.

This thesis aims to provide algorithms and tools that can produce larger,
recent, duplicate-free, and rich-in-attributes spatial entity data. To obtain
larger and recent data from web data sources, we propose multi-source seed-
driven (MSSD) algorithms that use the public free APIs to extract geo-social
data. The MSSD algorithms aim to maximize the amount of data extracted
while minimizing the number of requests and respecting each source’s API
limitations. The rationale behind the seed-driven algorithms is to perform
some API requests for having an initial dataset and then use the points of
the richest source as seed in the API requests for the rest of the sources.
We propose different techniques for choosing the points and the radius of
the search. We opt for a multi-source solution given that multiple sources
provide independent information and diverse attributes as opposed to us-
ing only one source. Moreover, we experimentally demonstrate that using
a single source algorithm sometimes converges to a dead end. The MSSD
algorithms extract overall 14.3 times more data than the initial querying, and
the optimized version MSSD* retrieves 90% of the data with less than 16% of
the requests of the non-optimized version.

When obtaining multi-source data, the same spatial entity might exist in
different sources and sometimes even within the same source. These "du-
plicates" are not easy to detect since they have different attributes, they are
expressed in different forms, and they might even contain contradicting at-
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tribute values. The problem of finding which pairs of spatial entities refer to
a real physical entity is referred to as spatial entity linkage. We address this
problem with several algorithms, which all share the same spatial blocking
technique, and they use skylines to rank the compared pairs. The spatial
blocking technique (QuadFlex) that we propose is a quadtree-inspired algo-
rithm that groups the spatial entities based on the distance between them
and the area’s density. Moreover, it allows the assignment of spatial entities
in more than one child to not miss any relevant comparisons. The spatial
entities that fall into the same child are compared pairwise.

To decide which pairs belong to the same physical entity, we propose
novel skyline-based (SkyEx-*) algorithms, which use preference functions to
assign skylines to the pairs. The threshold-based SkyEx, SkyEx-F and SkyEx-
FES require a threshold that is the number of skylines to separate the positive
from the negative class, and they are able to achieve an F-measure of 0.72 on
the whole dataset and 0.85 on a manually labeled sample. We introduce a
fully unsupervised algorithm, SkyEx-D, which does not need a threshold and
instead sets the cut-off based on the distance of the skylines. We demonstrate
experimentally that SkyEx-D can reach a near-optimal F-measure (less than
0.01 loss). Additionally, we offer skyex, an R-package that implements the
threshold-based and unsupervised skyline-based algorithms, supports the
whole entity linkage pipeline with other state-of-the-art methods for entity
blocking and comparisons, and provides a powerful Analysis and Visualiza-
tion module to aid the explainability of the results.

Besides the unsupervised algorithms, we propose a trained skyline-based
algorithm, SkyEx-T, which is able to learn the preference function and the cut-
off in tiny training sets (0.05%-1% of the dataset) and still achieve machine-
learning-level accuracy. Moreover, the SkyEx-T model is fully explainable
and readable, in contrast to the commonly-used black-box machine learning
techniques. Furthermore, SkyEx-T has no weights nor layered architecture;
consequently, it shows high robustness in deployment, while for the machine
learning, some re-configuration and re-tuning of parameters might be needed
when the new data arrives. Finally, we demonstrate that SkyEx-T cut-off
closely approximates the optimal cut-off, even though it was learned on a
tiny training set. With our algorithms in the spatial entity linkage, we ensure
a duplicate-free dataset and rich-in-attribute spatial entities.

Overall, this thesis contributes with effective and efficient algorithms for
the initial and fundamental step of every geo-social research study: having
recent, good-quality, rich-in-attributes datasets. We propose the MSSD-* al-
gorithms that make the data extraction process more effective (14.3 times
more data than the initial querying) while managing the requests carefully.
We further improve the quality of the retrieved data by detecting pairs that
refer to the same entity with high precision and recall while having an ex-
plainable and robust model (SkyEx-* algorithms). In the future, in the con-



text of data extraction, we aim to work on hybrid algorithms that combine
location-based with user-based and keyword-based API requests and use su-
pervised techniques to learn the parameters of APIs. In the context of spatial
entity linkage, we plan to work on hybrid blocking techniques that combine
spatial attributes with textual and semantic ones, multi-class classification for
the skyline-based algorithms, and crowdsourcing techniques for improving
the labeling of the pairs.



Resumé

Webdatakilder indeholder store mængder geosociale data, der består af brugere,
venskabs-/tilhængernetværk, check-ins, anmeldelser, placeringer osv., som
er af stor interesse for den akademiske verden og for industrien. Der er of-
fentligt tilgængelige datasæt af sådanne webdata, men de er meget gamle
(over ti år), ikke store og ikke rige på attributter. Alternativt kan man bruge
de offentlige API’er til at få adgang til og downloade webdataen. Desværre
er denne proces udfordrende på grund af API’ernes begrænsninger (f.eks.
mængden af data hentet i en anmodning, antallet af anmodninger udført
inden for en tidsramme osv.). Derfor er der behov for algoritmer, der i be-
tragtning af begrænsningerne er i stand til at hente et datasæt af god kvalitet
fra webkilder, et behov, som den aktuelle moderne teknologi ikke imødekom-
mer.

Denne afhandling har til formål at tilvejebringe algoritmer og værktø-
jer, der kan producere større, nylige, duplikatfrie og rig-i-attribut spatial en-
titetsdata. For at opnå større og nyere data fra webdatakilder foreslår vi
multi-source seed-driven (MSSD) algoritmer, der bruger de offentlige gratis
API’er til at udtrække geosociale data. MSSD-algoritmerne sigter mod at
maksimere mængden af data der ekstraheres, samtidig med at antallet af an-
modninger minimeres og hver kildes API-begrænsninger respekteres. Ideen
bag de seed-drevne algoritmer er at udføre nogle API-anmodninger for at
have et indledende datasæt og derefter bruge punkterne af den rigeste kilde
som frø i API-anmodningerne til resten af kilderne. Vi foreslår forskellige
teknikker til valg af punkter og radius af søgningen. Vi vælger en flerkildeløs-
ning, da flere kilder leverer uafhængig information og forskellige attributter
i modsætning til en enkelt kilde. Derudover, demonstrerer vi eksperimentelt,
at brug af en enkelt kildealgoritme nogle gange havner i en blindgyde un-
der konvergering. MSSD-algoritmer ekstraherer samlet 14.3 gange mere data
end den oprindelige forespørgsel, mens optimerede version af MSSD* hen-
ter 90% af dataen med mindre end 16% af anmodningerne i forhold til den
ikke-optimerede version.

Når der anskaffes flerkildedata, kan den samme spatiale entitet eksis-
tere i forskellige kilder og nogle gange endda inden for den samme kilde.
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Disse "dubletter" er ikke lette at opdage, da de har forskellige attributter,
de udtrykkes i forskellige former, og de kan endda indeholde modstridende
attributværdier. Problemet med at finde hvilke par spatiale entiteter, der ref-
ererer til en reel fysisk enhed, kaldes spatiale entitetsforbindelse. Vi løser
dette problem med flere algoritmer, som alle deler den samme geografiske
gruppeteknik, og de bruger skylines til at rangordne de sammenlignede par.
Den spatiale gruppesteknik (QuadFlex), som vi foreslår, er en kvadranttræs-
inspireret algoritme, der grupperer de spatiale entiteter baseret på afstanden
mellem dem og områdets tæthed. Desuden tillader det, at tildelingen af spa-
tiale entiteter i mere end et barn ikke går glip af relevante sammenligninger.
De spatiale entiteter, der falder ind i det samme barn bliver sammenlignet
parvis.

For at afgøre hvilke par der hører til den samme fysiske entitet, foreslår
vi nye skyline-baserede (SkyEx-*) algoritmer, som bruger præferencefunk-
tioner til at tildele skylines til parrene. De tærskelbaserede SkyEx, SkyEx-F
og SkyEx-FES kræver en tærskel, der er antallet af skylines, for at adskille
det positive fra den negative klasse, og de er i stand til at opnå et F-measure
på 0.72 på hele datasættet og 0.85 på prøver der manuelt er mærket. Vi
introducerer en fuldt overvåget algoritme, SkyEx-D, som ikke har brug for
en tærskel og i stedet indstiller afskæringen baseret på afstanden til skylin-
erne. Vi demonstrerer eksperimentelt, at SkyEx-D kan nå et næsten optimalt
F-measure (mindre end 0.01 tab). Derudover tilbyder vi skyex, en R-pakke,
der implementerer de tærskelbaserede skyline-baserede algoritmer, som ikke
kræver mærkning af data, understøtter hele entitetens koblingspipelinen med
andre avancerede metoder til entitet gruppering og sammenligninger, og
giver en kraftig analyse- og visualiseringsmodul til at hjælpe med at fork-
lare resultaterne.

Udover algoritmerne der ikke kræver mærket data, foreslår vi en trænet
skyline-baseret algoritme, SkyEx-T, som er i stand til at lære præferencefunk-
tionen og afskæringen ved brug af små træningssæt (0.05% -1% af datasættet)
og stadig opnå en nøjagtighed på niveau af maskinlærings modeller. Desu-
den er det mulig at forklare, samt læse, resultaterne af SkyEx-T-modellen, i
modsætning til de almindeligt anvendte black-box maskinlæringsteknikker.
Derudover, har SkyEx-T ingen vægte eller lagdelt arkitektur; hvilket betyder
høj robusthed når den er udrullet, mens maskinindlæringsmodeller muligvis
har behov for en vis konfiguration og justering af parametre, når der ankom-
mer nyt data. Endelig demonstrerer vi, at SkyEx-T’s cut-off tilnærmer sig
den optimale cut-off, selvom det blev lært på et lille træningssæt. Med vores
algoritmer i spatiale entitetsforbindelser sikrer vi et duplikatfrit datasæt og
med rig-i-attribut geografiske entiteter.

Samlet set bidrager denne afhandling med effektive algoritmer til det in-
dledende og grundlæggende trin i hver geo-social forskningsundersøgelse: at
have det seneste, bedste kvalitets, rigest-på-attribut datasæt som muligt. Vi



foreslår MSSD-* algoritmer, der gør dataekstraktionsprocessen mere effektiv
(14.3 gange flere data end den oprindelige forespørgsel), mens vi håndterer
requests omhyggeligt. Vi forbedrer yderligere kvaliteten af de hentede data
ved at detektere par, der henviser til den samme enhed med høj præcision
og tilbagekaldelse, mens vi har en forklarbar og robust model (SkyEx-* algo-
ritmer). I fremtiden tilstræber vi i forbindelse med dataudvinding at arbejde
på hybridalgoritmer, der kombinerer placeringsbaseret med brugerbaserede
og søgeordsbaserede API-anmodninger og bruger overvågede teknikker til at
lære parametrene for API’er. I forbindelse med spatiale entitetsforbindelser,
planlægger vi at arbejde på hybridgruppeteknikker, der kombinerer spa-
tiale attributter med tekstlige og semantiske, klassificering i flere klasser
for de skylinebaserede algoritmer og crowdsourcing-teknikker til at forbedre
mærkningen af par.



Resumé

Les sources de données Web contiennent de grandes quantités de don-
nées géo-sociales, constituées d’utilisateurs, de réseaux d’amitié/d’abonnés,
d’enregistrements, de commentaires, de lieux, etc., qui sont d’un grand in-
térêt pour le milieu universitaire et l’industrie. Il existe des jeux de données
accessibles publiquement contenant des échantillons de ces données Web,
cependant, ils sont souvent anciens (plus de dix ans), peu volumineux, et
pauvres en attributs. Il est également possible d’utiliser des API publiques
pour accéder aux données Web et les télécharger. Malheureusement, ce pro-
cessus est difficile en raison des limitations des API (par exemple, la quantité
de données récupérable lors d’une requête, le nombre de requêtes effectuable
par unité de temps, etc.). Par conséquent, il y a un besoin d’algorithmes qui,
compte tenu des limites, sont capables de récupérer un ensemble de données
de bonne qualité à partir de sources Web, un besoin que l’état actuel de l’état
de l’art ne peut satisfaire.

Cette thèse vise à fournir des algorithmes et des outils capables de pro-
duire des données d’entités spatiales plus volumineuses, récentes, sans dou-
blons, et riches en attributs. Pour obtenir des données plus volumineuses
et récentes à partir de sources de données Web, nous proposons des algo-
rithmes multi-sources basés sur les semences (MSSD) qui utilisent les API
publiques gratuites pour extraire des données géo-sociales. Les algorithmes
MSSD visent à maximiser la quantité de données extraites tout en min-
imisant le nombre de requêtes et en respectant les limitations de l’API de
chaque source. La raison d’être des algorithmes basés sur les semences est
d’exécuter certaines requêtes API pour avoir un ensemble de données initial,
puis d’utiliser les points de la source la plus riche comme semences dans
les requêtes API pour le reste des sources. Nous proposons différentes tech-
niques pour choisir les points et le rayon de la recherche. Nous optons pour
une solution multi-sources étant donné que plusieurs sources fournissent des
informations indépendantes et des attributs divers au lieu d’utiliser une seule
source. De plus, nous démontrons expérimentalement que l’utilisation d’un
algorithme à source unique converge parfois vers une impasse. Les algo-
rithmes MSSD extraient en moyenne 14.3 fois plus de données que la requête
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initiale, et la version optimisée MSSD* récupère 90% des données avec moins
de 16% des requêtes de la version non optimisée.

Lors de l’obtention de données multi-sources, la même entité spatiale peut
exister dans différentes sources et parfois même au sein de la même source.
Ces "doublons" ne sont pas faciles à détecter car ils ont des attributs dif-
férents, ils sont exprimés sous différentes formes et ils peuvent même con-
tenir des valeurs d’attributs contradictoires. Le problème de trouver quelles
paires d’entités spatiales se réfèrent à une entité physique réelle est appelé
liaison d’entités spatiales. Nous abordons ce problème avec plusieurs al-
gorithmes qui partagent tous la même technique de blocage spatial et qui
utilisent des skylines pour classer les paires comparées. La technique de
blocage spatial (QuadFlex) que nous proposons est un algorithme inspiré du
quadtree qui regroupe les entités spatiales en fonction de la distance qui les
sépare et de la densité de la zone. De plus, il permet d’attribuer des entités
spatiales à plus d’un enfant afin de ne manquer aucune comparaison perti-
nente. Les entités spatiales appartenant au même enfant sont comparées par
paires.

Pour décider quelles paires appartiennent à la même entité physique,
nous proposons de nouveaux algorithmes basés sur des skylines (SkyEx-*) qui
utilisent des fonctions de préférence pour attribuer des skylines aux paires.
Les algorithmes basés sur des seuils comme SkyEx, SkyEx-F et SkyEx-FES né-
cessitent un seuil correspondant au nombre de skylines pour séparer la classe
positive de la classe négative. Ces algorithmes sont capables d’atteindre une
F-measure de 0.72 sur l’ensemble de données et de 0.85 sur un échantillon éti-
queté manuellement. Nous introduisons un algorithme entièrement non su-
pervisé, SkyEx-D, qui n’a pas besoin de seuil et définit à la place la coupure
en fonction de la distance des skylines. Nous démontrons expérimentale-
ment que SkyEx-D peut atteindre une F-measure quasi optimale (moins de
0.01 perte). De plus, nous proposons skyex, un package R qui implémente les
algorithmes basés sur des seuils et des skyline non supervisés, qui prend en
charge l’ensemble du pipeline de liaison d’entités avec d’autres méthodes de
pointe pour le blocage et les comparaisons d’entités, et qui fournit un module
d’analyse et de visualisation puissant pour faciliter l’explicabilité des résul-
tats.

En dehors des algorithmes non supervisés, nous proposons un algorithme
entrainé basé sur des skylines, SkyEx-T, capable d’apprendre la fonction de
préférence et le seuil dans de minuscules ensembles d’apprentissage (0.05%
- 1% de l’ensemble de données) et qui atteint toujours une précision du
niveau des méthodes d’apprentissage automatique. De plus, le modèle de
SkyEx-T est entièrement explicable et lisible, contrairement aux techniques
d’apprentissage automatique de black-box couramment utilisées. De plus,
SkyEx-T n’a ni poids ni architecture en couches ; par conséquent, il montre
une grande robustesse dans le déploiement, tandis que pour l’apprentissage



automatique, une reconfiguration et un réajustement des paramètres peuvent
être nécessaires lorsque de nouvelles données arrivent. Enfin, nous démon-
trons que le seuil de SkyEx-T se rapproche étroitement du seuil optimal, bien
qu’il ait été appris sur un petit jeu d’entraînement. Avec nos algorithmes de
liaison d’entités spatiales, nous garantissons un jeu de données sans doublons
et des entités spatiales riches en attributs.

Dans l’ensemble, cette thèse propose des algorithmes efficaces et effi-
cients pour l’étape initiale et fondamentale de chaque étude de recherche
géo-sociale: disposer d’ensembles de données récents, de bonne qualité, et
riches en attributs. Nous proposons les algorithmes MSSD-* qui rendent
le processus d’extraction de données plus efficace (14.3 fois plus de don-
nées que la requête initiale) tout en gérant les requêtes avec soin. Nous
améliorons encore plus la qualité des données récupérées en détectant les
paires qui se réfèrent à la même entité avec une grande précision et rap-
pel tout en ayant un modèle explicable et robuste (algorithmes SkyEx-*). À
l’avenir, dans le contexte de l’extraction de données, nous visons à travailler
sur des algorithmes hybrides qui combinent des requêtes d’API basées sur la
localisation, l’utilisateur, et des mots-clés, en les combinant avec l’utilisation
de techniques supervisées pour apprendre les paramètres des API. Dans le
contexte de la liaison d’entités spatiales, nous prévoyons de travailler sur des
techniques de blocage hybrides qui combinent des attributs spatiaux avec des
attributs textuels et sémantiques, la classification multi-classes pour les algo-
rithmes basés sur des skylines, ainsi que des techniques de crowdsourcing
pour améliorer l’étiquetage des paires.
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Multi-Source Spatial Entity
Extraction and Linkage

1 Introduction

This thesis focuses on spatial entities, which are geo-located and fully iden-
tified entities that can be found in multiple location-based sources. We will
specifically address the problem of spatial entity extraction, and later, we will
discover which of these entities belong to the same physical entity. We will
first start with what inspired and motivated this thesis; then, we will continue
with the objectives and the scope of the thesis, and finally, we will introduce
the structure of the thesis content.

1.1 Background and motivation

The web is a hospitable environment for various sources to publish data. Not
only is the volume of the data growing, but the heterogeneity of the informa-
tion is also increasing. An attractive type of data is geo-related data, usually
found in the form of spatially located entities, geo-tagged user-content, etc.
When combined with users and user connections, this data is the core of geo-
social research. Examples of interesting and contemporary geo-social topics
are mobility analytics [1–4], influential users or locations [5–7], geo-related
recommender systems [8–13], etc. Despite the popularity of this data, the
main focus has only been how to perform research with it rather than how
to obtain and enrich it.

We investigated the origin of the geo-social data used in published articles
in the field, and we noticed that most of this data comes from publicly avail-
able datasets. However, most of this data belongs to location-based social
networks like Gowalla and Brightkite, which are not operational for almost
10 years now, and their data is considerably old. We show this phenomenon
in Fig. 1.1, where the x-axis represents the year of the published article and
the y-axis the latest year in the dataset. The points in the graph are refer-
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ences to 51 geo-social research papers. Ideally, these points would position
themselves on the diagonal, which means that the articles use current data.
Around 60% of these papers use a dataset more than 3 years old, while for
around 40% of them, this gap goes to above 7 years. The issue with older
datasets is that not only do we study outdated phenomena, but the refer-
ence to the current reality cannot be established. Besides, these datasets are
not dense enough in check-ins, and given that the activity is old, we cannot
enrich them with data from currently-operational data sources. For exam-
ple, check-ins from 7 years ago might not belong to today’s same geo-located
place, thus enriching them with details from today’s Google Maps data might
not be correct. Finally, given the growth of web data, it is unfortunate that
most geo-social research chooses the publicly available datasets rather than
benefiting from the richness of the web data sources.

Alternatively to using publicly available datasets, one could extract data
from web sources. Most of the location-based sources offer APIs, which, in
contrast to web scraping, are well-structured, easy to use, and the authorized
way to extracted data. However, the APIs have several limitations in order
to control and regulate the amount of data extracted. Therefore, the geo-social
data extraction algorithms in this thesis were strongly motivated by the need for new,
rich, and heterogeneous data and the lack of effective and efficient data extraction
algorithms that can deal with different location-based sources.
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Fig. 1.1: The year of the published article (x-axis) versus the latest year in their dataset (y-axis)
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1. Introduction

For extracting geo-related data, we will need more than one data source.
Firstly, no source is complete, meaning that it contains all the spatial entities
in a specific area. Thus, if we want to obtain a near-complete set of spa-
tial entities in an area, we will have to extract data from different sources.
Secondly, even if there were a source with the whole set of spatial entities,
a multi-source solution would still be preferred because we do not want a
single source with the "monopoly" of information; rather, we value informa-
tion independence transparency. Finally, each data source provides diverse
attributes, heterogeneous information, and this is needed to have a multi-
dimensional representation of each spatial entity. Consequently, a multi-source
solution is needed and preferred to obtain a larger number of spatial entities, with di-
verse attributes, originating from independent sources.
The main type of data extracted from location-based sources is spatial entities.
Since multiple sources will be needed for geo-related data extraction, differ-
ent records of the same physical spatial entity will co-exist. Additionally, even
within the same source, there might be duplicate information about the same
entity. Solving this issue can be as easy as finding exact duplicates and as
complicated as needing a trained algorithm to evaluate if two records belong
to the same entity. This problem is usually referred to as entity linkage and in
our case, as spatial entity linkage. While the entity linkage has been addressed in
several works, the spatial entity linkage has not yet been given a considerable amount
of attention.
This thesis proposes algorithms that use multiple sources for spatial entity ex-
traction and linkage. The need for these algorithms is notably observed when
looking at the current geo-social research papers and their need for fresh and
rich data. We address the demand for effective and efficient algorithms to ob-
tain a larger multi-source [geo-social data extraction] and rich-in-attributes,
duplicate-free dataset of spatial entities [spatial entity linkage].

1.2 Objectives of the thesis

The aim of this thesis is that in the context of heterogeneous, multiple-origin,
location-based web data, to provide effective and efficient algorithms for obtaining
a good quality spatial entity dataset in terms of the amount of data, free of dupli-
cate records, and rich in attributes. In order to achieve this aim, we fulfil the
following objectives:

1. Provide effective location-based data extraction algorithms for obtain-
ing geo-related data from location-based sources. The algorithms
should be general enough to adapt for multiple sources and at the
same time, specific enough to accommodate the API limitations of each
source. The algorithms’ goal is to maximize the amount of data ex-
tracted while minimizing the number of requests, thus being both ef-
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fective and efficient.

2. Propose accurate and explainable algorithms for linking records of spa-
tial entities that belong to the same physical entity. Given that more
than one source is needed to obtain a rich set of spatial entities, the
algorithm should be suitable for multi-source data, containing dupli-
cates even inside the same source. Moreover, the algorithms should
overcome the current obstacles of lack of labeled data, and the need for
model explainability and robustness in deployment. Additionally, we
offer a user-friendly tool for entity linkage that can be easily integrated
with other data preparation and data mining programming environ-
ments.

Fig. 1.2: Objectives of the thesis and the proposed solutions

We address these objectives in five papers [51–55], as shown in Fig. 1.2. For
each objective on the left side of the figure, we propose the solutions on the
figure’s right side. We start from the bottom, with several location-based
sources. Extracting data from each of these sources would yield the default
single-source partial set of extracted spatial entities. Our proposed multi-
source seed-driven algorithms (MSSD) can extract a larger set of spatial enti-
ties for the same requests, resulting in a more complete set, originating from
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2. State of the art

several sources. To improve the data quality of the extracted data, we need to
detect the duplicates. We propose a spatial blocking technique (QuadFlex) and
the SkyEx-* algorithms that can solve the spatial entity linkage problem. As
a result, we obtain a larger, more complete, duplicate-free, rich-in-attributes
multi-source set of spatial entities.

1.3 Structure of the thesis

The thesis summary is composed of 7 sections. We introduce state of the
art for spatial entity extraction and spatial entity linkage research papers in
Section 2. The geo-social data extraction problem is formulated in Section
3, and then, we propose the seed-driven algorithms for data extraction from
multiple geo-related sources. Section 3’s content is based on Paper A [51].
Section 4 explains the problem of spatial entity linkage and our overall pro-
posed solutions. Then, we introduce our spatial blocking algorithm, which is
used in Paper B [53], D [55], and E [52]. Later, we detail our threshold-based
(SkyEx, SkyEx-F, and SkyEx-FES) and unsupervised (SkyEx-D) skyline-based
algorithms which label the pairs based on the likelihood of being the same
physical spatial entity. Finally, we explain the main components and func-
tionalities of the skyex R package that implements mainly the skyline-based
algorithms and also covers the whole entity resolution pipeline with some
common algorithms and methods from the literature. Section 4 is based on
papers B [53], C [54], and E [52]. In Section 5, we propose a trained skyline-
based algorithm (SkyEx-F), which uses a tiny training set and still achieves
machine learning-level accuracy, while being explainable and robust in de-
ployment. We summarize our contributions in Section 6 and consider future
directions in Section 7.

2 State of the art

This section will describe the related work on geo-social data extraction and
spatial entity linkage. We will start with common techniques that have been
used so far to extract geo-social data from social networks, location-based
social networks, and location directories. We will then discuss the data inte-
gration process, the general entity linkage problem, and finally, we will focus
on the spatial entity linkage research.

2.1 Geo-social data extraction

The geo-social data includes geographical data, user data (usually in the form
of user profiles), social relationships between users, and relationships be-
tween users and locations (usually as check-ins). This type of data has led
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to various research topics, such as new geo-social metrics [15], crowd pattern
mining and anomaly detection [1, 2], explaining social ties based on check-in
activity [3, 4], studying influential users or locations [5–7], recommender sys-
tems [8–13], etc. However, even though most geo-social data sources provide
APIs to allow data extraction, the number of requests are limited and are sub-
ject to different restrictions, depending on the source. Despite the popularity of
the geo-social data, there is no related work dedicated specifically to geo-social data
extraction. However, most of the related works indirectly mention their data
extraction process, which can be categorized as user-based, location-based, and
keyword-based.

2.1.1 User-based crawling

The user-based crawling navigates the geo-social data source using users as
query parameters. The most popular method mentioned in several papers
is Snowball [15, 21, 56]. Snowball starts with some initial users, known as
the seed. After querying with the seed, Snowball stores the data of the seed
users (profiles, attributes, check-ins, reviews, locations they visited) and then
expands to their network (friends, followers, etc.) and uses them as the next
query parameters. Thus, each time, the seed grows considerably, providing
more and more data.
However, there are some drawbacks to this method. First, Snowball is biased
to the high degree nodes [57]. Second, the whole process depends highly
on the initial seed, so it needs to be selected carefully. Finally, Snowball
is not very effective on data sources that have their main focus on location
rather than users (Yelp, Google Places), because their users’ social networks
are either small or nonexistent.
Besides the Snowball, several works have used linked accounts [16, 27, 45, 58],
which are users that have declared their corresponding accounts on differ-
ent social networks, usually one account on a typical social network such as
Twitter or Facebook, and the other in a more location-based data source such
as Foursquare, Brightkite, Yelp, etc. These accounts provide a holistic view of
the user’s geo-social activity, covering his profile characteristics, networks of
friends, check-ins, location history, etc. Nevertheless, such accounts are rare
to find (less than 1%).

2.1.2 Location-based crawling

The location-based crawling uses locations as query parameters, usually a
point and a radius, or a bounding box. In contrast to the user-based crawling
where we are supposed to provide some initial user ids, we can immediately
start querying with the area of interest. The result of the query will be places
and locations in the queried area, their details (name, address, phone), check-
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2. State of the art

ins and reviews. However, after querying with the same area of interest, we
might keep getting the same data. To get out of this loop, Lee et al. [1] query
Twitter periodically, starting first with some initial points. Then, after some
time window, they use the previous step’s points as the new query points.
Hence, they can detect new locations indicated by the users in each step,
without wasting the requests on empty areas. We will use the term Self-seed
to refer to this method. In each point of time n, Self-seed uses the points
discovered in step n-1 as query points for the step n.

2.1.3 Keyword-based crawling

The keyword-based crawling uses keywords as query parameters. Typically,
this type of crawling has not been used for location-based data, but rather on
works on text mining, opinion mining, named entities, constructing the rep-
utation of an entity, etc. [59–61]. However, querying with the location’s name
might return data that is geo-located in the area indicated by the keyword,
but the results might also contain irrelevant data. For example, querying
with "Brussels" might return the city of Brussels, places with "Brussels" in
their name (e.g. "Brussels Fries", "Museum of Brussels", etc.) that might be
or not be in Brussels, texts related to Brussels, and maybe even texts related
to brussels sprouts.

2.2 Spatial entity linkage

The spatial entity linkage problem aims to find those pairs of entities origi-
nating from the same or different sources that refer to the same spatial entity.
In this section, we will study first the related work regarding the data inte-
gration, we will reformulate the general problem of entity resolution, we will
mention some advances in the field of geographical data integration, and fi-
nally, we will study in detail the works of spatial entity linkage, which are
the most related to our problem.

2.2.1 Data integration process

The process of combining data originating from different sources, and ob-
taining a holistic view of the information is usually referred to as data integra-
tion [62]. This process can be as simple as finding exact duplicates to dealing
with big amounts of heterogeneous and dynamic data. Thus, in order to be
able to solve this task, data integration needs three steps, which are schema
alignment, record linkage, and data fusion [63].
The schema alignment is working through the semantics of attributes of each
source and matching them to attributes of the other sources. The schema
alignment produces three outputs: a mediated schema, attribute matching,
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and a schema matching. The mediated schema provides a view of all the
sources and the domain, the attribute matching maps the attributes of each
source to the corresponding ones in the other sources, and the schema match-
ing connects each source schema to the mediated schema considering the
semantics relationships between the contents. After the schema matching,
the next step is the record linkage. In this step, we study the record and its
attributes, and we try to partition the data so that each partition refers to
the same real entity. Finally, the data fusion merges the records in a par-
tition into one. In this thesis, we work with spatial entities which orig-
inate from relatively well-structured sources such as location-based social
networks (Foursquare), or location directories (Krak, Google Places). Thus,
the attributes do not contain semantic ambiguity; the schema is rather sim-
ple, so we do not perform schema alignment. Furthermore, the data fusion
is not within the thesis’s scope, but rather an interesting future work direc-
tion. Therefore, the next sections will be focused on the second step of data
integration, the record linkage.

2.2.2 Entity linkage

Entity linkage aims at finding different descriptions of the same real entity
within the same or across sources [64]. Similar synonyms describing the
same problem have continuously appeared in the literature such as dedupli-
cation, entity resolution, entity matching, record linkage [63, 65]. The entities that
are matched can be of various fields, for example, profiles in social networks
belonging to the same individual [56, 66], bioinformatics data [67], biomedi-
cal data [68], publication data of the same author [65, 69], genealogical data
to find the human entities [70], records of the same product [65, 69], etc. Re-
gardless the field, the entity linkage follows, in principle, three main steps:
blocking, entity comparison, and pair labeling [54, 71] (Fig. 1.3). In some
cases, blocking processing can be an extra step after the blocking in order to
remove redundant comparisons [64, 72, 73].

Blocking. Blocking is grouping entities that are somehow similar and worth
comparing further. Since a Cartesian product of all the possible comparisons
is unfeasible in the era of big data, the goal of blocking is to reduce the num-
ber of comparisons, while ensuring that we are not missing real matches.
Hence, blocking is not focused on exact comparisons, which tend to be ex-

Fig. 1.3: The entity linkage process (Reproduced from [54])
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pensive, but rather fast and approximate grouping. Attribute clustering cre-
ates non-overlapping clusters based on the selected attribute [74–77]. Some
blocking techniques are based on shared tokens, q-gram blocking and pre-
fix, suffix and infix blocking [73, 74, 76, 77]. These blocking methods are
mostly based on grouping the records based on the similarity of the textual
attributes and do not deal with coordinates. However, there are attempts to
use these token-based blockings on web data with a spatial flavor [77] but
only 39%-63% of links we discovered, which means that we would lose a big
part of the matches before even comparing the entities. Hence, this section’s
blocking techniques are not suitable for spatial entities.

Entity comparison and pair matching. After having the blocks, we can com-
pare the entities within a block. The entities are compared based on their at-
tributes using similarity metrics. To decide which entities are similar enough
to be matched, some works propose thresholds for each attribute similarity
or combine them in a similarity scoring function [78–80]. However, finding
a suitable threshold might be challenging and require extensive experiments.
Therefore, some related works use a classifier to learn a good scoring func-
tion [81–83]. However, sometimes the decision to match two entities might
contain uncertainty, and we can express this uncertainty in the matching pro-
cess [84]. Finally, the entity linkage process might need some human feed-
back to improve the accuracy, so, within a predefined budget, we can include
users or an oracle [65, 69, 69].

2.2.3 Geographical data integration

First, we need to identify the differences between a spatial object and a spatial
entity. A spatial object is entirely identified by the spatial characteristics such
as longitude and latitude, or geographical shape. In contrast, a spatial entity
is a fully identified entity with attributes such as a name, a phone number,
photos, etc., which is geo-located. In a typical scenario, a spatial entity con-
tains a spatial object. However, two spatial entities can share the same spatial
object, for example, two businesses in the same building but different floors,
and also a spatial entity might contain two spatial objects, for instance, an
amusement park having two theme parks lying in different spatial objects
(Disneyland Park and Walt Disney Studios Park in Disneyland Paris). Hence,
the data integration of spatial objects is, in essence, different from the spatial
entity linkage.
The research on geographical data integration is mostly focused on matching
spatial objects, having a unified representation from multiple sources. Road
network integration is tackled by Schafers et al. [85] where rules are used
to find roads that are the same or not. The roads’ similarity is calculated
in terms of the length, angles, shape, and sometimes the name of the street
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is used, resembling more to a spatial entity linkage problem. Nonetheless,
this approach is tailored specifically for roads and not applicable to spatial
entities. Similarly, [86–89] propose purely spatial solutions and match spatial
objects from sensors and radars. These solutions aim to create a surface
representation in 2D or even in 3D from the unified spatial objects.

2.2.4 Spatial entity linkage

Spatial entities lie in between spatial object and entities. The spatial entity
linkage process follows the same steps as entity linkage: blocking, entity
comparison, and pair labeling.

Spatial entity blocking. Besides the blocking techniques in [73, 74, 76, 90]
that are not applied to spatial entities, there are some trivial spatial blocking
techniques used in [80, 91]. In [80], the spatial blocks are created using spatial
entities at most 5 m apart. This threshold is user-defined without providing
reasoning behind this choice. In contrast to [80], the threshold of the spatial
distance in [91] is defined based on the type of spatial entities, small thresh-
olds of 50 meters for bars and restaurants, but 500 meters for open spaces
like parks. However, both works do not propose an automatic solution for
spatial blocking, but rather offer arbitrary user-defined thresholds.

Spatial entity comparison. The spatial entities have attributes such as
name, categories, etc. For measuring these similarities, the traditional simi-
larity metrics such as Levenshtein, Jaccard, Cosine [56, 80, 83, 91] show good
results. However, more advanced metrics can better capture the similarity of
two entities such as a Soft-TFIDF with Levenshtein [92], and traditional string
similarities trained further with supervised machine learning [93]. Even
though these metrics are not tailored for spatial entities, they have shown
promising results when applied to spatial entities [80, 91]. Nevertheless, there
are proposed solutions specifically designed for the name attributes of spatial
entities which increase the accuracy of the matching process [94–98].
The work in [94] proposes a hybrid method combining token-based and edit-
based approaches for street names, while in addition to these, in [95], the ac-
centuation and other language-specific aspects are taken into account when
comparing toponym names. In [99], the significant words (core terms) in the
spatial entity name are identified, and then, they use unsupervised learning
to combine it with a spatial context model. Despite the attempts to improve
the spatial entity comparison with better similarity metrics, the results do
not significantly improve. The significant increase in the accuracy is achieved
only when using deep network model architectures [100, 101]. Alternatively,
a meta-similarity function that uses domain-knowledge combined with clas-

12



2. State of the art

sifiers is proposed in [96, 98], which achieves high accuracy without the need
for training a deep network.
In addition to the name similarity, some of the works try to capture the se-
mantic similarity of the entities [91] or learn it with a training set [102].

Spatial entity pair labeling. In this stage, considering the similarities of
two entities, we need to label the pairs that refer to the same spatial entity as
positive and the rest as negative. The work in [99] uses only the names of the
places and an unsupervised language model to capture the name and domain
knowledge. The solutions proposed in [96, 100, 101, 103] match toponyms
based only on their names as well, and the decision of the labeling is based
on the outcome of the machine learning or deep learning model. However,
all these solutions match toponyms, which are generally names of places or
cities and sometimes are not even geo-located, differing significantly from a
spatial entity.
Sehgal et al. [102] use a classifier to learn the weights in the similarity scoring
function and label the pairs. However, this work is between spatial objects
and spatial entities because the entities have names, coordinates, and types
like an entity but they are more similar to spatial objects referring to land-
scapes (rivers, deserts, mountains, etc.). Berjawi et al. [104] combine all the
attribute similarities as an average in a similarity score. Alternatively, in [91]
2
3 of the weight is carried by the name, the geodata and the type of the spatial
entity, given that these attributes are always present, while 1

3 is assigned to
the website, the address and the phone number. Morana et al. [91] uses the
belief theory [105] to label the pairs.

2.3 Comparison to thesis contributions

The geo-social data has inspired several research topics, but so far, how to
retrieve this data has not been one of them. The geo-social data extraction,
superficially mentioned in some works, uses either users, locations, or key-
words. The keyword-based querying is not suitable for geo-social data ex-
traction because the result might contain a considerable amount of irrelevant
information. The methods that use user-based crawling need an initial seed
of users and are limited only to user-focused data sources. The work in [1]
is similar to ours since we also refine the next query parameters based on
the previous step’s points. However, there are significant differences: (i) we
are not limited to discovering points in only one source; instead, we use dif-
ferent sources as seed in each step, (ii) we adapt the other parameters of the
query as to maximize the data retrieved while minimizing the number of re-
quests, while this problem is not considered at all in the case of Self-seed (iii)
our method does not need long waiting before the next query, thus, yielding
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faster geo-social data extraction. Overall, our proposed solution is the first to ad-
dress the problem of optimizing the geo-social data extraction using APIs, is generic
enough to be applied to multiple sources simultaneously, and in the same time, is
specific to accommodate each source’s requirements.
As for the spatial entity linkage, in contrast to the entity resolution field
that has shown significant advances, spatial entities have not yet received
significant attention. The blocking techniques are usually based on textual
attributes, and the few spatial blocking methods are based on user-defined
radius thresholds. We address this concern by contributing with a flexible spa-
tial blocking, QuadFlex, which takes inspiration from a quadtree but allows the in-
tersection of the partitions as not to miss any comparisons. Moreover, QuadFlex
adapts the radius based on the area’s density, which is what [91] attempted
to achieve by manually setting different radiuses based on the type of spatial
entity.
The solutions proposed in [94, 96, 99–101] for the pair comparison and la-
beling are for toponyms, which are simply names of places and not multi-
attribute geo-located spatial entities. However, their advances on the name
comparisons show good accuracy, but sometimes at the cost of designing
a deep network architecture. Differently, the spatial entity linkage solu-
tions [80, 91, 104] use traditional string metrics and semantic comparisons
for comparing spatial entities, which comes at a small cost but with lower
accuracy. As for the pair labeling, we propose three novel solutions, all based
on skyline rankings of the pairs: SkyEx-F, SkyEx-D, and SkyEx-T, which were
inspired by the SkyEx algorithm [52]. Instead of having a similarity score
that needs weights [80, 104] or learn the weights with a classifier [102], we
use preference functions that connect all the similarity score with the Pareto
function. In contrast to all related work in spatial entity linkage and even entity
resolution, a skyline-based solution is used here for the first time to label the pairs.
Differently from [101–103] SkyEx-F and SkyEx-D do not need training: SkyEx-
F is a threshold-based solution, and SkyEx-D is an unsupervised technique
that separates the classes based on the density in the skylines. SkyEx-T uses
a tiny training set, and the meta-similarity function proposed in [96, 103] to
capture better the similarity of spatial entities and learn a preference function
that better fits the data. SkyEx-T demonstrates that there is no need for heavy and
deep networks nor large training set, as in [100, 101], to learn a model for spatial
entity linkage.

3 Geo-social data extraction

In this section, we will define the problem of geo-social data extraction and
propose five algorithms that can efficiently address the problem while maxi-
mizing the extracted data. More details on this problem, our proposed solu-
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tions and more extensive experiments can be found in Paper A [51, 106].

3.1 Optimizing geo-social data extraction

We will denote the sources that contain geo-social data as S. The geo-social
data extracted from these sources is highly heterogeneous; sometimes it is
in the form of a tweet, with a text, user account, geo-located at a point, etc.,
sometimes in the form of a geo-located photo with a caption, sometimes
as a business located at a point and accompanied by user reviews, etc. In
order to have a general representation of this data, we use a location-centred
definition, as in [51]:

Definition 1.1. A location l is a spatial entity identified within the source by a
unique identifier id(l). A location l has a set of attributes A = {a1, a2...an} accom-
panied by their values {a1(l), a2(l)...an(l)}. A required attribute for a location l is
its geographical coordinates denoted as p(l). (Reproduced from [51])

Hence, these sources provide locations, which are identified by the attributes
in the respective sources. Each source S offers an API for data extraction,
which, in a general setting, is used by querying with a point p and radius r,
and the result of the query is the locations Lr

p in the Circle(p, r). The goal of
the geo-social data extraction is to query the source S with its API, using the
parameters in such a way, that the number of locations retrieved is maximal
for a specific number of requests. We use the problem definition as in [51]:

Problem definition: Optimizing geo-social data extraction is the problem
that given a source Si and a number of requests n finds the sequence of pairs
of point and radius {< p1, r1 >,< p2, r2 > ... < pn, rn >} such that the size

of Li =
n⋃

j=1
L

rj
pj is maximized. (Reproduced from [51])

3.2 Seed-driven algorithms

Given that we have no prior knowledge on the distribution of the locations
in each source, it is challenging to find effective combinations of p and r that
can maximize the retrieved Lr

p. However, given that all the sources refer to
the same physical world, dense areas in data in one source might indicate the
existence of data in the same area in the others. Thus, we propose seed-driven
solutions, which use one source (the one richer in the number of locations) as a
seed to query the rest of the sources. We use the term Multi-Source Seed-Driven
or MSSD, given that we simultaneously query multiple sources with points
from a seed. The proposed algorithms can be classified as seed-oriented or
source-oriented. The seed-oriented algorithms are based on the heuristic that

15



the distribution of the sources’ locations is similar, so we can estimate the
query parameters in the seed and use them to query the source. The source-
oriented algorithms have some initial knowledge from the seed, but they try
to learn the parameters while performing live API calls on the sources.

3.2.1 Seed-oriented algorithms

These algorithms use the seed points (p) in the API requests, and they
either use a default fixed radius or calculate a suitable radius using the
seed. We propose three seed-oriented algorithms: Multi-Source Seed-Driven
Fixed (MSSD-F), Multi-Source Seed-Driven Density-based (MSSD-D), and Multi-
Source Seed-Driven Nearest neighbor (MSSD-N).

MSSD-F. The procedure of MSSD-F starts with selecting a set of sources
and the richer source as seed. Then, for each point p in seed, we query the
remaining sources with their corresponding APIs, using p and a fixed radius
r. The retrieved locations Lr

p are unioned together for each source.

MSSD-D. Instead of using a fixed r, we try to adapt the radius based on the
area’s density. Having a big radius is not a good solution for nearby points
since the maximal result size limits us, and we might retrieve intersecting
samples, while a small radius might miss locations that could have been
retrieved if we were less restrictive. Thus, we would prefer a smaller radius
for dense areas and a larger radius for sparser ones. For each point p in seed,
we count the number of points |N| in Circle(p, r) and adjust the radius to
rd = r

|N| . Thus, we query the sources with 〈p, rd〉.

MSSD-N. The radius of MSSD-N is fixed based on the nearest neighbor
location for each point in the seed. For each point p in the seed, we find the
point q in the seed such that |p− q| is minimal. Then, we set rn = |p− q| and
we query the rest of the sources with 〈p, rn〉.

3.2.2 Source-oriented algorithms

In the seed-oriented solutions, we calculated the radius in the seed and then
queried the sources with it, but this pre-calculated radius might not always
be well-suited for the source. One can expect some similarity of the location
distribution between sources, but this is not always the case, given that each
source has a different scope, locations, coverage, and usage. Hence, a better
solution would be finding a better radius by querying the sources. Note that
the calculations that MSSD-F, MSSD-D, and MSSD-N perform are on the
seed and they do not use new API requests; they are performed on the initial
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points extracted from the seed. If we query the sources to learn a good radius,
we would need extra API calls.
For the base foundation of the source-oriented algorithms, we will use
the assumption that if the source contains |Lr

p| locations in Circle(p, r)
than are less than the maximal result size MS, then querying with 〈p, r〉
will retrieve all Lr

p. For example, if Foursquare has 10 locations in
Circle(〈55.8, 7.9〉, 500 meters) and the maximal result size is 20, then the API
request with 〈〈55.8, 7.9〉, 500 meters〉 will return all the ten underlying loca-
tions. According to the documentations of the APIs, this assumption mostly
holds in practice.

Assumption 1.1. For each source S in {S1, S2, ..., Sk}, if Circle(p, r) contains
Lr

p(S) locations such that |Lr
p(S)| ≤ MS, then API(p, r) will retrieve Lr

p = Lr
p(S).

(Reproduced from [51])

Given this assumption, our goal is to find a big enough radius to cover the
maximal results size number of locations. Let us illustrate with an example:

Example 1.1
Let us suppose that the maximal result size in Twitter is 3, so MS = 3. We
show an example of the API queries in Fig. 1.4, where in the left we are
using a big radius, and we get 3 tweets for both API requests, and in the
right, we use a small radius and get 3 tweets for the first request and only
one for the second request. Unfortunately, we have a union of 4 tweets in
both cases because there is an overlap in the results in the first case. Rather
than having these pre-defined radii, we should query the sources until we
reach a good radius size for each case, and ideally, obtain 6 tweets from
both API requests.

Fig. 1.4: Radius adjustment (Reproduced from [51])

Given Assumption 1.1, we can now introduce the following theorem, that
provides a stopping condition when searching for a good radius.
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Theorem 1.1. Let < p, r > be a pair of point and radius such that API(p, r) = Lr
p

where |Lr
p| < MS. Then, for all r′ such that r′ < r, Lr′

p ⊆ Lr
p. (Reproduced

from [51])

The proof of the theorem is relatively intuitive: if the number of locations
in a Circle(p, r) are less than the maximal result size MS, querying with a
smaller radius r′ will not yield any new locations. Thus, we should stop at
r. The proof is formally detailed in [51]. Given this finding, we can now
propose two source-oriented algorithms: Multi-Source Seed-Driven Recursive
(MSSD-R), and Multi-Source Seed-Driven Optimal (MSSD*).

MSSD-R. This seed-driven algorithm uses each point p of the seed but fixes
the radius by recursively querying the source. It starts with a big radius, and
if the number of the locations retrieved is equal to the maximal result size,
it reduces the radius with an α coefficient and queries again. This procedure
recursively continues until the number of the locations retrieved are less than
the maximal result size, which means that we reached the stopping condition
of Theorem 1.1.

MSSD*. The previous MSSD-R algorithm queries the area for each point
without using redundant requests (Theorem 1.1). However, some points of
the seed might be very near each other, but the same corresponding area in
the source might be sparse. Even though we will spend only one request
per point, because the stopping conditions will be reached at the first try,
we could have minimized the request but clustering the nearby points and
querying only once. If the area turns out to be dense, we can then split the
cluster into mini-clusters and query again with their centroids. Moreover,
we can improve our point selection by including the retrieved points in the
current cluster; thus, when we split the cluster, we re-direct the attention to
the source’s dense areas.
We propose MSSD*, a recursive seed-driven algorithm that further optimizes
the data extraction problem by minimizing the number of requests. MSSD*
has advantages over the previous MSSD algorithms because (i) it maximizes
the number of locations retrieved by adaption the radius according to the
source distribution, similar to MSSD-R (ii) it minimizes the requests by clus-
tering the initial seed points and performing only one request per cluster (iii)
maximizes further the number of locations retrieved by changing the query
point p based on the distribution of the source.
The algorithm for MSSD* is formalized in Alg. 1.1. We perform some initial
default API queries to get an initial set of points. Then, we choose the richest
source as seed in line 4. We use DBSCAN clustering [107] to cluster the points
of the seed in line 5. For each center c in cluster C, we call RadRecursive* (Alg.
1.2), where we query with c and an initial big radius r. If the number of the
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Algorithm 1.1 MSSD* algorithm (Reproduced from [51])

Input: A set of sources {S1, S2, ...Sn}, radius r
Output: {L∗S1

, L∗S2
, ...L∗Sk

}
1: for each S in {S1, S2, ...Sk} - Sseed do

2: LS ← LI =
k⋃

i=1
Li →/* Initialize each LS with LI*/

3: end for
4: Let Sseed be the source with the most points in {S1, S2, ...Sk}, Lseed its

locations and P the distinct points in Lseed
5: {C} ← DBSCAN(P), ε, m)
6: for each S do
7: for each < c, C > do
8: Lr

p ← ∅
9: Lr

p ← RadRecursive*(r, α,< c, Cc >, S, ε, m, Lr
p)

10: LS ← LS ∪ Lr
p

11: end for
12: end for

return {L∗S1
, L∗S2

, ...L∗Sk
}

retrieved locations |Lr
p| is less than the maximal result size MS, we stop and

continue with the next cluster. Otherwise, we union the points of Lr
p with

the current cluster, we perform DBSCAN again with more a smaller ε and m,
and for each new cluster, we call RadRecursive* again.

Algorithm 1.2 RadRecursive* (Reproduced from [51])

Input: rr, α, < p, Cp >, S, ε, m, Lr
p

Output: Lr
p

1: R← API(p, rr, S) →/* Query S with rr*/
2: Lr

p ← Lr
p
⋃

R
3: if |R| < MS then
4: return Lr

p →/* The area is not dense*/
5: else
6: {C}′ ← DBSCAN(Cp

⋃
R, ε

α , m
α ) →/* DBSCAN on the union of

Cp and R with new parameters*/
7: for each < c′, C′ > do
8: RadRecursive*( rr

α , α, < c′, C′c >, S, ε
α , m

α , Lr
p)

9: end for
10: end if
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3.3 MSSD experimental results

We experimented on six location-based sources: Krak, Google Places, Yelp,
Foursquare, Flickr, and Twitter. First, we queried with some default API re-
quests to gather the initial seed points. Krak was the richer source, so it was
used as a seed for the rest of the sources. We applied MSSD-F, MSSD-D,
MSSD-N, MSSD-R, and MSSD* on the rest of the sources (Google Places,
Yelp, Foursquare, Flickr, and Twitter) using Krak points as seed, and the
results are presented in Fig. 1.5. The number of requests is in the x-axis
and percentage of locations (number of locations over the total locations re-
trieved by all algorithms) in the y-axis. This experiment’s preferable outcome
is to have as few as possible requests with as many as possible locations;
thus, in the figures’ left-top corner. Notably, this position is usually occu-
pied by MSSD*. MSSD-R reaches the highest percentage of locations but at
a higher cost in terms of the number of requests. Moreover, MSSD-D and
MSSD-N sometimes show a better trade-off between the number of locations
and number of requests compared to MSSD-R. From the seed-oriented algo-
rithms, MSSD-N retrieves the highest percentage of locations in comparison
to MSSD-F and MSSD-D. Overall, MSSD* yields 90% of the locations with
only 25% of the requests of MSSD-F, MSSD-N, and MSSD-D. In contrast to
MSSD-R, MSSD* needs only 12%-15% of MSSD-R requests in Foursquare,
Yelp and Flick, 8.5% in Google Places and 2.7% in Twitter. Hence, MSSD*
proves to be the best solution for geo-social extraction; on average, only 16% of the
requests can obtain around 95% of the locations.
Another important experiment is changing the seed. We tried using each
source as a seed on the rest of the sources. The percentage of locations re-
trieved by each algorithm vs the number of requests are shown in [106],
where MSSD* again yields the best trade-off, sometimes even performing
better than MSSD-R. For example, with Yelp as seed in Flickr, MSSD* re-
trieves twice the locations of MSSD-R with 30% of the MSSD-R requests. We
can explain this phenomenon by the fact that MSSD* adapts the API parame-
ters, both p and r, based on the source distribution; thus, even when the seed is not
rich, it is still able to learn and outperform the other versions.
In addition, we compared our best version of MSSD, MSSD* to the baselines:
Snowball [15, 21] and Self-seed [1]. Snowball outperforms MSSD* in Twitter
because Snowball uses API requests with user accounts (Fig. 1.6), which have
twice the maximal result size compared to the location-based queries and do
not have a limited historical access. In Flickr, MSSD* retrieves 14 and 3 times
more locations than Snowball and Self-seed, respectively (Fig. 1.6). Snowball is
not applicable to Yelp, Foursquare and Google Places because of the lack of
users. Thus, we compare MSSD* only to Self-seed and MSSD* yields 9, 5.5,
and 3.5 times more locations, respectively (Fig. 1.6). A drawback of Self-seed
is that after a specific number of requests (experimentally 500), Self-Seed converges
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Fig. 1.5: Number of requests versus locations for different MSSD algorithms with Krak as seed
(Reproduced from [51])

to a dead end, while the seed-driven algorithms, as multi-source solutions, are able to
continue discovering new dense areas.

Discussion A multi-source solution where we use one source as seed for the
rest of the sources showed to be a better solution than querying the source
within itself, avoiding converging in a dead-end, like Self-Seed [1]. MSSD*
demonstrated the best trade-off between the number of requests and the
number of locations, on average, only 16% of the requests of MSSD-R for
90% of the locations. Overall, all the algorithms improve the default API
querying, 11.1 times more for the seed-oriented solution (MSSD-F, MSSD-
D and MSSD-N) and 14.3 times for the source-oriented ones (MSSD-R and
MSSD*). All these data originating from different sources provide a better,
holistic view of the locations in a specific area. However, this extracted data
needs to be integrated and unified. In the following section, we will address
the problem of spatial entity linkage, which aims to find which records (origi-
nating from the same or different sources) belong to the same physical spatial
entity.
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Fig. 1.6: Number of request versus number of locations for MSSD*, Snowball and Self-seed (Re-
produced from [51])

4 Multi-source spatial entity linkage

This section addresses the problem of spatial entity linkage across different
sources. We first start with the problem definition; we give an overall view
of the algorithms used for spatial entity linkage in this thesis; we continue
with our novel spatial blocking algorithm QuadFlex; then, we propose three
threshold-based and one unsupervised skyline-based algorithms, we intro-
duce our main experimental results, and finally, we show the main function-
alities of skyex, an R package for entity linkage. This section is based mostly
on paper B, C, and E [52–54].

4.1 The problem of spatial entity linkage

The location-based entities extracted from geo-social sources are identified
within the source with an id, but this is not usually sufficient to identify each
entity uniquely. The same entity might appear more than once within the
same source, with different ids, and sometimes even different attributes. This
problem becomes even more challenging when including different sources.
Let us first define a spatial entity as follows:
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4. Multi-source spatial entity linkage

Definition 1.2. A spatial entity s is an entity originating from a location-based
source I, located in a geographical point p and accompanied by a set of attributes
A = {ai}. (Reproduced from [52, 53])

To determine which records of these spatial entities belong to the same phys-
ical entity, we need to compare them with each other and finally come to a
decision. We formalize this problem as follows:

Problem definition: Given a set of spatial entities S originating from mul-
tiple sources, the spatial entity linkage problem aims to find those pairs of
spatial entities 〈si, sj〉 that refer to the same physical spatial entity. (Repro-
duced from [52, 53, 55])

4.2 Overall solutions

In this section, we will describe the overall solutions that this thesis proposes
to solve the problem of spatial entity linkage. The overall workflow is pre-
sented in Fig. 1.7 and covers several novel algorithms, QuadFlex [52, 53],
SkyRank [53], SkyEx [52], SkyEx-F [53], SkyEx-FES [53], and SkyEx-D [53], and
SkyEx-T [55] (Section 5).
We start with a set S of spatial entities, originating from single or multiple
sources. We apply QuadFlex, a spatial blocking technique to group together
spatial entities, which need to be pairwise compared. We can either compare
the pairs using traditional similarity metrics, or use state-of-the-art meta-
similarity features specifically tailored for spatial entities, which are calcu-
lated by LGM-X [55]. The solutions proposed in [52, 53] use pairwise compar-
isons of the name, address and semantic similarity. The skyline-based trained
version proposed in [55] uses LGM-X features. The pairs are ranked on sky-
lines using SkyRank [53] using either simple Pareto functions (SkyEx [52],
SkyEx-F [53], SkyEx-FES [53], and SkyEx-D [53]), or a trained preference func-
tion (SkyEx-T [55]).
SkyEx-T is trained on a tiny training set to learn a preference function p and
a cut-off ct, which will later be applied to separate the classes. In contrast,
SkyEx [52], SkyEx-F [53], and SkyEx-FES [53] are threshold-based, meaning
that the user inputs the parameter k of the level of skylines in order to sepa-
rate the classes. SkyEx-F and SkyEx-FES control the selection of the threshold
by checking on the F-measure of each selection, but SkyEx-FES provides an
early-stop condition to limit the search and stop earlier. SkyEx-D is an un-
supervised density-based algorithm that does not need any parameters and
still can estimate k to separate the classes. All the proposed solutions share a
common inspiration for using flexible preference functions without weights
and can provide very good model accuracy, high model explainability, and
high robustness in deployment.
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Fig. 1.7: Overall spatial entity linkage solutions

4.3 Spatial blocking with QuadFlex

In order to avoid comparing all spatial entities with each other, we propose
QuadFlex, a spatial blocking algorithm based on a quadtree [108], but with
the following modifications: (i) instead of the capacity, we use the density
of a node as a trigger to split the node into four children, (ii) we use the
diagonal of the node as a maximal spatial distance between the points to
avoid comparing distant spatial entities, (iii) we allow the intersection of the
nodes not to miss relevant comparisons. The algorithm is formalized in Alg.
1.3.
We first create a bounding box that contains all the entities in S and define
the diagonal m and the density d for QuadFlex in line 1. Then, we have to add
the spatial entities to QuadFlex in line 3. In order to do so, we call Method
insert(s) (lines 5-16). We check if the current node has children (line 5), then
we find in which of the children s can be assigned using Method getIndex(s)
(lines 18-31). Note that Method getIndex(s) returns a set of indexes because
s can be assigned to more than one child. If the restrictions about the d or
m apply, then the node will split into four new children (line 11-17), and we
re-assign s. In the end, we return the leaves of the QuadFlex, which are our
spatial blocks.

4.4 Threshold-based skyline algorithms

After obtaining the spatial blocks, we will compare the spatial entities in each
block. We compare the following attributes: name, address, and category.
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4. Multi-source spatial entity linkage

Algorithm 1.3 QuadFlex algorithm (Reproduced from [52, 53])

Input: A set of entities S = {si}, diagonal m, density d
Output: The leaves QuadFlex Q Q.leaves() ;

1: Create Q(m, d) where Q has the dimensions of the bounding box of S
2: for each s in S do
3: Q.insert(s) // Insert s into the QuadFlex
4: end for

return Q.leaves()

Method insert (s)
5: if this.children 6= ∅ then
6: Indexes← getIndex(s) // Find where s belongs
7: for each i in Indexes do
8: this.child[i].insert(s) // Insert s to the children it belongs
9: end for

10: end if
11: if this.diagonal > m or this.density > d then
12: Split the current object this into 4 children
13: end if
14: Indexes← getIndex(s)
15: for each i in Indexes do
16: this.child[i].insert(s)
17: end for

return

Method getIndex (s)
18: Let vertical-left and vertical-right be the lines that pass at 0.25 and 0.75 of

the width of this, respectively
19: Let horizontal-up and horizontal-down be the lines that pass at 0.25 and

0.75 of the height of this, respectively
20: if s is left of vertical-right and above horizontal-down then
21: Indexes.add(1) // s fits in child[1]
22: end if
23: if s is right of vertical-left and above horizontal-down then
24: Indexes.add(2) // s fits in child[2]
25: end if
26: if s is left of vertical-right and below horizontal-up then
27: Indexes.add(3) // s fits in child[3]
28: end if
29: if s is right of vertical-left and below horizontal-up then
30: Indexes.add(4) // s fits in child[4]
31: end if

return Indexes
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The name and the address and compared using string similarities, while for
the category, we use Wu&Palmer similarity [109] with Wordnet [110]. After
having all three similarities (SimName, SimAddress, and SimSemantic), we have
to decide which pairs of spatial entities belong to the same physical entity and
label them as 1, or as 0, otherwise.
Instead of creating a scoring function or using machine learning, we rank the
pairs, and we select a cut-off k to separate the ranked pairs into classes. Let
us first start with the central concept, the Pareto optimality [111]. A solution
(x, y) is Pareto optimal when no other solution can increase x without decreasing y.
Using this concept, we can start by finding those pairs that dominate the rest,
meaning that there are no other solutions that can improve in terms of one of
the similarities without decreasing the other.

Definition 1.3. A skyline of level k, Skyline(k), is the collection of pairs 〈si, sj〉
ranked in the kth position such that for each pair 〈si, sj〉 ∈ Skyline(k) and for
each pair 〈s′i, s′j〉 ∈ Skyline(k′) where k′ > k, 〈si, sj〉 dominates 〈s′i, s′j〉 (〈si, sj〉 �
〈s′i, s′j〉). (Reproduced from [55]).

The definition in [52, 53] express this dominance in terms of a utility, denoted
as u(〈si, sj〉), whose value indicates the possibility of the pair 〈si, sj〉 to be a
match or not. A higher utility means a higher chance for the pair to be
the same physical entity. Both definitions refer to the same rationale; a pair
ranked higher is more likely to be a match; thus, it is more preferred than
another pair ranked lower. The algorithm for ranking the pairs is formalized
in Alg. 1.4. We start with all the pairs, find the first skyline Skyline(1) that
dominate the rest, remove Skyline(1) from the initial set P and put it to Pk.
Then, we find the next skyline and continue until there are no more unranked
pairs. The output of SkyRank is pairs of spatial entities and their skyline level
k, Pk = {〈si, sj〉, k}.

Algorithm 1.4 Skyline Ranking (SkyRank) (Reproduced from [53])

Input: A set of pairs P = {〈si, sj〉}
Output: A set of pairs and their skyline Pk = {〈si, sj〉, k} ;

1: Pk ← ∅
2: while |Pk| < |P| do
3: Filter Skyline(k) = {〈si, sj〉} | ∀〈s′, s′′〉 ∈ P − {〈si, sj〉} , u(〈si, sj〉) >

u〈s′, s′′〉} // Find the Skyline
4: Add Skyline(k) to Pk // Move the skyline to Pk
5: P = P− Skyline(k)

return Pk

SkyRank is the base algorithm for the SkyEx-* family of algorithms, which,
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4. Multi-source spatial entity linkage

besides ranking the pairs, also decide the cut-off k that best separates the
classes. The threshold-based versions SkyEx [52], SkyEx-F [53], and SkyEx-
FES [53] require k as an input.

SkyEx. SkyEx [52] needs k as an input from the user. Given that the user
might have some domain knowledge, he can set a k value. Then, all the pairs
that are ranked from [1,k] will be labeled as positive and the rest as negative.
As a result, given this cut-off, SkyRank will continue until the kth rank instead
of continuing for all the pairs in P.

SkyEx-F. Different cut-offs yield different precision, recall and F-measure.
SkyEx-F [53] is a threshold-based version as well, but it experimentally tries
different cut-offs and fixes the cut-off k such that the F-measure is maximized.

SkyEx-FES. SkyEx-F tries exhaustively every cut-off until finding the best
one. SkyEx-FES [53] is based on a theoretical guarantee, proven in [53], which
guarantees that moving from the first skyline to the rest, the F-measure in-
creases, reaches the maximal value, and then decreases without the possibil-
ity to improve later. Given this finding, we can search until the local-maximal
value of F-measure and discard the rest of the ranking.

SkyEx, SkyEx-F, SkyEx-FES are based on the same rationale of a user-based
threshold. SkyEx relies on the knowledge of the user to find a good thresh-
old, while SkyEx-F and SkyEx-FES set a practical example of how to fix the
threshold. In the next sections, we will present an unsupervised and a lightly
trained version that is able to estimate a near-optimal k.

4.5 Unsupervised skyline-based algorithm

In this section, we will introduce an unsupervised skyline-based algorithm
SkyEx-D that can separate the classes by considering the distance between
the skylines. The pairs that are likely to be a match are usually in the first
skylines. In contrast to clustering, where similar points will have a small
intra-cluster distance, the points in a skyline do not necessarily exhibit this
behaviour; they simply share the same utility. However, they tend to distance
themselves from the rest of the skylines that contain pairs which are not likely
to be a match. Thus, we measure the distance between the pairs starting from
the first skyline: this distance is small initially, increases where the skylines
best separate the classes and starts decreasing when we enter the skylines
that contain negative pairs.

We denote the distance between the classes as µd(k) =
∑ d(pk ,p−k)
|Pk |

, where Pk is

the set of pairs from the 1st to the kth skyline, pk is a pair in Pk, p−k is a pair

27



in P− Pk, and d(pk, p−k) is the distance between pk and p−k [53].
We monitor the evolution of µd(k) starting from the first skyline using its

derivative µ′d(k) =
∂

∂k
≈ µd(k + 1)− µd(k)

1
. When µ′d(k) > 0, µd(k) has a

positive slope, meaning that the distance is increasing. When µ′d(k) < 0 for
the first time, then we are entering the skylines with negative pairs, and the
longer we continue, the more we might loose in precision. Therefore, we
stop the first time that µ′d(k) < 0. However, µ′d(k) can be sensitive to small
fluctuations and we might cut-off too early, so we smooth µ′d(k) with the

Gaussian function ( 1
σ
√

2π
e−(x−µ)2

/
2σ2

) and then we fix the values kd where

µ′d(k) < 0 for the first time.
SkyEx-D algorithm is formalized in Alg. 1.5. First, Alg. 1.4 ranks the pairs
and assigns them skylines, and in the meantime, it calculates µ′d(k) when
moving from one skyline to the next in line 7. Then, for each skyline, we note
skyline of level kd when the smoothened µ′d(k) < 0 for the first time (the lines
8-14). Finally, we label all the pairs in skylines [1, kd] as positives and the rest
as negatives in lines 16-17.

Algorithm 1.5 SkyEx-D (Reproduced from [53])

6: Input: A set of pairs P = {〈si, sj〉}
Output: A set of positive pairs P+ and a set of negative pairs P− ;

1: Pk ← ∅
Lines 2-6 as Algorithm B.2...

7: Calculate µ′d(k) in each k
8: while k < klast do
9: if smooth(µ′d(k)) < 0 then

10: kd ← k
11: break
12: else
13: k← k + 1
14: end if
15:

16: P+ ← ⋃kd
k=1 Skyline(k)

17: P− ← Pk − P+

return P+, P−

4.6 Experiments with threshold-based and unsupervised
SkyEx-* algorithms

This section will summarize the main experimental results from [52, 53]. The
dataset is extracted in [51]. It contains 75,541 spatial entities from Google
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4. Multi-source spatial entity linkage

Places (GP), Krak, Foursquare (FSQ), and Yelp. For the ground truth, we
automatically labeled the pairs as positive if the phone number or the website
is the same, and as negative, otherwise. Additionally, we manually labeled
1500 random pairs. We refer to the manually labeled pairs as Dsample, and to
the automatically labeled pairs as Dfull.

4.6.1 Performance of QuadFlex

We compare QuadFlex (Java implementation) with the quadtree (Java im-
plementation) and Fixed Radius Nearest Neighbors algorithm [112] FNN
(PostgreSQL1 using spatial indexes: GiST2 and SP-GiST3). We simulate up
to 1,000,000 random points besides our dataset to test the approaches using
different densities. The results are shown in Fig. 1.8. The FNN versions
with data add the time to move the pairs from PostgreSQL to Java to the
execution time, while for the FNN versions without data, we only measure
the execution time in PostgreSQL. We can distinguish that QuadFlex is the
second-best after the quadtree, but note that the quadtree misses around 90%
of the comparisons (Fig. 1.8b). FNN SP-GiST performs slightly better than
QuadFlex initially, but later, when the density increases, QuadFlex performs
around eight times faster than FNN GiST and 3 times faster than FNN SP-
GiST. FNN with SP-GiST index is faster than FNN GiST for all the densities.
We also tried not having any index (not in Fig. 1.8 because it would have
dwarfed the other curves), and it turned out that it is up to 848 times slower
than FNN Gist with data, and up to 368,095 times slower than QuadFlex. To
sum up, QuadFlex performs 99.99% of the comparisons of FNN with a performance
comparable to a quadtree.
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Fig. 1.8: Comparing quadtree, QuadFlex and FNN (Reproduced from [52, 53])

1https://www.postgresql.org
2https://www.postgresql.org/docs/current/gist.html
3https://www.postgresql.org/docs/current/spgist.html

29



4.6.2 Evaluation of SkyEx-* algorithms

In this section, we compare the results from SkyEx, SkyEx-F, SkyEx-FES, and
SkyEx-D to the similar work on spatial entity linkage [80, 91, 104], to su-
pervised learning algorithms and to clustering [unsupervised] techniques.
Berjawi et al. [104] compare the pairs considering their distance and the tex-
tual attributes using Levenshtein similarity, and finally, the similarities are all
added together. The pairs are considered a match if the score is higher than
0.75. We use 0.75 but also try different thresholds are reported the best one
(the versions with the suffix -Flex). We also denote the two different version
proposed in [104] as: V1 for name + address + geographic coordinates, V2
for name + geographic coordinates. Morana et al. [91] compare only entities
that share tokens in the name or the same category. The pairs are compared
considering their spatial distance, name and address (Levenshtein), and cat-
egory (Resnik similarity using Wordnet). The similarities are added to a
scoring function with weights: 1

3 for address, and phone and 2
3 for the name,

category, and spatial similarity. Finally, a user can choose from the top k most
similar entities. In Karam et al. [80] the pairs at most 5 m apart are compared
considering the name (Levenshtein distance), the geographic similarity, and
the keywords (semantic similarity). The belief theory [105] decides which
pairs will be labeled as positive. The results are shown in Table 1.1. Even

Dfull Dsample

Approach Prec. Rec. F1 Prec. Rec. F1

Berjawi et al.(V1) [104] 0.93 0.26 0.41 1.00 0.27 0.43
Berjawi et al.(V1) [104]-Flex 0.87 0.50 0.63 0.79 0.42 0.55
Berjawi et al.(V2) [104] 0.73 0.56 0.63 0.97 0.60 0.74
Berjawi et al.(V2) [104]-Flex 0.73 0.56 0.63 0.82 0.76 0.79
Morana et al. [91] 0.39 0.60 0.47 0.33 0.60 0.43
Karam et al. [80] 0.23 0.73 0.35 0.54 0.68 0.60
QuadSky with SkyEx/SkyEx-F/SkyEx-FES 0.87 0.60 0.72 0.87 0.82 0.85
QuadSky with SkyEx-D 0.85 0.62 0.71 0.87 0.82 0.85

Table 1.1: Comparison with the baselines (Reproduced from [52, 53])

though some of the methods might stand out in terms of precision (Berjawi
et al.(V1) [104]) or recall (Karam et al. [80]), QuadSky has the best F-measure in
both datasets. Moreover, QuadSky offers a more balanced model in precision
and recall combined. Interestingly, SkyEx-D, even though fully unsupervised,
can find a cut-off that yields an F-measure of only 0.01 smaller than the F-measure
of SkyEx/SkyEx-F/SkyEx-FES.
We also experimented with replacing the skyline-based algorithm for the la-
beling of the pairs with some common supervised learning algorithms that
have been using in entity linkage [56, 83, 102, 113, 114]: Logistic Regres-
sion [115], Support Vector Machines [116], Decision Trees [117], and Naive
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4. Multi-source spatial entity linkage

Bayes [118]. We trained on 75% of the data and tested on the remaining 25%
with 4-fold cross validation on the whole dataset (Dfull-Dfull), and on the man-
ually labeled pairs (Dsample-Dsample). Additionally, we trained on Dsample and
testing on Dfull (Dsample-Dfull). The results are shown in Table 1.2. For Dfull-
Dfull and Dsample-Dsample, our approaches differ from the best method with
0.02-0.03 in F-measure. However, in a more realistic scenario where one would
have to manually label some data and test them on a larger dataset (Dsample-Dfull),
the SkyEx-* algorithms outperform the supervised techniques.
Additionally, we tried compared SkyEx-D to clustering techniques: distance-
based clustering (k-means [119] and k-medoids [120]), hierarchial cluster-
ing [121] (agglomerative), and density-based clustering (DBSCAN [107]. The
results are presented in Table 1.3. Most of the clustering techniques yield a
very high recall but at the cost of low precision and thus a low F-measure.
In both datasets, SkyEx-D outperforms all the clustering techniques by far higher
F-measure.

Dfull -Dfull Dsample-Dsample Dsample-Dfull

Method Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Logistic regression 0.83 0.70 0.76 0.80 0.83 0.81 0.70 0.72 0.71
SVM 0.88 0.67 0.76 0.81 0.80 0.81 0.71 0.70 0.71
Decision Trees 0.88 0.66 0.75 0.93 0.82 0.87 0.65 0.74 0.69
Naive Bayes 0.71 0.77 0.74 0.63 0.85 0.72 0.62 0.77 0.69
SkyEx/SkyEx-F/SkyEx-FES 0.80 0.69 0.74 0.87 0.82 0.84 0.80 0.69 0.74
SkyEx-D 0.81 0.68 0.74 0.87 0.82 0.84 0.81 0.68 0.74

Table 1.2: Comparison with supervised learning (Reproduced from [53])

Dfull Dsample

Method Prec. Rec. F1 Prec. Rec. F1

K-means 0.28 0.96 0.44 0.62 0.92 0.74
K-medoids 0.28 0.96 0.44 0.62 0.92 0.74
Hierarchial 0.62 0.11 0.19 0.23 0.91 0.36
DBSCAN 0.23 1.00 0.37 0.26 1.00 0.42
SkyEx-D 0.81 0.68 0.74 0.87 0.82 0.84

Table 1.3: Comparing SkyEx-D to clustering techniques (Reproduced from [53])

4.7 skyex R package

In order to offer a user-friendly and easy to plug-in tool, we implemented
skyex, an R package that can handle the entire pipeline of an entity linkage
process, but more importantly, includes the novel skyline-based solutions
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SkyEx-F and SkyEx-D [53] for pair labeling. Additionally, skyex supports
analysis and visualization functions that help interpret the results.
The modules and the functions of skyex are listed in Table 1.4. We offer
textual and spatial blocking in the Blocking module. The textual_blocking
uses some typical string metrics such as Cosine, Jaccard, etc. However, some-
times simply checking for a common prefix or suffix could yield good results
and, as expected, have a shorter run time. The pairwise comparison can be
performed considering the textual, spatial, and semantic attributes of two en-
tities. The text similarity uses typical similarity metrics; the spatial similarity
is a normalized value using a maximal distance in meters; the semantic simi-
larity is based on Wordnet, specifically on Path and Wu&Palmer similarities.
Example scripts for blocking and pairwise comparisons are shown below:

#spatial blocks of 50 m
blocks <-spatial.blocking(data=entities , longitude="long",

latitude = "lat", max_distance = 50)
#textual blocks with maximal Levenshtein distance of 2
blocks <- textual.blocking(data=entities , column="name",

method="levenshtein", max_distance=2)
#pairwise text similarity of the address
blocks$SimAddress <- text.similarity(data = blocks ,

column1 = "address.x", column2 = "address.y", method = "jaccard")

The most important modules of skyex are the Labeling, and the Analysis and
Visualization modules, because while other tools offer blocking techniques
and pairwise comparison functions [122–128], skyex implements the novel
skyline-based algorithms and functions to support a good and solid analysis.
We first start by defining the preference function. We decide which similari-
ties will be part of the Pareto function. Let us suppose we choose the name,
address, and semantic similarity. We can call skyexf for a threshold-based or
skyexd for the unsupervised solution.

#Creating the preference function
p<-high(SimName )*high(SimAddress )*high(SimSemantic)
#using SkyEx -F
f.obj <- skyexf(data=blocks , p = p, label = "Class",

posclass = 1, negclass = 0)
#using SkyEx -D with a smoothing of 10
d.obj <- skyexd(data=blocks , p = p,

simlist = c("SimName", "SimAddress", "SimSemantic"),
smooth.coefficient = 10, posclass = 1, negclass = 0)

We can simply extract the predicted classes from f.obj and d.obj, or
we can do further analysis. For example, for SkyEx-F we can plot the
different cut-offs and the values of precision, recall and F-measure using
plot.skyexf.cutoffs (Fig. 1.9). For SkyEx-D, we can see the cut-off using
plot.skyexd.cutoffs and we can adjust the smoothing coefficient without
having to re-run the algorithms by using plot.skyexd.smooth (Fig. 1.10).
Additionally, we can call evaluate.skyex to see the precision, recall
and F-measure, or call plot.pairs2D (Fig. 1.11a), plot.pairs3D, and
plot.pairs.interactive.3D (Fig. 1.11b) to see with different colors the pre-
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4. Multi-source spatial entity linkage

Module Function name Decsription

textual_blocking Text blocks (Levenshtein, Jaccard, Cosine, Jaro-Winkler, qgram)
spatial_blocking Spatial blocks based on distance in meters
prefix_blocking Blocking based on textual prefix (nr of characters)

Blocking

suffix_blocking Blocking based on textual suffix (nr of characters)

text_similarity Text similarity (Levenshtein, Jaccard, Cosine, Jaro-Winkler)
spatial_similarity Spatial similarity normalized by max. distance

Pairwise
comparison

semantic_similarity Semantic similarity (Path or Wu&Palmer)

skyexf Labeling the pairs with SkyEx-F
Labeling

skyexd Labeling the pairs with SkyEx-D

plot.skyexf.cutoffs Plot SkyEx-F cut-offs
plot.skyexd.cutoffs Plot SkyEx-D cut-offs
plot.skyexd.smooth Plot SkyEx-D for different smoothing coefficients
evaluate.skyex Evaluate SkyEx algorithms (precision, recall, F-measure)
block.positives.coverage Check the quality of the blocking
plot.pairs2D Plot SkyEx labeled pairs 2D
plot.pairs3D Plot labeled SkyEx pairs 3D

Analysis and
visualization

plot.pairs.interactive.3D Interactive plots 3D for labeled SkyEx pairs

Table 1.4: Modules and functions of skyex

Fig. 1.9: Plotting all metrics with plot.skyexf.cutoffs

dicted and the actual classes when the data has two or three dimensions,
respectively.

Discussion We addressed the problem of spatial entity linkage with an ef-
fective and flexible spatial blocking algorithm QuadFlex, compared the pairs
pairwise syntactically and semantically, and labeled them using threshold-
based and unsupervised novel skyline-based algorithms. The SkyEx-* algo-
rithms do not use scoring functions, weights, or training sets, and despite
their light configuration, they were able to outperform the baselines and the
unsupervised techniques. Even though supervised techniques had a slightly
higher F-measure in a traditional setting, when trained on a small set and
tested on a larger one (Dsample-Dfull), the SkyEx-* algorithms yielded better
results. The Pareto function offers a flexible method to aggregate the simi-
larity scores of a pair, but it lacks the expressiveness to accommodate more
specific relations, such as one similarity being more important than another.
Moreover, our success in Dsample-Dfull points out that a small labeled set might
be able to lightly train the skyline-based algorithm. We will address these two
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(a) smooth.coefficient=10 (b) smooth.coefficient=20

Fig. 1.10: Performing analysis using plot.skyexd.cutoffs and plot.skyexd.smooth

(a) 2D plotting (b) 3D plotting

Fig. 1.11: Visualizing the results

promising directions in the next sections.

5 Skyline-based spatial entity linkage algorithm
trained on tiny data

SkyEx, SkyEx-F, SkyEx-FES, and SkyEx-D rank the pairs using the Pareto dom-
inance concept so they do not prioritize any attribute similarity over others.
Moreover, SkyEx, SkyEx-F, and SkyEx-FES still require that the user provides
the cut-off value (the number of skylines k). In this section, we propose a
lightly trained skyline-based algorithm SkyEx-T that can learn the preference
function and the cut-off in a small training set. This section is based on paper
D [55].

5.1 SkyEx-T concepts

SkyEx-T uses the state-of-the-art meta-similarity function specially tailored
for spatial entities LGM-X, which extends LGM-Sim [96, 98] to accommodate
the different similarity features for the address. We refer to the output of
LGM-X as features and to the pairs accompanied with the LGM-X features as
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5. Skyline-based spatial entity linkage algorithm trained on tiny data

featured pairs (see Fig. 1.7).
After having the featured pairs, we split them into non-intersecting training
and test sets. We train SkyEx-T on the small training set and apply it on the
test set. Let us start with the main concepts of SkyEx-T:

Definition 1.4. A preference function p : P 7→Pk is a function that takes as input
a set of pairs P = {〈si, sj〉} and outputs the partially ranked (some pairs share the
same rank) list of pairs Pk = {〈si, sj, k〉} with respect to their feature values, where
k ∈ [1, m] is the rank of a pair 〈si, sj〉, and m is the maximal rank. (Reproduced
from [55])

The preference function is constructed using two components: the preferred
feature direction and the preference operators.

Definition 1.5. The preferred feature direction d() : X 7→N is a function that takes
as input the list of values of a feature X, orders them preferring either high values
(high()) or low values (low()), and outputs the rank for each feature. (Reproduced
from [55])

For the preference function to prefer a pair, it needs to know if high or low
values of a feature are preferred to rank them accordingly. This concept has
been indirectly addressed in [52, 53], when we identify if an attribute is pos-
itive discriminating, meaning that its high values usually indicate a match.
However, the work in [52, 53] did not accommodate features that rather in-
dicate a non-match. For example, a high value of Levenshtein distance is an
indicator of a non-match, while a high value of Jaccard points to a match. So,
we want low(Levenshtein distance) and high (Jaccard) .
These feature directions can be connected together with a Pareto operator or
a Priority operator, both defined as below:

Definition 1.6. The Pareto operator4 is a binary operator connecting two preferred
feature directions according to the Pareto Optimality concept. (Reproduced from
[55])

Definition 1.7. The Priority operator . is a binary operator connecting two pre-
ferred feature directions such that the feature direction on the left side of the operator
is preferred over the one on the right side. (Reproduced from [55])

The ranking of the pairs into skylines in [52, 53] was done by using only the
Pareto operator, while SkyEx-T offers the possibility to prioritize some feature
over others. Let us give an example:

Example 1.2
Let 〈s1, s2〉 be a pair of spatial entities. X1=0.7 and X2=0.3 are features that
expressed the similarly of the name attribute, while X3 = 10 shows the
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distance in meters from s1 to s2. We prefer high values of X1 and X2, so
we have high(X1) and high(X2). The high distance between entities is an
indicator of dissimilar spatial entities, so we prefer a low distance low(X3).
Furthermore, X2 shows to be better at detecting the class than X1 and X3,
while we are indifferent between X1 and X3. Therefore, when constructing
the preference function, we connect X1 and X3 with the Pareto operator,
and we prioritize X2. Finally, we formulate the preference function p =
high(X2) . (high(X1)4 low(X3)).

The full procedure of SkyEx-T is represented in Fig. 1.12. We start with the
featured pairs produced from LGM-X, and we split then into a small training
set and the rest as a test set. We reduce the dimensionality of the features
in the training set, and the output is used to learn a preference function p.
Later, the pairs in the training set are ranked according to p, and we fix the
cut-off ct that maximizes the F-measure. Finally, we rank the pairs in the test
set according to the preference p, separate the classes based on ct and return
the labeled pairs.

Fig. 1.12: SkyEx-T pipeline

5.2 SkyEx-T algorithm

LGM-X produces multiple features, which can be highly correlated. Thus, we
need to reduce the dimensionality. We use mutual information (MI) [129] to

remove the highly correlated features. MI(x, y) =
∫

x

∫
y px,y(x, y)log px,y(x,y)

px(x)py(y)
,

where px(x) and py(y) are the marginal probability density functions of vari-
ables x and y and px,y(x, y) is the joint probability function of x and y. We
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5. Skyline-based spatial entity linkage algorithm trained on tiny data

use the pairs with reduced number of features to learn a preference function
that prefers the pairs that are likely to be a match over the rest.

Algorithm 1.6 SkyEx-T training (Reproduced from [55])

Input: A set of labeled pairs Pt = {〈si, sj, Cij〉}
Output: A trained preference function p and cut-off ct

1: RX ← ∅
2: Calculate ρXi for each Xi and add each |ρXi | to RX
3: Order RX in a descending order
4: Find ε1 and ε2 elbows in RX
5: for each Xi that |ρXi | ≤ ε1 do
6: p1 = d(X1)4 d(X2)...4 d(Xm)
7: end for
8: for each Xi that |ρXi | > ε1 and |ρXi | ≤ ε2 do
9: p2 = d(Xm + 1)4 d(Xm+2)...4 d(Xn)

10: end for
11: p = p1 . p2
12: Pk ← ∅
13: F ← ∅
14: while |Pk| < |P| do
15: Find Skyline(k) = {〈si, sj〉} | ∀〈s′, s′′〉 ∈ Pt − {〈si, sj〉} , 〈si, sj〉 �

〈s′, s′′〉}
16: Remove Skyline(k) from P and add it to Pk
17: Label Pk as positive
18: Calculate F1(k) and add F1(k) to F
19: Pt = Pt − Skyline(k)

20:21: Find kl such that F1(kl) = max(F1(k)) ∀k ∈ {1, |F|}

22: ct =
∑

kl
i=1 Skylinei

∑
max(k)
i=1 Skylinei

return p, ct

For the selection of a preference function, we first evaluate the correlation
of each feature to the class. The preference function should contain features
whose increase or decrease in value affects the value of class C. Thus, we
use Spearman’s correlation ρXi =

cov(Xi ,C)
σXi

σC
, where σXi and σC account for the

standard deviations of Xi and C, respectively, while cov(Xi, C) is the covari-
ance of Xi and C. Judging from the values of ρXi , we can now decide whether
a feature will be prioritized or not. We plot the descending absolute values
of ρXi and find two elbows ε1 and ε2. The features with |ρXi | ≤ ε1 (Xε1

. Xε1
)

have a stronger monotonic relationship to C than the features with |ρXi | ≤ ε2
and ρXi > ε1 (Xε2

), so we will prioritize Xε1
over Xε2

. In the meantime,
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we will use the Pareto operator amongst Xε1
and amongst Xε2

to treat them
equally.
After having the preference function p, we rank the pairs in the training set
according to p. We find kt number of skylines that yield the maximal F-
measure. Given that the training and the test set originate from the same
population, they share similar probability density distributions. We prove
in [55] that the distribution of the ranked pairs using the same preference
function p also share similar probability density distributions (Theorem D.1
in [55]). Consequently, if a cut-off in the training set is highly preferred, it
will also be preferred in the test set [130] (Theorem D.2 in [55]). Using the
data ratio ct of the pairs belonging to the skylines up to the kth

t level over the
total pairs will still yield a near-optimal cut-off for the test set (Lemma D.1
in [55]). Therefore, we fix ct as the optimal cut-off and use it to separate the
classes in the test set.
The above procedure is formalized in Alg. 1.6. The preference training is
handled by the lines 1-11. We calculate for each feature the Spearman’s cor-
relation to the class and add it to RX . We order RX in line 3 and find the
two elbows ε1 and ε2 in line 4. Then, we construct the preference function p
by using the Pareto operator for the Xε1

features (lines 5-7) and Xε2
features

(lines 8-10), and finally, we use the Priority operator for Xε1
over Xε2

. We
rank the pairs (similar to SkyRank) and calculate the F-measure in each sky-
line in lines 12-19. We find the cut-off that yields the highest F-measure in
line 22. Finally, we return the preference function p and the cut-off ct.
The labeling of the pairs in the test set is then straightforward (see Alg. D.2
in paper D). We rank the pairs using the preference p. However, we can
actually avoid ranking all the pairs, but we rank only ct of them, given that
we already know the cut-off. Finally, we label the ranked pairs as positive
and the rest as negative.

5.3 SkyEx-T vs machine learning

In this section, we will compare the results of SkyEx-T to machine learning
techniques in terms of model accuracy, explainability, and robustness. We
will use two datasets, North Denmark spatial entities (North-DK) extracted as in
[51] and used in [52, 53] and the Fodor’s and Zagat’s restaurants4 (Restaurants).

Model accuracy. We compare SkyEx-T to Support Vector Machine (SVM)
[116], Decision Trees [117], Random Forest [131], Extremely Randomized
Trees (Extra Trees) [132], Extreme Gradient Boosted Trees (XGBoost) [133],
Multi Layer Perceptron (MLP) [134]. All the methods use the LGM-X fea-
tures. We trained on small percentages of data (0.05%-20%) for North-DK

4https://www.cs.utexas.edu/users/ml/riddle/data.html
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5. Skyline-based spatial entity linkage algorithm trained on tiny data

and and (1%-20%) for Restaurants. SkyEx-T yields highest F-measure than
the machine learning techniques for very small training sets (0.05%, 0.1%,
0.4%, and 4%) in North-DK (Fig. 1.5). In Restaurants (Fig. 1.6), SkyEx-T is
amongst the three best approaches for 1% and 4%, while SVM, MLP, and
XGBoost fail on tiny traing sets. On average, the difference of SkyEx-T F-
measure from the maximal F-measure for training sets up to 20% of the data
is only 0.83% in North-DK and 4.85% in Restaurants. Despite its light training,
SkyEx-T is able to guarantee machine-learning-level of accuracy overall, and on very
small training sets, to outperform them. Moreover, there was no method with
consistently best F-measure for all training sets.

Training size 0.05% 0.10% 0.40% 0.80% 1% 4% 8% 12% 16% 20% 80%

F-measure

SVM 0.655 0.653 0.683 0.692 0.694 0.708 0.713 0.715 0.718 0.719 0.723
DecisionTree 0.596 0.589 0.609 0.613 0.612 0.622 0.632 0.634 0.641 0.644 0.667
RandomForest 0.678 0.682 0.696 0.702 0.700 0.715 0.721 0.725 0.727 0.730 0.749
ExtraTrees 0.670 0.676 0.693 0.700 0.699 0.710 0.717 0.721 0.723 0.726 0.744
XGBoost 0.673 0.679 0.700 0.705 0.704 0.717 0.724 0.728 0.731 0.733 0.747
MLP 0.678 0.688 0.708 0.719 0.709 0.719 0.719 0.724 0.731 0.724 0.727
SkyEx-T 0.682 0.690 0.708 0.705 0.706 0.736 0.717 0.718 0.711 0.711 0.727

Difference from Max F-measure in %

SVM 3.96% 5.36% 3.53% 3.76% 2.12% 3.80% 1.52% 1.79% 1.78% 1.91% 3.47%
DecisionTree 12.61% 14.64% 13.98% 14.74% 13.68% 15.49% 12.71% 12.91% 12.31% 12.14% 10.95%
RandomForest 0.59% 1.16% 1.69% 2.36% 1.27% 2.85% 0.41% 0.41% 0.55% 0.41% 0.00%
ExtraTrees 1.76% 2.03% 2.12% 2.64% 1.41% 3.53% 0.97% 0.96% 1.09% 0.95% 0.67%
XGBoost 1.32% 1.59% 1.13% 1.95% 0.71% 2.58% 0.00% 0.00% 0.00% 0.00% 0.27%
MLP 0.59% 0.29% 0.00% 0.00% 0.00% 2.31% 0.69% 0.55% 0.00% 1.23% 2.94%
SkyEx-T 0.00% 0.00% 0.00% 1.95% 0.42% 0.00% 0.97% 1.37% 2.74% 3.00% 2.94%

Table 1.5: SkyEx-T versus Machine Learning on North-DK (Reproduced from [55])

Model explainability. The explainability of the model is fundamental for
many business applications, and “the right to explanation" is required from
EU’s General Data Protection Regulation (GDPR) [135]. SkyEx-T has a high
explainability because we can see the features, which feature direction is pre-
ferred, or which features are preferred over others. A SkyEx example model
can look like this:
(high(SimName) 4 high(LGM_baseScore) 4 high(SimAddress)) .
(high(Sorted_Dice_bigrams) 4 high(Dice_bigrams) 4 high(Sorted_Soft_Jaccard)
4 high(LGM_Dice_bigrams)).
The machine learning techniques in Tables 1.5 and 1.6 have little or no ex-
plainability. Decision Trees can be explainable when the depth is small, and
the number of features is low, but in our case, the depth went up to 6 for
Restaurants and up to 42 for North-DK, making them inexplainable in prac-
tice. Moreover, Decision Trees were always outperformed by most of the
other algorithms (Tables D.3 and D.4). The rest of the methods are far from
explainable. In practice, SkyEx-T has a much better model explainability when
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Training size 1% 4% 8% 12% 16% 20% 80%

F-measure

SVM 0.196 0.777 0.847 0.846 0.858 0.875 0.889
DecisionTree 0.818 0.798 0.796 0.810 0.831 0.816 0.875
RandomForest 0.743 0.830 0.843 0.844 0.843 0.859 0.879
ExtraTrees 0.823 0.836 0.857 0.853 0.860 0.885 0.904
XGBoost 0.000 0.724 0.823 0.827 0.847 0.870 0.910
MLP 0.077 0.789 0.837 0.877 0.870 0.874 0.871
SkyEx-T 0.782 0.813 0.831 0.823 0.821 0.828 0.820

Difference from Max F-measure in %

SVM 76.23% 7.13% 1.23% 3.46% 1.41% 1.07% 2.30%
DecisionTree 0.56% 4.59% 7.16% 7.61% 4.56% 7.79% 3.84%
RandomForest 9.74% 0.77% 1.66% 3.67% 3.14% 2.88% 3.41%
ExtraTrees 0.00% 0.00% 0.00% 2.65% 1.18% 0.00% 0.66%
XGBoost 100.00% 13.46% 4.06% 5.61% 2.72% 1.70% 0.00%
MLP 90.62% 5.62% 2.40% 0.00% 0.00% 1.26% 4.22%
SkyEx-T 4.98% 2.78% 3.12% 6.09% 5.70% 6.41% 9.92%

Table 1.6: SkyEx-T versus Machine Learning on Restaurants (Reproduced from [55])

compared to all the machine learning techniques.

Model configuration and robustness. SkyEx-T preference function has no
coefficients or deep architecture; consequently, it does not need new tun-
ing and reconfiguration. On the contrary, we might need to tune again the
parameters and hyperparameters of the machine learning techniques every
time we need to deploy them on new data. In terms of robustness in deployment,
SkyEx-T shows to be robust, while the machine learning techniques might turn out
to be fragile in a real deployment.

6 Contributions of the thesis

The overall objective of this thesis is to propose algorithms and tools that
aid in obtaining large, duplicate-free, rich-in-attribute spatial entity datasets.
To obtain a larger dataset, we addressed the problem of spatial data extrac-
tion first in Paper A [51], where we contributed with effective data extraction
algorithms that maximize the amount of data extracted. For high quality,
duplicate-free, and rich-in-attributes dataset, we studied the problem of spa-
tial entity linkage in Paper B [53], C [54], D [55], and E [52], which aims that
finding duplicate records of the same physical entity and improve the quality
of the data. We can summarize the thesis contributions as follows:
Paper A [51] is the first to explicitly address the geo-social data extraction
problem from social networks and online data sources, and more specifically,
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6. Contributions of the thesis

maximizing the data extracted while minimizing the number of requests.
We provide a summary of each source’s API limitations and propose multi-
source seed-driven (MSSD) algorithms that use the points of one source as
a seed for the rest of the sources. Additionally, we further optimize the
proposed solutions to only use about 16% of the requests while obtaining
around 90% of the data. We experimentally demonstrate that a multi-source
seed-driven solution is needed for the algorithm not to converge fast and
continue obtaining new data.
Paper E [52] tackles the problem of spatial entity linkage and contributes
with two novel algorithms: QuadFlex, a spatial blocking technique inspired
by a quadtree but flexible to allow assigning points in more than one child
not to miss relevant comparisons, and SkyEx, a skyline-based algorithm for
classifying the pairs. To the best of our knowledge, this paper is the first to
use skylines and Pareto optimality for classifying pairs in entity linkage.
Paper B [53] extends Paper E [52] with three more algorithms SkyEx-F, SkyEx-
FES, and SkyEx-D. SkyEx-F and SkyEx-FES, similarly to SkyEx use a threshold
of k number of skylines to separate the classes, but are better structured for
setting the cut-off. SkyEx-FES guarantees the results of SkyEx-F while stop-
ping earlier, in only 20% of the skylines, as demonstrated experimentally. The
most important contribution of this paper is the SkyEx-D algorithm, which
is completely parameter-free and fully unsupervised, but still can achieve an
F-measure that is close to the F-measure of the optimal cut-off.
Paper C [54] provides skyex, an R-package that offers the skyline-based algo-
rithms wrapped in user-friendly functions calls. Additionally, skyex covers
the whole pipeline of entity linkage and offers a powerful Analysis and Vi-
sualization module.
Paper D [55] contributes with a trained skyline-based algorithm SkyEx-T
that needs less than 1% of the data to train on in order to achieve machine
learning-level accuracy. Besides model accuracy, SkyEx-T outperforms the
machine learning techniques in terms of model explainability and robust-
ness. Instead of traditional similarity metrics, we extend the state-of-the-art
LGM-Sim meta similarity function to obtain domain-specific similarity fea-
tures.
The proposed algorithms are novel and show significant improvement over
the state-of-the-art algorithms. Moreover, these papers draw attention to
the unsolved problem of lacking fresh, good-quality geo-social data, a phe-
nomenon that is becoming more and more obvious in the published articles
of the last decade.
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7 Future directions

Several interesting future directions can extend and continue the research in
this thesis. Regarding data extraction, we considered only location-based API
requests. Alternatively, a hybrid user-based, keyword-based and location-
based approach could be of interest. The algorithm can be adapted to
switch between different types of API calls while traversing the geo-social
graph, aiming to maximize the data extracted. Similarly to the rationale of
MSSD* where we will pre-process the seed points together with the newly-
discovered source points to find the next seed points, we could try to find the
next keywords or users of interest that can result in a larger amount of data
extracted.
Another future direction could be formalizing the geo-social data extraction
problem not only based on maximizing the amount of data extracted but
also maximizing the area covered, having a higher semantic diversity of the
locations, having a larger user-base, etc. All these conditions together can aid
in obtaining a better and richer dataset. Finally, we could use more complex
and even supervised techniques for choosing the API parameters r and p
(radius and point) for the next API query, as opposed to the current heuristic-
based techniques and the unsupervised DBSCAN. Additionally, we could
implement a reinforcement learning method to learn the parameters while
live-querying the sources.
The spatial entity linkage research can be extended with hybrid blocking
techniques that use other attributes together with the geo-coordinates. These
solutions would reduce the number of comparisons while trying not to miss
relevant ones. Regarding the skyline-based solutions, we could try more com-
plex preference functions that use weights for the different features, meaning
that we would be able to express how much more we prefer a feature over
another. Another interesting future direction would be classifying the pairs
not simply as positive or negative, but having multiple classes representing
other relationships such as one entity included in another, two entities being
part of the same "mother" entity, etc. In this case, the skyline-based algo-
rithm could be changed to use different preference functions and cut-offs for
the different relationships that two entities can exhibit.
Future directions involving using a budget for obtaining some of the labels
(through an Oracle or crowdsourcing) could improve the method’s accuracy.
The crowdsourcing or the Oracle will provide the labels of a sample of pairs
and given these labeled data, we will try to infer and improve the overall la-
beling of the rest of the pairs. These solutions will need to focus on managing
the budget by choosing the pairs that will assist in revealing other labels in
the dataset; for example, choosing pairs that will trigger labeling other pairs
through transitivity (if 〈A, B〉 and 〈B, C〉 are the same entity, so it is 〈B, C〉),
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clustering the pairs and inferring the label on the whole cluster, using the
skylines to infer the label on the whole skyline, etc.
As for skyex, we consider extending it with a Training module that can ac-
commodate the new SkyEx-T algorithm. Besides the R environment, we plan
to provide a similar Python package, given that Python is also a commonly-
used environment in data science.
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Abstract

Geo-social data has been an attractive source for a variety of problems such as mining
mobility patterns, link prediction, location recommendation, and influence maximiza-
tion. However, new geo-social data is increasingly unavailable and suffers several
limitations. In this paper, we aim to remedy the problem of effective data extraction
from geo-social data sources. We first identify the limitations of extracting geo-social
data. To overcome the limitations, we propose a novel seed-driven approach that uses
the points of one source as the seed to feed as queries for the others. We additionally
handle differences between, and dynamics within the sources by proposing three vari-
ants for optimizing search radius. Furthermore, we provide an optimization based on
recursive clustering to minimize the number of requests and an adaptive procedure
to learn the specific data distribution of each source. Our comprehensive experiments
with six popular sources show that our seed-driven approach yields 14.3 times more
data overall, while our request-optimized algorithm retrieves up to 95% of the data
with less than 16% of the requests. Thus, our proposed seed-driven approach set new
standards for effective and efficient extraction of geo-social data.

© 2019 ACM. Reprinted, with permission from Suela Isaj and Torben Bach
Pedersen. Seed-Driven Geo-Social Data Extraction. In: 16th International
Symposium on Spatial and Temporal Databases (SSTD’19), 2019. ACM. DOI:
10.1145/3340964.3340973
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1 Introduction

Each year social networks experience a continuous growth of 13% in the
number of users (http://wearesocial.com/uk /blog/2018/01/ global-digital-
report-2018). Consequently, more and more information is available regard-
ing the activity that the users share, events in which they participate and the
new connections they make. When data collected by social networks contain
social connections (friendship links, mentions, and tags in posts, etc) as well
as geographic information (check-ins, geo-data in posts and implicit location
detection), then this data is usually referred as geo-social data. Geo-social data
have attracted studies regarding location prediction, location recommenda-
tion, location-based advertisement, urban behavior, etc. The primary sources
of geo-social data are location-based social networks (LBSNs) such as Gowalla,
Brightkite, and Foursquare, which contain social ties, check-ins, tips and de-
tailed information about locations. However, Gowalla and Brightkite were
closed in 2012, whereas Foursquare has blocked the extraction of check-ins
from its API (Application Programming Interface - set of functions and pro-
cedures that allow data extraction from a source). Other secondary sources of
geo-social data are social networks such as Facebook, Twitter, Flickr, etc. Social
networks are characterized by richness and variety of data, making them an
attractive source for data extraction. However, the percentage of geo-located
posts reported in the literature is less than 1% ( [1–3]). Furthermore, they
provide rich information about users, their networks, their activities but only
a few details about locations (only the coordinates). Another less common
source of location data (not necessarily geo-social) are directories such as Yelp,
Google Places, TripAdvisor, etc, which contain locations with details such as
name, phone, type of business, etc and sometimes accompanied by user re-
views. In the majority of the cases, directories do not contain user profiles;
even when they do, the API does not provide functions to extract user’s in-
formation. Hence, it is necessary to use several sources in order to gain a
complete dataset of geo-social data.
Not only is geo-social data scattered over several sources but the APIs of
the sources are also highly restrictive regarding the number of requests, the
amount and the type of data that can be extracted, etc. Instead of extracting
the data, publicly available datasets can be used. However, their usability is
limited because sometimes they lack the details about users’ profiles or the
locations, which could be of interest for the research purpose. Besides, the
check-ins/photos/posts/reviews are sparse and scattered all over the globe,
affecting the quality of the experiments while mining frequent patterns, mo-
bility patterns, urban behavior, etc. Enriching these datasets with the missing
details is not possible because the data is anonymized, so the link with the
source is lost. Even when the data is not anonymized, the datasets are old
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(2008-2013) and they can not map to the existing users or locations of nowa-
days. When we analyzed 32 papers from 2009 to 2018 using geo-social data,
we found that no less than 50% used datasets that are 3-8 years older than
the published article (see Appendix A in [4]).
To sum up, geo-social data is becoming even more needed and even less ac-
cessible. We thus, address the problem of location-based geo-social data extrac-
tion from social networks and location-based sources. We introduce the lim-
itations of six sources of geo-social data, namely: Flickr, Twitter, Foursquare,
Google Places, Yelp, and Krak. Then, we propose a seed-driven algorithm
that uses the points of the richest source (the seed) to extract data from the
others. Later, we introduce techniques to optimize the selection of radius
and seed points. Our main contributions are: (i) We provide an analysis
of the current limitations of data extraction from six popular geo-social data
sources. (ii) We identify and formulate the problem of maximizing the extracted
geo-social data while minimizing the requests to the sources. To the best of our
knowledge, we are the first to optimize the data extraction process in social
networks and location-based sources. (iii) We propose a novel algorithm for
data extraction that uses the points of one source as seed to the API requests
of the others. Our seed-driven algorithm retrieves up to 98 times more data
than the default API querying. (iv) We introduce an optimized version of our
algorithm that minimizes the requests and ensures maximized data extrac-
tion by recursively adapting the radius and the centroid of the query region.
We retrieve around 90% of the data using less than 16% of the requests.
The remainder of the paper is structured as follows: first, we describe the
related work in Section 2; then, we introduce the definitions and the data
extraction problem in Section 3; later, we categorize the limitations of the
data extraction process and we provide preliminary results from six sources
in Section 4; we continue with formalizing our proposed algorithm in Section
5; next, we test the proposed solutions through real-time querying of the
sources and we compare the results in Section 6; and finally, we conclude
and provide further insights on our work in Section 7.

2 Related work

Despite the growing interest in geo-social related topics, the existing related
work does not focus specifically on optimizing the data extraction process.
Most of the existing research uses either publicly available datasets [5–11,
11–18], crawl using the default settings of the API [19–27] or do both [28,
29]. The (sparsely described) crawling methods used in these papers can be
categorized as either user-based crawling, location-based crawling or keyword-
based querying.
User-based crawling. User-based crawling is based on querying users for

61



Paper A.

their data and their networks as well. A user-based crawling technique men-
tioned in several studies is the Snowball technique [30, 31]. Snowball requires a
prior seed of users to start with and then, traverses the network while extract-
ing data from the network of friends. Nonetheless, Snowball is biased to the
high degree nodes [32] and requires a well-selected seed. Another interesting
method is to track the users that post with linked accounts [33–35], for instance,
users posting from Twitter using the check-in feature of Foursquare. Never-
theless, this method is limited only to linked accounts, whose percentage is
less than 1%.
Location-based crawling. Location-based crawling requires no prior knowl-
edge, and the extraction process can start at any time. It is based on extracting
data near or within a specific area. Lee et al. [36] use a periodical querying
based on points extracted from Twitter. First, Twitter is queried for initial
points. Then, in a later step, other requests are performed using the ini-
tial points as query points, focusing on areas detected by the user. Thus, in
each step n, the points discovered in step n− 1 are used to perform the new
queries. We will refer to this method as Self-seed.
Keyword-based querying. As the name suggests, the source is queried [not
necessarily crawled] with a keyword to find relevant data. The keyword-
based querying is widely used by the research on topic mining, opinion
mining, the reputation of entities, quality of samples and several related top-
ics [37, 38] but not for geo-social topics since querying with a keyword does
not guarantee that the retrieved data will be located in the queried location.
For example, querying Twitter with the keyword "Brussels" can return tweets
in Brussels, tweets talking about Brussels but not located there, and even
tweets about brussels sprouts.
Discussion. Obviously, the keyword-based querying is not of interest due to
the noise it brings. The user-based crawling requires prior information about
a seed of users and applies only to social networks. Subsequently, it leaves
aside other location-based sources such as Yelp, TripAdvisor, and Google
Places. Moreover, if the study is based on a region of interest, the user-based
crawling results in a lot of irrelevant data because even if the seed of users is
well-selected from the region of interest, there is no guarantee that the friends
will check-in in the area of interest. Consequently, user-based crawling pro-
duces wasted requests. The method described by [36] has some similarities
with ours because it is location-based crawling and focuses on performing
requests on areas discovered previously. In comparison, our approach differs
significantly because (i) instead of selecting points from a single source and
querying itself, we use a seed source to query multiple sources, (ii) we minimize
the number of requests performed while maximizing the data extracted (iii)
our seed-driven data extraction approach does not need periodical querying;
it can be run continuously and simultaneously for all the sources, resulting
in faster data extraction process, compared to several months like in [36]. To
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sum up, our data extraction approach is faster, richer, request-economic, and includes
multiple sources.

3 Problem definition

The notion that we will use widely in the paper is a location. A location in a
directory is a venue with a geographical point and additional attributes like
name, category, etc. Social networks contain activities such as check-ins, tips,
photos and tweets which are geo-tagged. We denote the locations associated
with the activities as derived locations and for brevity, just as locations.

Definition A.1. A location l is a spatial entity identified within the source by a
unique identifier id(l). A location l has a set of attributes A = {a1, a2...an} accom-
panied by their values {a1(l), a2(l)...an(l)}. A required attribute for a location l is
its geographical coordinates denoted as p(l)

For example, l1 is a tweet with id = 1234567, where A={text, user, point} and
the values are {"Nice day in park", 58302, <57.04, 9.91>}. Geo-social data
sources usually offer an Application Programming Interface (API), which is a
set of functions and procedures that allow accessing a source to obtain its
data. Location-based API calls allow querying with (i) a point p and a ra-
dius r, (ii) a box < p1, p2, p3, p4 > and (iii) keywords. We will not consider
keyword-based querying due to the noise it brings (see Section 2). The cir-
cular querying and the rectangular querying are quite similar as long as the
parameters are the same. In this work, we use querying with a point p and a
radius r and refer to the searched area as Circle(p, r). We define a geo-social
data source formally as:

Definition A.2. A geo-social data source S, short as source, consists of the (com-
plete) set of locations L(S) and a source-specific extraction function API: PxR+ ⇒
2L(S), where P is the domain of geographical points and R+ is the domain of non-
negative numbers. API(p, r) queries with a centroid p ∈ P and a radius r ∈ R and
returns a sample of locations Lr

p, such that for each l ∈ Lr
p, p(l) ∈ Circle(p, r) and

|Lr
p| ≤ MS, where MS is the maximal result size for S.

If S is Twitter, then L(S) is the complete set of tweets (all the tweets posted
ever on Twitter). A request with a point and a radius < p, r > will retrieve a
sample Lr

p of size at most MS of the underlying activities Lr
p(S) in Circle(p, r).

So, if MS = 100, then Lr
p ≤ 100 locations. Given that the requests are limited,

they need to be used wisely in order to retrieve the largest combined result
size. For example, if the first request retrieves the locations {l1, l4, l5, l6} and
the second request retrieves {l2, l4, l5, l6}, then the second request contributed
with only one new location (l2).
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Problem definition. Optimizing geo-social data extraction is the problem that
given a source Si and a number of requests n finds the sequence of pairs of
point and radius {< p1, r1 >,< p2, r2 > ... < pn, rn >} such that the size of

Li =
n⋃

j=1
L

rj
pj is maximized .

API limitations Krak Yelp Google Places Foursquare Twitter Flickr

Bandwidth 10K/month 5K/day 1/day (from 6/2018) 550/hour 180/15 min 3.6K/hour
Max Res. Size 100 50 20 50 100 500
Hist. Access N/A N/A N/A Full 2 weeks Full
Supp Results 4.3% 17.3% 0.5% 0.0% 0.0% 0.0%
Complete access yes yes yes yes 1% yes
Cost not stated negotiable from 200$/month from 599$/month 149$ - 2499$/month not stated

Table A.1: Summary of limitations of social networks

The problem aims to obtain a good compromise between the number of re-
quests and the number of locations Li. The optimal solution is a combination
of {< p∗1 , r∗1 >,< p∗2 , r∗2 > ... < p∗n, r∗n >} such that Li is maximal (the op-
timal L∗i ). Given the API limitations, trying exhaustively all possible values
and combinations of p and r to find L∗i is not feasible. Hence, we propose
solutions that are based on heuristics and assumptions. Before proposing our
solutions, let us first introduce the API limitations for each source.

4 Limitations of existing geo-social data sources

With regard to quantifying the limitations, we present preliminary results
from querying six sources: Twitter, Flickr, Foursquare, Yelp, Google Places,
and Krak. Krak is a Danish website that offers information about compa-
nies, telephone numbers, etc. In addition, Krak is part of Eniro Danmark A
/ S. which takes care of publishing The Yellow Pages. We queried all the
sources simultaneously for the region of North Denmark during November-
December 2017. With respect to gaining more data, we performed additional
requests using different keywords ("restaurant", "library", "cozy", etc) as well
as coordinates of the cities and towns in the region.
The API bandwidth refers to the number of requests allowed within a time
frame. For example, Twitter allows 180 requests in 15 min; meanwhile, Krak
has a time window of a month. Google Places allowed 1000 requests in a
day before June 2018, and now, just one request per day. If more requests
are needed, the cost is 0.7 US cents/request (first 200 USD free). In our data
extraction and experiments, we fix the bandwidth of Google Places to 1000
requests in a day (the former default). The maximal result size is the maxi-
mal number of results returned by a single request. For instance, an API call
in Flickr retrieves 250 photos, but in Google Places retrieves only 20 places.
The historical access is related to how accessible the earlier activity is. Direc-
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tories such as Yelp, Krak, and Google Places do not provide historical data;
they only keep track of the current state of their locations. Foursquare pro-
vides only the current state of its venues and historical access to photos and
tips by querying with venues. Flickr can go back in old photos, whereas
Twitter limits the results only to the last couple of weeks. The supplemental
results are data which do not belong in the query region, but they are still
added to the API result. For example, if we search for "Zara" shop in city X,
the API might return the "Zara" shop which is the closest to X but in city Y.
We noticed that supplemental results are present only in directories, which
aim to advertise and provide results anytime. Having access to the complete
dataset means that the API can query the whole dataset, not just a sample.
For example, the Twitter API accesses only a sample of 1% while others en-
able access to its complete dataset. Most social networks and directories offer
free APIs at no costs. They also offer premium or enterprise services with
monthly payment or pay-as-you-go services. While some sources have prede-
fined pricing plans (Twitter, Foursquare, and Google Places), others offer the
possibility to discuss the needs and the price (Yelp). Even though a premium
service has fewer restrictions, it is still needed to keep costs down.
A summary of the limitations of social networks is presented in Table. A.1.
Krak is restrictive with the bandwidth. Google Places has a very small result
size and only one request per day. Flickr is promising in terms of the API
limitations, while Twitter shows severe problems regarding the limitation to
access historical data. Foursquare and Yelp could be considered similar in
terms or limitations. The number of locations and the number of points
for each source are presented in Table A.2. Krak has a leading position with
almost two orders of magnitude more results than any other source, followed
by Flickr, Foursquare, Yelp, Google Places, and finally, Twitter. As for the
temporal density, we recorded that in Flickr there are around 17 photos per
day, in Twitter 10 photos per day, in Foursquare 0.03 tips and 0.36 photos per
day (See Subsection 4.2 in [4] for more details on data scarcity). To sum up,
a single source queried with the default API cannot provide a rich enough
dataset. In the next section, we propose a novel algorithm that uses one of
the sources as seed to extract data from the others and is capable of obtaining
up to 14.3 times more data than single source initial querying (Section 6.1).

Category Krak Yelp GP FSQ TW Flickr

Locations 143,073 473 380 1,097 115 4,084
Points 32,461 467 356 1,093 25 2,272

Table A.2: Locations and points per source
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5 Multi-source Seed-Driven approach

Section 4 studied the limitations of data extraction and quantified the perfor-
mance of each of the sources. In this section, we propose a main algorithm
and several adaptions to it that lead to an effective data extraction process.

5.1 Multi-Source Seed-Driven Algorithm

We will refer to the initial default API queries as Source Initial (SI) and
to the set of locations they retrieve as LI . Having no prior knowledge of
the underlying data L(Si) makes it challenging to choose which API calls to
perform. However, all the sources operating in the same region contain data that
maps to the same physical world. For example, if there is a bar in the point
(56.89 9.21) in Krak, probably around this point there might be this and other
locations in Yelp, Google Places, and Foursquare and even some activity such
as tweets, photos or check-ins in Twitter, Flickr, and Foursquare. This means
that if the SI of a source is rich in terms of locations, then its knowledge can be
used to improve the data extraction of the other sources. Hence, we propose
a seed-driven approach to extract locations from multiple sources. The main
idea is simple; selecting one (more complete) source as the seed and feeding the
points to the rest for data extraction.
Multi-Source Seed-Driven (MSSD) is a function that takes as input a
set of sources S1, S2...Sk and outputs their corresponding sets of locations
{LS1 , LS2 , ...LSk} obtained from the seed-driven approach in Alg. A.1. For
example, let us suppose that the seed provides a location with coordinates
(57.05, 9.92) as in Fig. A.1. We can search for locations across sources within
the circle with center (57.05, 9.92) and a predefined radius. The different
colors in the figure represent the different sources. We can discover three lo-
cations from the red source, two from the blue source and two from the green
source. The algorithm for the seed-driven approach is presented in Alg. A.1.
Selecting a good seed is important; thus, we start by getting the most com-
plete source (with the most points) in line 4. The points in the seed indicate
regions of interest and are used for the API request in the sources. So, for
each point in seed (for each p in P), we query the rest of the sources except
the seed source. Line 7 shows the general API call for each of the sources,
which is performed in correspondence to the requirements of the source. The
request takes the coordinates of p and the radius r. The search returns a set
of locations Lr

p, which is unioned to our source-specific output LS.

5.2 Optimizing the Radius

We can improve further MSSD by adapting the API request to the source.
Even though a big radius might seem like a better solution, note that the
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Fig. A.1: MSSD ap-
proach

(a) MSSD-D radius (b) MSSD-N radius (c) MSSD-R radius

Fig. A.2: MSSD radius

Algorithm A.1 Multi-Source Seed-Driven (MSSD)

Input: A set of sources {S1, S2, ...Sk}, radius r
Output: {LS1 , LS2 , ...LSk}

1: for each S in {S1, S2, ...Sk} do
2: LS ← LI →/* Initialize LS of each source with LI*/
3: end for
4: Let Sseed be the source with the most points in {S1, S2, ...Sk}, Lseed its

locations and P the distinct points in Lseed
5: for each p in P do
6: for each S in {S1, S2, ...Sk} - Sseed do
7: Lr

p ← API(p, r) →/* API request for the source S */
8: LS ← LS ∪ Lr

p
9: end for

10: end for
return {LS1 , LS2 , ...LSk}

API retrieves only a fixed size sample of the underlying data. Hence, if we
query with points that are nearby, we might retrieve intersecting samples. We
denote the maximal result size of the API for source S as MS. Let us consider
the example in Fig.A.3, where MS is 3, which means that the API can not
retrieve more than 3 tweets. If we query with a big radius as in the left part
of Fig.A.3, we might get 2 out of 3 tweets in the intersection. If the radius is
small, then we explore better the dense areas, but we might miss in sparser
ones like in the right part of Fig. A.3. The union of tweets in both searches is
just 4, where ideally it should have been 6. We propose two improvements:
using the knowledge of the seed to define the radius and recursively learn a suitable
radius for the source.
Multi-Source Seed-Driven Density-Based MSSD-D. The radius in this ver-
sion is defined by the density of points in the seed. Before the API requests,
we check the density of points in the search area in the seed, and we adapt the
radius accordingly. Fig. A.2a illustrates the intuition behind MSSD-D. We are
using the point in red as seed point p. Before performing any API call, we
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Fig. A.3: Radius adjustment
Fig. A.4: MSSD*

check how many points of the seed are in the search area ( N = 4 points in the
black circle with center p and initial radius r). Second, we adjust the radius
according to the density, so in this case, we divide the radius by 4 (rd = r

|N| ).
Finally, we perform the API call to the source with the red circle. Alg. A.1a
shows the alterations we make in Alg. A.1 for the radius calculation. We
add line 5.a and 5.b after line 5 in Alg. A.1. First, we find the density of the
region, and then, we adjust the radius depending on the density. We query
with the adjusted rd = r

|N| in line 7 of Alg. A.1.

Algorithm A.1a MSSD Density-Based (MSSD-D)

5.a: Find N = {q|q ∈ Circle(p, r)} →/* Find how dense the region
is*/

5.b: rd = r
|N| →/* Adjust the radius*/

Multi-Source Seed-Driven Nearest Neighbor MSSD-N. As the name sug-
gests, we use the nearest neighbor in the seed to define the radius. A simple
illustration of this idea is presented in Fig. A.2b. For each of the points p in
the seed (in red), we find the nearest neighbor q in the seed (in green), and
then we query with the adjusted radius rn = |p − q|. Note that we query
with a small radius in dense areas and a big radius in sparse ones. Alg. A.1b
instead adds line 5.a and 5.b after line 5 of Alg. A.1. It finds the nearest
neighbor q of the point p. Then, we set rn = |p− q|. The adjusted rn is used
to query the sources in line 7 of Alg. A.1.

Algorithm A.1b MSSD Nearest Neighbor (MSSD-N)

5.a: Find q = min
q∈Li
|p− q| →/* Find the nearest neighbor*/

5.b: rn = |p− q| →/* Adjust the radius*/

68



5. Multi-source Seed-Driven approach

Multi-Source Seed-Driven Recursive MSSD-R. The advantage of MSSD-D
and MSSD-N is that no API call is needed to adjust the radius because these
calculations are performed on the seed points. However, there is a need for a
better approach to assigning a suitable radius for a specific area. We propose
a solution that adjusts the radius while querying the source. If an area not
dense, we can identify it from the API call. However, in contrast to SQL
queries on a database where the operations are transparent, the operations of
API queries on an online source are a black box, and thus, we need to assume
a certain level of transparency. Therefore, we assume that if the area contains
less than MS locations, the API call will retrieve all of them.

Assumption A.1. For each source S in {S1, S2, ..., Sk}, if Circle(p, r) contains
Lr

p(S) locations such that |Lr
p(S)| ≤ MS, then API(p, r) will retrieve Lr

p = Lr
p(S).

The API retrieves a sample of size MS of the underlying data in a queried
region Circle(p, r). If the underlying locations Lr

p(S) are already less than
MS, then we assume that the API will retrieve all the locations lying in
Circle(p, r). For example, if there are 30 locations in Circle((56.78 9.67), 1km)
and MS = 50, then querying with p = (56.78 9.67) and r=1 km will return all
30 locations.

Theorem A.1. Let < p, r > be a pair of point and radius such that API(p, r) = Lr
p

where |Lr
p| < MS. Then, for all r′ such that r′ < r, Lr′

p ⊆ Lr
p.

Proof. Let us assume that there are |Lr
p(S)| locations in Circle(p, r) and

|Lr′
p (S)| locations in Circle(p, r′) . Since r′ < r, then the surface covered by

Circle(p, r′) is smaller than the surface covered by Circle(p, r) (πr′2 < πr2).
Consequently, Lr′

p (S) ⊆ Lr
p(S). According to Assumption A.1, since API(p, r)

retrieves |Lr
p| < MS, then Lr

p = Lr
p(S) and |Lr

p(S)| < MS. Given that
Lr′

p (S) ⊆ Lr
p(S) and |Lr

p(S)| < MS, we conclude that |Lr′
p | < MS and

Lr′
p = Lr′

p (S). Finally, from Lr′
p (S) ⊆ Lr

p(S), we derive that Lr′
p ⊆ Lr

p.

This is an important finding that will be used in defining MSSD-R. Since
there are less than MS locations retrieved by the API call in source S, there are
no new locations to be gained by querying with a smaller radius. Thus, we
propose a recursive method that uses Theorem A.1 as our stopping condition.
First, we query with an initial large radius, and if the result size is MS, then
we know this is a dense area, and we perform another request with a smaller
radius. The search stops when the number of returned results is smaller than
the maximal result size because according to Theorem A.1. The recursive
method is illustrated in Fig. A.2c. Let us suppose that we are querying source
S and the maximal result size is MS = 5. After querying with the green circle,
we get 5 locations so we know that the area is dense. We reduce the radius
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by α (rr =
r
α ) and query again with the blue circle. We get 5 locations again,

therefore we continue once more with a smaller radius. When we query with
the red circle, we get only 2 locations, so we stop. Alg. A.1c (MSSD-R) has
a modification where a new algorithm is called. Instead of querying with
a static r, we perform a recursive procedure to adjust the radius. Alg. A.2
takes the following parameters: the radius rr, the coefficient α which is used
to reduce the radius, the point p that comes from the seed, the queried source
S and the locations Lr

p. The stopping condition is retrieving less than MS
locations (line 3). However, we have no control over the number of additional
requests needed by MSSD-R, but under the following assumption, we know
that MSSD-R converges:

Assumption A.2. Let S be a source and L(S) its locations. For each point p there
exists a radius rp such that the surface covered by Circle(p, rp) contains less than
MS locations.

We assume that there will always be an rp such that |Lrp
p | < MS. MSSD-R

performs several requests decreasing r by α until rp is found and MSSD-R
reaches the stopping condition. Given Assumption A.2, we guarantee that
MSSD-R performs a finite number of requests.

Algorithm A.1c MSSD Recursive (MSSD-R)

6: for each S in {S1, S2, ...Sk} - Sseed do
7: Lr

p ← ∅
8: Lr

p ← RadRecursive(rr, α, p, S, Lr
p)

9: LS ← LS ∪ Lr
p

10: end for

Algorithm A.2 RadRecursive

Input: rr, α, p, S, Lr
p

Output: Lr
p

1: R← API(p, rr, S) →/* Query S with rr*/
2: Lr

p ← Lr
p
⋃

R
3: if |R| < MS then
4: return Lr

p →/* The area is not dense*/
5: else
6: RadRecursive( rr

α , α, p, S, Lr
p) →/* Call with new rr*/

7: end if
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5.3 Optimizing the Point Selection

All MSSD algorithms are based on exhaustive querying. However, some seed
points might be quite close to each other, resulting in redundant API requests.
We propose MSSD* which clusters the seed points using DBSCAN [39] (a
clustering algorithm suitable for spatial data and robust to noise) and queries
with the centroids of the clusters. If the results size is maximal, then there
is a possibility that this is a dense area. Afterward, we apply DBSCAN on
the union of the points of the current cluster and the points retrieved from the API
request. Depending on the data distribution of the source, we move the focus
to the dense areas that we discover. We stop when the result size of the
request is less than the maximal (based on Theorem A.1).

Algorithm A.2a RadRecursive*

Input: rr, α, < p, Cp >, S, ε, m, Lr
p

Output: Lr
p

6: {C}′ ← DBSCAN(Cp
⋃

R, ε
α , m

α ) →/* DBSCAN on the union of
Cp and R with new parameters*/

7: for each < c′, C′ > do
8: RadRecursive*( rr

α , α, < c′, C′c >, S, ε
α , m

α , Lr
p)

9: end for

Fig. A.4 shows a simple example of MSSD*. The seed points come from
the seed, whereas the blue ones are in the source. The initial DBSCAN will
cluster together (A, B, C), (D, E), (F,G, H) and I. After the querying with the
centroids of these clusters, only clusters (A, B, C) and I will continue further.
The new clusters for (A, B, C) will be A, B and (C, K, L), where K and L
are points from the source. For cluster I, we query with the centroid of (I,
J, M). In the third step cluster (I, J, M) is divided to I, (J,M) and N, where
N is a new point discovered from the second step. MSSD* is formalized in
Alg. A.3. After a source is chosen, its points are clustered with DBSCAN
(line 5) using ε as minimal distance between points and m as the number
of points that a cluster should have. DBSCAN returns the set of clusters
{C}. For each centroid c of the cluster C, we call RadRecursive* (Alg. A.2a),
which is similar to its parent version, RadRecursive (Alg. A.2) regarding the
stopping condition and the adaptive radius but differs from line 6 and on
(the else clause). If the area is dense, then we split the cluster by taking into
consideration the union Cp

⋃
R of points in the cluster Cp and the retrieved

points from the source R. We cluster Cp
⋃

R with DBSCAN in line 6 and we
receive a new set of clusters {C′}. For each centroid c′ of the cluster C′ we
call the algorithm again with the adjusted parameters. Note that in the case
of Twitter, the majority of results R is polygons. Therefore we modify line 6
in Alg. A.2a with (i) the centroids of the polygons and we denote this version
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of MSSD*-C or (ii) the nearest point of the polygon to the queried point p,
and we denote this version as MSSD*-N.

Algorithm A.3 MSSD* algorithm

Input: A set of sources {S1, S2, ...Sn}, radius r
Output: {L∗S1

, L∗S2
, ...L∗Sk

}
1: for each S in {S1, S2, ...Sk} - Sseed do

2: LS ← LI =
k⋃

i=1
Li →/* Initialize each LS with LI*/

3: end for
4: Let Sseed be the source with the most points in {S1, S2, ...Sk}, Lseed its

locations and P the distinct points in Lseed
5: {C} ← DBSCAN(P), ε, m)
6: for each S do
7: for each < c, C > do
8: Lr

p ← ∅
9: Lr

p ← RadRecursive*(r, α,< c, Cc >, S, ε, m, Lr
p)

10: LS ← LS ∪ Lr
p

11: end for
12: end for

return {L∗S1
, L∗S2

, ...L∗Sk
}

MSSD* has these advantages: (i) MSSD* manages better the requests by using
the centroids of clusters rather than all the points in a cluster, (ii) MSSD* is
not sensitive to parameters because it uses an adaptive algorithm to learn
them for each of the sources, and (iii) while querying, MSSD* adapts the
center of the circle depending on the locations found by the previous query.
Let us now suppose that the optimal combination of pairs of < p∗, r∗ >
that retrieve the maximal L∗ exists. In order to compare our solution to the
optimal, let us first prove the submodularity of our problem.

Theorem A.2. Optimizing the data extraction based on API calls is a monotone
submodular problem.

Proof. An API call takes < p, r > as parameters and retrieves Lr
p locations.

Let us denote as γ(p, r) the gain (new locations) that API(p, r) brings. Note
that an extra API call is effective as long as it contributes to the union of the
results of the previous calls. To prove the submodularity, we need to show
that γ(P′ ∪ p, r) ≥ γ(P ∪ p, r) if P′ ⊂ P. Let us consider a set of points

P and P′ such that P′ ⊂ P. The locations retrieved from P′ are
⋃|P′ |

i=1 Lr
pi

and the locations retrieved from P are
⋃|P|

i=1 Lr
pi

. Since P′ ⊂ P,
⋃|P′ |

i=1 Lr
pi
⊆⋃|P|

i=1 Lr
pi

. Let us consider a new point p. and Lr
p the result of API(p, r).
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Since
⋃|P′ |

i=1 Lr
pi
⊆ ⋃|P|

i=1 Lr
pi

, then (Lr
p ∩ (

⋃|P′ |
i=1 Lr

pi
)) ⊆ (Lr

p ∩ (
⋃|P|

i=1 Lr
pi
)). As a

result, γ(P′ ∪ p, r) ≥ γ(P ∪ p, r). To prove the monotonicity, for every P′ ⊆ P,

|⋃|P′ |i=1 Lr
pi
| ≤ |⋃|P|i=1 Lr

pi
|. So, the more we increase the set of seed points,

the more locations we get. It is simple to show that
⋃|P|

i=1 Lr
pi
= (

⋃|P′ |
i=1 Lr

pi
) ∪

(
⋃|P−P′ |

i−i Lr
pi
) so (

⋃|P′ |
i=1 Lr

pi
) ∪ (

⋃|P−P′ |
i−i Lr

pi
) ⊇ ⋃|P′ |

i=1 Lr
pi

. Hence, |⋃|P′ |i=1 Lr
pi
| ≤

|⋃|P|i=1.

Our MSSD* tries to solve the data extraction problem by providing a solu-
tion that starts with initial centroids and then splits further if the area looks
promising in terms of density. However, we extract only MS locations in one
call, and this sample might not be representative if the amount of the actual
locations in the area may be quite large. So, if the sample of the MS points
misses some dense areas, our DBSCAN will classify those as outliers, and we
will not query further. Thus, our solution is greedy because it makes a locally
optimal solution regarding which API calls to perform in step i + 1 based on
the information of step i.

Theorem A.3. The greedy solution MSSD* of our monotone submodular problem
performs at least 1− 1

e as good as the optimal solution in terms of maximizing the
number of locations, where e is the base of the natural logarithm.

A greedy approach to a monotone submodular problem is guaranteed to
be at least 1 − 1

e as good as the optimal solution [40]. The proof uses the
submodularity and the monotonicity to show the ratio between the greedy
and the optimal solution.

Proof. Let L∗ be the result of the optimal solution from points P∗ and Lk
the greedy solution provided by MSSD* for n requests. Note that L∗ is not
the same as the total locations L(S) of the source S but instead the opti-
mal solution given P∗ starting seed points and obeying the limitations of

the API. Due to the monotonicity, we can write:
⋃|P∗ |

i=1 Lr
pi
≤ ⋃|P∗∪P′ |

i=1 Lr
pi

=⋃|P′ |
i=1 Lr

pi
+ ∑n

j=1 γ(pj, r) ≤ ⋃|P′ |
i=1 Lr

pi
+ n(

⋃|P′+1|
i=1 Lr

pi
−⋃|P′ |

i=1 Lr
pi
) and

⋃|P∗ |
i=1 Lr

pi
−⋃|P′ |

i=1 Lr
pi
≤ n(

⋃|P′+1|
i=1 Lr

pi
− ⋃|P′ |

i=1 Lr
pi
). We rearrange as:

⋃|P∗ |
i=1 Lr

pi
− ⋃|P′ |

i=1 Lr
pi
≤

n((
⋃|P∗ |

i=1 Lr
pi
− ⋃|P′ |

i=1 Lr
pi
) − (

⋃|P∗ |
i=1 Lr

pi
− ⋃|P′+1|

i=1 Lr
pi
)) and we use δi to repre-

sent
⋃|P∗ |

i=1 Lr
pi
− ⋃|P′ |

i=1 Lr
pi

so we can rewrite: δi ≤ n(δi − δi+1) and finally
δi+1 ≤ (1− 1

k )δi. So, for every k ≤ n we can write δk ≤ (1− 1
n )

kδ0. Note that

δ0 =
⋃|P∗ |

i=1 Lr
pi
− ⋃|∅|

i=1 Lr
pi

=
⋃|P∗ |

i=1 Lr
pi

. Moreover, for all x ∈ R, 1− x ≤ e−x.

So finally, we can write that δk ≤ (1− 1
n )

k ⋃|P∗ |
i=1 Lr

pi
≤ e−

k
n
⋃|P∗|

i=1 Lr
pi . By substi-

tuting δk with
⋃|P∗ |

i=1 Lr
pi
−⋃|Pk |

i=1 Lr
pi

, rearranging and finally replacing
⋃|Pk |

i=1 Lr
pi
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with its result Lk and
⋃|P∗ |

i=1 Lr
pi

with L∗, we have: Lk ≥ (1− e−
k
n )L∗ and for

l = k (lower bound) we have: Lk ≥ (1− 1
e )L∗.

6 Experiments

In this section, we test our approach on the sources presented in Section 4
and compare with the existing baselines.

6.1 MSSD Experiments

We run MSSD algorithms using Krak as the seed source as it is the richest
in terms of locations, points, and categories. We compare the results of the
baseline (the initial locations of sources SI) to MSSD-F which uses a fixed
radius of 2 km (Alg. A.1), MSSD-D with a density-based approach to define
the radius (Alg. A.1a), MSSD-N with a nearest-neighbor method to define a
flexible radius (Alg. A.1b) and MSSD-R with a recursive method that starts
with a radius of 16 km (the largest values accepted by all sources) and reduces
the radius by a coefficient α = 2 (Alg. A.1c). Some APIs allow only an integer
radius in the granularity of km, so α = 2 is the smallest integer value accepted.
Fig. A.6 illustrates the improvement in the extracted data volume from each
source by each version of MSSD over SI. Krak is not included since it is the
seed. Google Places (GP) has the highest improvement of 98.4 times more
locations extracted by MSSD-R compared to the initial ones from SI. Flickr
had 4,084 locations initially, which become 4.3 times more with MSSD-F and
above 9.5 times more with MSSD-D, MSSD-N and MSSD-R. In Foursquare
(FSQ) and Yelp, MSSD-F extracts 3 and 2 times more locations respectively,
but MSSD-D, MSSD-N, and MSSD-R retrieve up to 3.5. Twitter returns 10.7
times more with MSSD-R but still has a low number of locations overall.
These values highlight that in spite of their different scopes, all the sources relate
to the same physical world. MSSD-R performs the best with an improvement
of 14.3 times more than SI but with extra requests that in the case of Twitter
and GP can reach up to 8 times more than MSSD-F, MSSD-D and MSSD-N.
We ran the optimized version MSSD* (Alg. A.3) for each of the sources with
initial radius of 16 km and initial m = 10 and ε = 500 meters as parameters
of DBSCAN. m, ε and r are recursively reduced by α = 2. We compared
MSSD-F, MSSD-D, MSSD-N, MSSD-R and MSSD* regarding the number of
requests performed and the locations retrieved. The results for each source
are presented in Fig. A.5. The number of requests is in the x-axis, whereas
the number of locations is expressed as the percentage of the total of distinct
locations extracted by all methods. MSSD-R provides the highest percentage
of locations (above 95%) for all the sources but considerably more requests.
For instance, for GP (Fig. A.5b) and for Twitter (Fig. A.5d), MSSD-R need re-
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Fig. A.5: Requests versus locations for different MSSD algorithms with Krak as seed

spectively 3.8 and 8.7 times more requests than the MSSD versions with fixed
number of requests (MSSD-F, MSSD-D, MSSD-N). For the same number of
requests, MSSD-N provides a higher percentage of locations compared to
MSSD-F and MSSD-D for all the sources. MSSD* is the most efficient in terms
of requests. For all sources except Google Places, MSSD* gets around 90%
of the locations with around 25% of the requests of MSSD-F, MSSD-D and
MSSD-N. With regard to MSSD-R, MSSD* uses 12%-15% of MSSD-R requests
for Flickr, Yelp and Foursquare, 8.5% of MSSD-R requests for Google Places
and 2.7% of MSSD-R requests for Twitter. In Google Places, MSSD* can re-
trieve only 40% of the locations, because of its small result size of Google
(Table A.1). MSSD-N extracts 2 times more locations than MSSD* but with
3 times more requests. In Twitter, MSSD*-C (with centroids) retrieves 20%
more locations than MSSD*-N (with the nearest neighbor) using the same
number of requests. To conclude, MSSD* guarantees the best compromise
for all the sources.
Setting α and radius r. In this experiment, we test different values of α and
r for MSSD*. When α is bigger, or r is smaller, fewer requests are performed,
some areas are missed, and consequently, fewer locations are retrieved. Table
A.3 provides the trade-offs in terms of percentage of requests and percentage
of locations of MSSD* with regards to MSSD-R for each α (while fixing the
radius at 16 km) and for each r (while fixing α at 2)(See Appendix B.2 in
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Sources
Req
vs loc

Alpha Radius

2 4 6 8 10 12 14 16 1 4 8 12 16

FSQ
% req 13.2% 13.0% 12.9% 12.9% 12.9% 12.9% 12.9% 12.9% 12.8% 12.9% 13.1% 13.3% 13.2%
% loc 88.3% 78.1% 75.4% 74.8% 73.0% 71.5% 70.3% 69.5% 43.2% 82.9% 86.4% 88.1% 88.3%

Flickr
% req 15.8% 15.4% 15.2% 15.1% 15.0% 15.0% 15.0% 15.0% 13.2% 14.4% 15.3% 15.7% 15.8%
% loc 96.5% 91.9% 86.9% 85.1% 82.9% 81.4% 80.3% 79.0% 49.1% 88.5% 94.8% 95.8% 96.5%

GP
% req 9.3% 9.0% 8.8% 8.7% 8.6% 8.5% 8.5% 8.4% 7.6% 9.0% 9.3% 9.3% 9.3%
% loc 38.4% 34.3% 32.9% 32.4% 31.6% 30.9% 30.4% 30.1% 33.6% 37.2% 37.3% 38.2% 38.4%

Yelp
% req 17.5% 17.4% 17.4% 17.4% 17.4% 17.4% 17.4% 17.4% 17.3% 17.4% 17.4% 17.4% 17.5%
% loc 98.2% 95.8% 93.7% 95.1% 93.4% 90.6% 89.8% 89.7% 51.1% 94.2% 97.7% 98.3% 98.2%

Twitter-C
% req 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%
% loc 76.8% 58.6% 58.1% 57.1% 55.7% 52.8% 52.3% 52.3% 53.4% 61.5% 60.0% 58.9% 76.8%

Twitter-N
% req 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%
% loc 99.5% 99.4% 99.0% 98.6% 98.3% 98.2% 97.9% 97.8% 86.4% 97.0% 97.1% 98.4% 99.5%

Table A.3: % of req. vs % of loc. for MSSD* relative to MSSD-R depending on α and r
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the full version of the paper [4] for details.). In all the cases, the additional
requests of MSSD* with small values of α are rewarded with a higher per-
centage of locations. For example, for 0.3% more requests, we retrieve 18.8%
more locations in Foursquare. In Flickr, for 0.8% more requests, we retrieve
17.5% more locations. Similarly, starting with a big radius is safer and more
rewarding. For instance, Foursquare and Yelp perform less than 0.4% of the
requests to get around 46% more locations when starting with r=16km com-
pared to r=1km. A risk-averted selection of parameters turns out to provide a good
trade-off between the number of requests and number of locations because MSSD*
adapts to the density of the region and still manages the requests carefully. Thus,
the algorithm is robust to different parameter settings, and fine-tuning is not
needed.
Choosing a different seed. In order to show that our MSSD algorithms ap-
ply to any type of seed (preferable a rich source), we ran MSSD-D, MSSD-N,
MSSD-R and MSSD*using as seed Flickr, Foursquare, Yelp, Google Places,
and Twitter. The results are presented in Fig. A.7. Even though Krak
performs the best, the other sources which provide significantly fewer seed
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Fig. A.7: MSSD results with different seeds for all sources

points (see Table A.2) are able to achieve comparable results. Recall that Krak
has 14 times more seed points than Flickr, 30 times more than Foursquare,
70 times more than Yelp, 91 times more than Google Places and 295 times
more than Twitter. Apart from Krak, MSSD* performs the best for Flickr,
Yelp, and Foursquare. For Flickr, MSSD* with Yelp seed points retrieves 6.5
times more points than SI. For FSQ, MSSD* with Flickr and Yelp seed points
retrieves 2.9 and 2.5 times more points than SI, respectively. For Yelp, MSSD*
with Flickr seed points retrieves 3.5 times more data than SI, whereas Krak
retrieves 3.6 times more while having 70 times more seed points. For Twitter
and Google Places, MSSD-R performs the best; 7.4 times more locations than
SI with Flickr seed points in Twitter and 23.6 times more locations with Yelp
seed points in Google Places. The performance of each algorithm in terms of
the number of requests versus the number of locations can be found in [4].
An interesting observation is that MSSD* sometimes performs better than
MSSD-R. Even when the seed source is not rich, MSSD* manages to achieve good
results due to its ability to adapt the next call according to the distribution of the
source.
Elapsed time of the experiments. The elapsed time is more important than
the CPU time because of the bandwidth limitations. Our experiments were run
simultaneously for all the sources in order to avoid the temporal bias, so all
bandwidth limitations were respected at the same time. The elapsed time

77



Paper A.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  1  2  3  4  5  6  7  8

N
u

m
b

e
r 

o
f 

lo
c
a

ti
o

n
s

Number of requests (10
3
)

MSSD*-C
MSSD*-N
Snowball
Self-seed

(a) Twitter

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  1  2  3  4  5  6  7  8  9

N
u

m
b

e
r 

o
f 

lo
c
a

ti
o

n
s

Number of requests (10
3
)

MSSD*
Snowball
Self-seed

(b) Flickr

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  1  2  3  4  5  6  7  8  9

N
u

m
b

e
r 

o
f 

lo
c
a

ti
o

n
s

Number of requests (10
3
)

MSSD*
Self-seed

(c) Foursquare

 0

 200

 400

 600

 800

 1000

 1200

 0  1  2  3  4  5  6  7  8

N
u

m
b

e
r 

o
f 

lo
c
a

ti
o

n
s

Number of requests (10
3
)

MSSD*
Self-seed

(d) Yelp

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2  4  6  8  10  12

N
u

m
b

e
r 

o
f 

lo
c
a

ti
o

n
s

Number of requests (10
3
)

MSSD*
Self-seed

(e) Google Places

Fig. A.8: Number of request versus number of locations for MSSD*, Snowball and Self-seed

for all the sources is around 1 week for the MSSD-F, MSSD-D and MSSD-
N, 2 weeks for MSSD-R and 1.7 days for MSSD*. If the algorithms are run
independently, it takes on average 1 day per source for MSSD-F, MSSD-D
and MSSD-N, 2 days for MSSD-R and less than 6 hours for MSSD*.

6.2 Comparison with Existing Baselines

The technique using linked accounts [33–35] requires users that have declared
their account in another social network. From our initial querying of the
sources, there were only 0.27 % of users on Flickr with linked accounts to
Twitter and 0.003 % of users on Twitter with linked accounts to Foursquare.
Hence, a comparison with this technique makes little sense. The keyword-
based querying shows limited applicability in location-based data retrieval.
We conducted a small experiment using the names of cities and towns in
North Denmark as keywords. For Flickr and Twitter, the precision (% of
data that falls in the queried region) was just 31.6% and 0.85% respectively,
while the recall was less than 5%, relative to MSSD*. Foursquare and Yelp
offer a query by term or query by location expressed as a string. The former
[query by term] does not retrieve any data when queried with a city or town
name. If we express the location as a string, the precision is 93% and 85% for
Foursquare and Yelp respectively, and the recall is less than 19%, relative to
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Source Algorithm
Real
80%

Synthetic
20%

Req
Real
70%

Synthetic
30%

Req
Real
50%

Synthetic
50%

Req

Flickr
MSSD-R 85.62% 87.16% 84.44% 85.70% 82.71% 83.70%
MSSD* 64.91% 66.22% 10.16% 63.59% 65.01% 10.12% 62.12% 64.28% 9.80%

Yelp
MSSD-R 97.17% 99.44% 97.10% 99.4% 97.10% 99.23%
MSSD* 72.23% 77.81% 12.74% 68.89% 76.94% 12.49% 66.42% 72.59% 11.78%

FSQ
MSSD-R 94.27% 96.69% 94.19% 95.51% 94.07% 95.26%
MSSD* 67,75% 74,57% 10.67% 66,15% 70,34% 10.62% 63,60% 68,65% 10.45%

GP
MSSD-R 92,42 % 78,76% 91,60% 76,15% 89,94% 69,33%
MSSD* 34,48% 35,76% 13,85% 45,80% 33,59% 9,14% 38,09% 33,99% 13,49%

Twitter
MSSD-R 81,16 % 97,70% 81,16% 95,66% 80,92% 87,23%
MSSD*-C 45,30% 63,31% 2,45% 44,37% 62,09% 2,44% 48,88% 68,51% 2,45%
MSSD*-N 69,79% 97,70% 2,53% 69,11% 94,51% 2,53% 60,90% 86,61% 2,53%

Table A.4: MSSD-R and MSSD* compared to ground truth

MSSD*. In GP, the data retrieved is only the towns and the cities themselves.
For example, if we query with the keyword "Aalborg", the API will return
Aalborg city only and not any other places located in Aalborg (1 request per 1
location). Even though the precision is 100%, the recall is only 0.07% relative
to MSSD*. Thus, we compare to Snowball and to the technique mentioned
in [36].

Nr of loc. Nr of users Time period

Twitter Snowball 1421 35 2015-2018
Self-seed 461 101 2017-2018
MSSD*-C 936 195 2017-2018
MSSD*-N 1237 231 2017-2018

Flickr Snowball 2885 46 2005-2018
Self-seed 14910 1007 2005-2018
MSSD* 39427 1740 2005-2018

Table A.5: Snowball, Self-seed and MSSD* comparison

To compare with Snowball ( [30, 31]), we formed the seed with the users found
in Section 4. We used the same number of requests for Snowball and MSSD*.
Snowball is based on users, and consequently, it can be applied only to Twitter
and Flickr (Foursquare API no longer provides the check-in data unless the
crawling user has checked in himself at the venue). The technique mentioned
in [36] (we will refer to it as Self-seed) starts with querying a specific location
to get initial points. Later, other requests are performed using the seed points
of the previous step. We ran Self-seed on all our sources for the same number
of requests as MSSD* (results in Fig. A.8). Snowball in Twitter retrieves more
locations in the region than versions of MSSD* (MSSD*-C and MSSD*-N) and
Self-seed (Fig. A.8a) because in the case of user-based calls, the bandwidth is
200 (100 for location-based) and the historical access is unlimited (2 weeks
for location-based). In the case of Flickr, MSSD* outperforms Snowball and
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Self-seed with 14 and 3 times more locations respectively. Snowball gets most
of the data in the region in the beginning and degrades later because when
using Snowball, while we traverse the network, there is more and more data which
falls outside the region of interest. MSSD* yields a higher number of locations
compared to Self-seed: 5.5 times more locations for Foursquare, 9 times more
locations for Yelp and 3.5 times more locations for Google Places.
Self-seed in the case of directories stops yielding new locations after approxi-
mately 500 requests. In the case of directories, after some steps, the seed points in
Self-seed stop growing, converging into a dead end. Recall that Google Places has
a result size of 20 and is denser in terms of data, so it has new locations for
the subsequent steps, avoiding thus the convergence. The number of users
and the time period covered are presented in Table A.5. Despite the slight ad-
vantage of Snowball on Twitter in terms of the number of locations, the data
comes only from 35 users compared to 231 for MSSD*-N and 101 for Self-
seed. Moreover, the time period covered by the tweets in Snowball is 3 years
compared to 1 year of MSSD* versions. Regarding Flickr, the time period of
the photos is the same, but the number of photos and the number of users
are 1-2 orders of magnitude larger for MSSD* compared to Snowball. Self-seed
can retrieve a better variety of users and locations compared to Snowball but
still contains only half the number of locations and users of MSSD*.

6.3 MSSD-R and MSSD* Result Completeness

Given the API limitations, we cannot get the actual ground truth of source
locations. Instead, we performed the following experiment: first, we union
all the locations sets from all our algorithms (SI, MSSD-F, MSSD-D, MSSD-N,
MSSD-R and MSSD*) to create a dataset of real data; second, we learn the
distribution D of the locations by dividing the area in a grid of 1km x 1km
and assigning each grid cell d a probability pd ∼ Dd; third, we generate syn-
thetic locations in the area and assign them to a grid cell d with the estimated
probability pd. We consider the synthetic and the real data as ground truth.
We implemented "simulated offline" API functions for each source, respect-
ing the maximal result size for each of them. We ran our MSSD-R and MSSD*
on the ground truth data for different ratios of synthetic data as in Table A.4.
The data retrieved by MSSD-R is above 94% of the ground truth in Yelp and
Foursquare and above 80% of the ground truth in Flickr, Google Places, and
Twitter. MSSD* performs the best in Yelp and Twitter (MSSD*-N) with above
70% of the ground truth for all ratios of real versus synthetic data, followed
by Foursquare and Flickr with above 64%. What is more important, MSSD-R
and MSSD* are seen to be robust regardless of the ratio of synthetic to real data.
Although MSSD* retrieves less than MSSD-R, this result is achieved using
only around 10% of the requests of MSSD-R. In the case of Google Places,
MSSD* gets around 40% of the ground truth because of the small result size
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of only 20 locations per request. In the case of Twitter, MSSD*-N performs
better than MSSD*-C.

6.4 Discussion of Experiments

Selecting an external seed of points improved the number of locations re-
trieved and avoid converging into a dead end like in Self-seed. Moreover,
the attempts to adapt the radius of the search according to the search re-
gion prove to be effective in retrieving more locations. MSSD-F, MSSD-D
and MSSD-N extract on average up to 11.1 times more data than SI but if
we adapt the radius according to the source (MSSD-R), we extract up to 14.3
times more locations than SI. MSSD* provides a very good trade-off between
the number of requests and number of locations as MSSD* extracts up to 90%
of the data of MSSD-R with less than 16% of its requests. Our comparison
with the Snowball and the Self-seed baseline shows that our seed-driven algo-
rithm is better in terms of extracting (i) up to 14 times more locations for all
the sources, (ii) in the case of Twitter and Flickr, the activity originates from
a larger base of users (up to 6.6 times more), and (iii) in the case of directories,
our MSSD avoids converging into a dead end. In a ground truth dataset, for
most of the sources, our MSSD-R algorithm finds 82 % - 99 % of the ground
truth, while MSSD* with 10% of the requests is able to guarantee 63 % - 73%
of the ground truth.

7 Conclusions and future work

This paper was motivated by the need for an efficient algorithm that extracts
recent geo-social data. We formulated the problem of data extraction as an
optimization problem which aims to maximize the retrieved locations while
minimizing the requests. We identified the API limitations for six sources:
Krak, Yelp, Google Places, Foursquare, Twitter, and Flickr. Then, we pro-
posed a seed-driven algorithm that uses one source as the seed to feed the
points as API parameters to the others. MSSD versions extracted up to 14.3
times more data than SI. Our optimized algorithm MSSD* retrieved 90% of
the locations with less than 16% of the requests, outperforming MSSD-D and
MSSD-N. Interesting directions for future research include applying machine
learning for data extraction, seed selection based on other criteria (diversity
in semantics, maximal spread of points, relation to the source), data integra-
tion, and data fusion of location-based data from multiple geo-social sources.
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Abstract

Besides the traditional cartographic data sources, spatial information can also be de-
rived from location-based sources. However, even though different location-based
sources refer to the same physical world, each one has only partial coverage of the
spatial entities, describe them with different attributes, and sometimes provide con-
tradicting information. Hence, we introduce the spatial entity linkage problem, which
finds which pairs of spatial entities belong to the same physical spatial entity. Our
proposed solution (QuadSky) starts with a time-efficient spatial blocking technique
(QuadFlex), compares pairwise the spatial entities in the same block, ranks the pairs
using Pareto optimality with the SkyRank algorithm, and finally, classifies the pairs
with our novel SkyEx-* family of algorithms that yield 0.85 precision and 0.85 re-
call for a manually labeled dataset of 1,500 pairs and 0.87 precision and 0.6 recall
for a semi-manually labeled dataset of 777,452 pairs. Moreover, we provide a theoret-
ical guarantee and formalize the SkyEx-FES algorithm that explores only 27% of the
skylines without any loss in F-measure. Furthermore, our fully unsupervised algo-
rithm SkyEx-D approximates the optimal result with an F-measure loss of just 0.01.
Finally, QuadSky provides the best trade-off between precision and recall, and the
best F-measure compared to the existing baselines and clustering techniques, and
approximates the results of supervised learning solutions.

© 2020 ACM. Reprinted, with permission from Suela Isaj, Torben Bach
Pedersen, and Esteban Zimányi. Multi-Source Spatial Entity Linkage. In:
IEEE Transactions on Knowledge & Data Engineering (TKDE), 2020. IEEE.
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1 Introduction

Web data and social networks are growing in terms of information volume
and heterogeneity. Almost all online sources offer the possibility to introduce
locations (geo-tagged entities accompanied by semantic details). A specific
type of sources whose primary focus is locations is location-based sources, such
as Google Places, Yelp, Foursquare, etc. In contrast to cartographic data
sources, locations in location-based sources have a hybrid form that stands
between a spatial object and an entity. We refer to them as spatial entities
since they are spatially located but also identified by other attributes such
as the name of the location, the address, keywords, etc. Spatial entities play
a key role in several systems that rely on spatial information such as geo-
recommender systems, selecting influential locations, search engines using
geo-preferences, etc.
However, while a spatial object is identified only by the coordinates, this is
not the case for spatial entities. Different spatial entities might co-exist in
the same coordinates (shops in a shopping mall), or the same entity might
be located in different but nearby coordinates across different sources (e.g.,
"Chicago Roasthouse" appears in Yelp and Google Places with coordinates 82
meters apart). The identity of a spatial entity is the combination of several
attributes. Unfortunately, the identity of a spatial entity is sometimes diffi-
cult to infer due to the inconsistencies within and among the sources; each
location-based source contains different attributes; some attributes might be
missing and even contradicting. For example, source A contains the spa-
tial entity "Lygten" in (57.436 10.534) with the keywords "coffee", "tea", and
"cocoa and spices", while source B contains "Restaurant Lygten" in (57.435
10.533) with the keyword "restaurant". We need a technique that can auto-
matically decide whether these two spatial entities are the same real-world
entity. The problem of finding which spatial entities belong to the same phys-
ical entity is referred to as spatial entity linkage or spatial entity resolution. We
use the term entity linkage since we do not merge the entities [1].
There are several works that apply entity linkage in various fields [2–4, 4, 5,
5–10] but only little work on spatial entities [11–14], even though they are cen-
tral in geo-related research. The entities in the majority of the entity linkage
research refer to people; thus, the methodologies and the models are based on
the similarities that two records of the same individual would reveal. More-
over, these works do not address the spatial character of spatial entities. As
for the works in spatial entity integration [11–13], their main contribution is a
tool rather than an algorithm. What is more, the methods propose arbitrarily
attribute weights and score functions without experimentation nor evalua-
tion. In contrast to [11–13], the skyline-based algorithm (SkyEx) proposed
in [10] is free of scoring functions and semi-arbitrary weights, and achieves
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good results. However, SkyEx is dependent on a threshold number of sky-
lines k, which can only be discovered through experiments, as the authors
do not provide methods for estimating k. To sum up, on the one hand, there is
a growing amount of information about spatial entities, both within a single source
and across sources, which can improve the quality of the geo-information; on the
other hand, the spatial entity linkage problem is hard to resolve not only because of
the heterogeneity of the data but also because of the lack of appropriate and effective
methods.
In this paper, we address the problem of spatial entity linkage across dif-
ferent location-based sources. We significantly extend a previous conference
paper [14]. As an overall solution building on [14], first, we propose a method
that uses the geo-coordinates to arrange the spatial entities into blocks. Then,
we pairwise compare the attributes of the spatial entities. Later, we rank
the pairs according to their similarities using our novel technique, SkyRank.
Finally, we introduce three approaches (SkyEx-F, SkyEx-FES, SkyEx-D) for de-
ciding whether the pairs of compared entities belong to the same physical
entity. Our contributions are: (1) we introduce QuadSky, a technique for link-
ing spatial entities and we evaluate it on real-world data from four location-
based sources; (2) we propose an algorithm called QuadFlex that organizes
the spatial entities into blocks based on their spatial proximity, maintaining
the complexity of a quadtree and avoiding assigning nearby points into dif-
ferent blocks; (3) to rank the pairs by their similarity, we propose a flexible
technique (SkyRank) that is based on the concept of Pareto optimality; (4)
to label the pairs, we propose the SkyEx-* family of algorithms that consid-
ers the ranking order of the pairs and fixes a cut-off level to separate the
classes; (5) we introduce two threshold-based algorithms: SkyEx-F that uses
the F-measure to separate the classes, and SkyEx-FES, an optimized version of
SkyEx-F, which provides a theoretical guarantee to prune 73% of the skyline
explorations of SkyEx-F; (6) we propose SkyEx-D, a novel algorithm that is
fully unsupervised and parameter-free to separate the classes.
Contributions 1 and 2 originate from [14], contributions 5 and 6 are new,
and 3 and 4 are significantly improved compared to [14]. The work in [14]
reported very good results compared to the baselines, but had the following
limitation: the proposed threshold-based labeling algorithm SkyEx needed
the threshold number of skylines k as input, and there were no proposed
solutions on how to fix k, apart from experimenting with different values. We
address this limitation by first modifying the original SkyEx in [14] as to only
rank and not label the pairs, and we refer to it as SkyRank. Then, we delegate
the classification problem to three new algorithms, namely SkyEx-F, SkyEx-
FES and SkyEx-D. The experiments in [14] attempt to fix k using precision,
recall and F-measure. We now formalize this rationale in our novel SkyEx-
F algorithm. We improve further by providing a theoretical guarantee that
SkyEx-F can be stopped before exploring the whole dataset, and propose the
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optimized SkyEx-FES that prunes 80% of the skyline explorations of SkyEx-
F. Furthermore, we introduce a novel approach for estimating the number
of skylines (SkyEx-D), which is fully unsupervised and parameter-free and
closely approximates the threshold-based versions (SkyEx-F and SkyEx-FES).
In the present paper, we provide a new set of experiments for SkyEx-FES
and SkyEx-D, and compare with SkyEx-F, supervised learning and clustering
techniques.
The remainder of the paper is structured as follows: first, we describe the
state of the art in Sect. 2; then, we introduce our approach in Sect. 3; later, we
detail the stages of our approach: the spatial blocking in Sect. 4, comparing
the pairs in Sect. 5, ranking the pairs in Sect. 6, and estimating the kth level
of skyline in Sect. 7; we analyze the complexity of our solution in Sect. 8; we
provide experiments in Sect. 9; and finally, we conclude in Sect. 10.

2 Related Work

In this section, we describe some works on entity resolution, spatial data inte-
gration, and spatial entity linkage.
Entity resolution. The entity resolution problem has been referred in the lit-
erature with multiple terms including deduplication, entity linkage, and entity
matching [4, 15]. Entity resolution has been used in various fields such as
matching profiles in social networks [2], bioinformatics data [3], biomedical
data [16], publication data [4, 5], genealogical data [6], product data [4, 5],
etc. The attributes of the entities are compared, and a similarity value is as-
signed. The decision of whether to link two entities or not is usually based
on a scoring function. However, finding an appropriate similarity function
that combines the similarities of attributes and decides on whether to link or
not the entities is often difficult. Several works use a training set to learn a
classifier [7, 8, 17], others base the decision on a threshold derived through
experiments [9, 18]. Other approaches decide the include the uncertainty of a
match into the decision [19]. Finally, matching the entities can also be based
on the feedback of an oracle [4, 5] or of a user [5].
Spatial data integration. There are several works on integrating purely spa-
tial objects. Spatial objects differ from spatial entities mainly because a spa-
tial object is fully determined by its coordinates or its spatial shape whereas
a spatial entity, in addition to being geo-located, has a well-defined iden-
tity (name, phone, categories). The works on spatial object integration aim
to create a unified spatial representation of the spatial objects from single/-
multiple sources. Schafers at al [20] integrate road networks using rules for
detect matching and non-matching roads based on the similarity in terms of
the length, angles, shape, as well as the name of the street if available. The
solutions in [21–24] are purely spatial and discuss the integration of spatial
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objects originating from sensors and radars to have a better representation
of the surface in 2D or even in 3D. These approaches cannot apply to spatial
entities.
Spatial entity linkage. Accommodating the challenges of spatial enti-
ties for the entity resolution problem has been specifically addressed in
[11–14, 25, 26]. The work in [25] is a bridge between the works in spatial
data integration and spatial entity linkage because the entities have names,
coordinates, and types but similarly to spatial objects, they refer to landscapes
(rivers, deserts, mountains, etc.). The method used in [25] is supervised and
requires labeled data. Moreover, even the similarity of the attribute "type" is
learned through a training set. Regarding [11–13], the main contribution of
these works relies on designing a spatial entity matching tool rather than an
integration algorithm. In [13], the spatial entities within a radius are com-
pared with each other, and the value of the radius is fixed depending on the
type of spatial entity. For example, the radius is 50 m for restaurants and
hotels, but 500 m for parks. All attributes (except coordinates) are compared
using the Levenshtein similarity. Since the name, the geodata and the type of
the entity are always present, they carry two-thirds of the weight in the scor-
ing function whereas the weights of the website, the address and the phone
number are tuned to one-third. The prototype of the spatial entity matching
in [12] relies on a technique that arbitrarily uses an average of the similarity
scores of all textual attributes without providing a discussing on this choice.
Similarly to [11, 12], the main contribution of the work in [13] is designing a
tool for spatial entity integration. The underlying algorithm considers spatial
entities that are 5 m apart from each other and compares the name of the en-
tities syntactically and the metadata related to an entity semantically. Finally,
the decision is taken using the belief theory [26]. The works in [11–13] lack
an evaluation of the algorithms. The work in [14] proposes a scalable spatial
quadtree-based blocking technique that not only fixes the distance between
the spatial entities but also controls the density of the blocks. Then, the spatial
entities of the same block are compared on their name (Levenshtein), address
(custom) and categories (Wu&Palmer using Wordnet). Finally, a threshold-
based algorithm (SkyEx) is used to separate the classes. However, instead of
using fixed thresholds for each attribute similarity, SkyEx abstracts the sim-
ilarities into skylines and needs only one threshold number of skylines k to
separate the classes. The authors provide experiments and evaluations, nev-
ertheless, they lack estimation techniques for fixing k. The present paper uses
the solution in [14] for the spatial blocking and the pairwise comparisons. We
use the skylines for the labeling process as in SkyEx, but we propose three
new algorithms (SkyEx-F, SkyEx-FES and SkyEx-D) to separate the classes,
fixing k internally.
Summary. The general entity resolution approaches propose interesting so-
lutions, but they do not consider the spatial character of a spatial entity. The
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majority are designed to match entities that represent individuals (profiles
in social networks, authors and publications, medical records, genealogical
connections, etc.) or even linking species in nature. The proposed solutions
for entity resolution in individuals, either supervised or based on an experi-
mental threshold, are learned on human entity datasets. One can not merely
assume the resemblance of behaviors in a human entity dataset to a spatial
entity one. The solutions in species in nature are based on domain-specific
algorithms that have little to no applicability in other fields. There is little
specific work in spatial entities [11–13], mostly focusing on a tool for spatial
data integration rather than on the algorithm. In all these works, the scoring
function is chosen arbitrarily and no evaluation provided.

3 Spatial Entity Linkage

In this section, we introduce the problem definition and our overall solu-
tion. The basic concept used in this work is a spatial entity such as places,
businesses, etc. Spatial entities originate from location-based sources, e.g.,
directories with location information (yellow pages, Google Places, etc.) and
location-based social networks (Foursquare, Gowalla, etc.).

Definition B.1. A spatial entity s is an entity identified uniquely within a source I,
located in a geographical point p and accompanied by a set of attributes A = {ai}.

The attributes connected to s can be categorized as: spatial: the point where
the entity is located, expressed in longitude and latitude; textual: attributes
that are in the form of text such as name, address, website, description, etc.;
semantic: attributes in the form of text that enrich the semantics behind a
spatial entity, e.g., categories, keywords, metadata, etc.; date, time or number:
other details about a spatial entity such as phone, opening hours, date of
foundation, etc. An example of a spatial entity originating from Yelp can be
a place named "Star Pizza" in the point (56.716 10.114), with the keywords
"pizza, fast food", and with address "Storegade 31". The same spatial entity
can be found again in Yelp or other sources, sometimes having the same
attributes, more, less, or even attributes with contradictory values. Thus,
there is a need for an approach that can unify the information within and
across different sources in an intelligent manner.
Problem definition: Given a set of spatial entities S originating from multiple
sources, the spatial entity linkage problem aims to find those pairs of spatial entities
〈si, sj〉 that refer to the same physical spatial entity.
We propose QuadSky, a solution based on a quadtree data partitioning and
skyline exploration. The overall approach is detailed in Fig. B.1. QuadSky
consists of four main parts: spatial blocking (QuadFlex), pairwise compar-
isons, ranking the pairs (SkyRank), and labelling the pairs (the SkyEx-* fam-
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Fig. B.1: QuadSky approach

ily of algorithms). S contains all spatial entities. We propose QuadFlex, a
quadtree-based solution that can perform the spatial blocking by respecting
the distance between spatial entities and the density of the area. The output
of QuadFlex is a list of leaves with spatial entities located nearby. Within the
leaves, we perform the pairwise comparisons of the attributes. Then, we rank
the compared pairs based on the skylines (concepts detailed in Sect. 6) using
the SkyRank algorithm. In order to decide which pairs dictate a match and
which not, we propose the SkyEx-* family of algorithms (SkyEx-F, SkyEx-FES,
and SkyEx-D) that finds which skyline level best separates the pairs that re-
fer to the same physical spatial entity (the positives class) from the rest (the
negative class). In the following sections, we detail each of the phases of
QuadSky. We use the notations in Table B.1 (We will explain them gradually
during the paper).

4 Spatial Blocking

Since spatial proximity is a strong indicator of finding a match, the first step
is to group nearby spatial entities in blocks. Several generic blocking tech-
niques have been discussed in [27, 28], but mostly based on textual attributes
and not applicable to spatial blocking. We propose a quadtree-based solu-
tion (QuadFlex) that uses a tree data structure but also preserves the spatial
proximity of spatial entities. A quadtree is a tree whose nodes are always
recursively split into four children when the capacity is filled [29]. After the
quadtree is constructed, the points that fall in the same leaf are nearby spa-
tially. Hence, these leaves are good candidates to be spatial blocks. However,
the existing quadtree algorithm needs to be adapted for spatial blocking.
First, a quadtree needs a capacity (number of points) as a parameter. The
capacity is not a meaningful parameter for spatial blocking, while the density
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Notation Description

s A spatial entity with a point p and a set of attributes {ai}
S A set of spatial entities {si}
Q A QuadFlex structure used for spatial blocking
P A set of pairs {〈si, sj〉}
δa The similarity of a pair in terms of attribute a
u(〈si, sj〉) The utility of a pair 〈si, sj〉
Skyline(k) A skyline of pairs {〈si, sj〉} in the level k
K The total number of skylines
k A variable indicating the level of skyline
k f A k value fixed by SkyEx-F and SkyEx-FES
kd A k value fixed by SkyEx-D
Pk Pairs of P associated with a skyline
P+ A subset of pairs in P classified as positive
P− A subset of pairs in P classified as negative
F1(k) The F-measure in the kth level of skyline
µd The mean of the distances between the two classes.
µd(k) The function measuring µd in in each k level of skylines
µ′d(k) The first derivative of µd(k)

Table B.1: Notations used throughout the paper

of the area is a better candidate. For example, if the area is too dense (e.g.,
city center), even though the capacity is not reached, a further split would
be more beneficial. On the contrary, two points in the countryside (e.g., a
farm) might be farther apart, but they still might be the same entity. Second,
a quadtree does not limit the distance between points. Even though two
points might be in an area that respects the density, if they are quite distant
from each other, it is not necessary to compare them. The maximal distance
between two points in a child is the diagonal of the area (all quadtree children
are rectangular). We used m, the diagonal of an area, as a parameter that
controls the distance of points rather than comparing all distances between
all spatial entities. Finally, a quadtree splits into four children, and sometimes
nearby points might fall into different leaves. We modify the procedure of the
assignment of the points into a child by allowing more than one assignment.
Fig. B.2 shows the modifications that we do to the construction of the tradi-
tional quadtree for our version QuadFlex. The traditional quadtree divides
the area of each parent into four smaller areas, the children. A point belongs
only to one child. In our modification, the area will split into 4 children in
the same way as a quadtree (at 0.5 of the height and 0.5 of the width of the
parent), but when we assign a point to a child, we will consider including
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Algorithm B.1 QuadFlex algorithm

Input: A set of entities S = {si}, diagonal m, density d
Output: The leaves QuadFlex Q Q.leaves() ;

1: Create Q(m, d) where Q has the dimensions of the bounding box of S
2: for each s in S do
3: Q.insert(s) // Insert s into the QuadFlex
4: end for

return Q.leaves()

Method insert (s)
5: if this.children 6= then
6: Indexes← getIndex(s) // Find where s belongs
7: for each i in Indexes do
8: this.child[i].insert(s) // Insert s to the children it belongs
9: end for

10: end if
11: if this.diagonal > m or this.density > d then
12: Split the current object this into 4 children
13: end if
14: Indexes← getIndex(s)
15: for each i in Indexes do
16: this.child[i].insert(s)
17: end for

return

Method getIndex (s)
18: Let vertical-left and vertical-right be the lines that pass at 0.25 and 0.75 of

the width of this, respectively
19: Let horizontal-up and horizontal-down be the lines that pass at 0.25 and

0.75 of the height of this, respectively
20: if s is left of vertical-right and above horizontal-down then
21: Indexes.add(1) // s fits in child[1]
22: end if
23: if s is right of vertical-left and above horizontal-down then
24: Indexes.add(2) // s fits in child[2]
25: end if
26: if s is left of vertical-right and below horizontal-up then
27: Indexes.add(3) // s fits in child[3]
28: end if
29: if s is right of vertical-left and below horizontal-up then
30: Indexes.add(4) // s fits in child[4]
31: end if

return Indexes
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Fig. B.2: QuadFlex versus quadtree

points that fall shortly outside the border in the current child, too. For ex-
ample, in Fig. 2, QuadFlex physically splits in the same way as the quadtree,
but the red dashed line shows the area that will be considered for including
neighboring points. The red points are in the overlapping regions and will
be included in more than one child. Algorithm B.1 details the procedure for
retrieving the spatial blocks with QuadFlex. The algorithm creates the root
of the QuadFlex tree with the bounding box of the data and parameters m
and d (line 1). Then, it inserts each spatial entity into the QuadFlex (line 3)
and finally returns its leaves. The methods insert(s) and getIndex(s) are self
calls on the QuadFlex object (this). The insertion procedure is similar to the
traditional quadtree except that the constraint is not the capacity but the di-
agonal of the area m (maximal distance between points) and the density of
the area d. Hence, if the diagonal of the QuadFlex is more than the distance
m or the density is larger than our defined value d (line 12), the QuadFlex,
similarly to a quadtree, will split into four children. However, in contrast to
the traditional quadtree, a spatial entity might belong to more than one child.
The method getIndex(s) gets the list of indexes of the children where the new
point will be assigned. Even though Q splits into 4 children in the same way as
a quadtree, the lines vertical-left, vertical-right, horizontal-up, and horizontal-down
allow a logical overlap of the areas and thus, neighboring spatial entities will not be
separated.
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5 Pairwise Comparisons

After the spatial blocking, we perform a pairwise comparison of spatial enti-
ties that fall in the same leaf. Next, we describe the metrics for different types
of attributes.
Textual Similarity. We measure the textual similarity of spatial entities using
the edit distance between the words. The Levenshtein distance [30] between
string s1 and string s2 d(s1, s2) is the number of edits (insertion, deletion,
change of characters) needed to convert string s1 to string s2. We define the
similarity as:

TextSim(s1, s2) = (1− d(s1, s2)

max(|s1|, |s2|)
) (B.1)

Example B.1
Let us consider "Skippers Grill" and "Skippers Grillbar". The Levenshtein
distance to convert "Skippers Grill" to "Skippers Grillbar" is 3 (3 insertions).
The lengths of the first and the second string are 14 and 17 respectively.
So, TextSim("Skippers Grill", "Skippers Grillbar") = 1− (3/max(14, 17) =
0.8235.

Note here that not all textual attributes can be handled similarly. String sim-
ilarity metrics are usually appropriate for attributes like names, usernames,
etc. Some other textual attributes require other metrics that need to be cus-
tomized. In this paper, we consider the address as a specific textual attribute.
The similarity between two addresses cannot be measured with Levenshtein,
Jaccard, Cosine, etc. since a small change in the address might be a giant
gap in the spatial distance between the entities. For example, "Jyllandsgade
15 9480 Løkken" and "Jyllandsgade 75 9480 Løkken" have a distance of 1
and Levenshtein similarity of 0.963, but they are 650 meters apart. However,
"Jyllandsgade 15 9480 Løkken" and "Jyllandsgade 15 9480 Løkken Denmark"
have a distance of 8 and Levenshtein similarity of 0.772, but they are the same
building. In [11, 12] the address is considered as another textual attribute. In
our case, we perform some data cleaning (removing commas, punctuation
marks, lowercase, etc.), and then we search for equality or inclusion of the
strings. We assign a similarity of 1.0 in the case of equality, 0.9 in the case of
inclusion, and 0.0 otherwise.
Semantic Similarity. The similarity of fields like categories, keywords, or
metadata cannot be compared only syntactically. Sometimes, several syn-
onyms are used to express the same idea. Thus, we need to find a similarity
than considers the synonyms as well. We use Wordnet [31] for detecting the
type of relationship between two words and Wu& Palmer similarity measure
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(wup) [32]. The semantic similarity between two spatial entities is the max-
imal similarity between their list of categories, keywords, or metadata. The
semantic similarity of the spatial entities s1 and s2 is:

SemSim(s1, s2) = max{wup(ci, cj)} (B.2)

where ci ∈ C1 and cj ∈ C2 and C1 is the set of keywords of s1 and C2 is the
set of keywords s2.

Example B.2
Let us take an example of two spatial entities s1 and s2 and their
corresponding semantic information expressed as keywords C1 =
{"restaurant", "italian"} and C1 = {"food", "pizza"}. The similarity between
each pair is wup("restaurant", "food") = 0.4, wup("italian", "food") = 0.4286,
wup("restaurant", "pizza") = 0.3333 and wup("italian", "pizza") = 0.3529.
Finally, the semantic similarity of s1 and s2 is SemSim(s1, s2) = max{0.4,
0.4286, 0.3333, 0.3529} = 0.4286.

Date, Time, or Numeric Similarity. The similarity between two fields ex-
pressed as numbers, dates, times or intervals is a boolean decision (true or
false). Even though the similarity of these fields relies only on an equality
check, most of the effort is put in data preparation. For example, the dif-
ferent phone formats should be identified and cleaned from prefixes. Other
data formats like intervals (opening hours) might require temporal queries
for similarity, inclusion, and intersection of the intervals. In this paper, we
do not compute the similarity between these attributes as we use them to
construct the ground truth.

6 Ranking the Pairs

After the pairwise comparison, the pairs have n similarity values, one for
each attribute. We denote as δa the similarity of two spatial entities for at-
tribute a. For example, a pair 〈s1, s2〉 is represented as {δa1 , ..., δan}. The
problem that we need to solve is which 〈si, sj〉 pairs indicate a strong similar-
ity to be considered for a match. The related work solutions propose using a
classifier [7, 8, 33] or experimenting with different thresholds [9, 18, 33]. We
propose a more relaxed technique that uses Pareto optimality [34] for filter-
ing the positive class. A solution (x, y) is Pareto optimal when no other solution
can increase x without decreasing y. The points in the same Pareto frontier or
skyline have the same utility. Widely used in economics and multi-objective
problems, Pareto optimality is free of weights and similarity score functions.
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In the context of entity resolution, the skylines provide a selection of points
that are better than others, but without quantifying how much better. The
pairs that refer to the same physical spatial entity (the positive class) are ex-
pected to have high values of δ, and consequently, form the first skylines.
Under the assumption that the best values of δ belong to the pairs from the
positive class, we label the pairs up to the kth skyline as the positive class and
the rest as the negative. To the best of our knowledge, we are the first to propose a
Pareto optimal solution for detecting matches for an entity linkage problem.

Definition B.2. An attribute a is positive discriminating if its similarity δa indi-
cates a positive class rather than a negative.

An example of a positive discriminating attribute is the similarity of name. A
higher name similarity is more likely to indicate a match than a non-match.
For example, the name similarity for Mand & Bil and Mand og Bil is 0.75, and
for Solid and Sirculus ApS is 0.16 . Hence, the former pair has a higher proba-
bility of being a match than the second. Examples of negative discriminating
attributes are the edit distance between two names. If the distance between
the names is high, then the pairs are less likely to be a match.

Definition B.3. The utility of a positive discriminating attribute a, denoted as ua,
is the contribution of the attribute similarity δa to reveal a match, using Pareto

Optimality (δa
Pareto Optimality7−−−−−−−−−→ ua).

Each attribute similarity contributes to the labeling problem. Intuitively, a
higher similarity δa of a has a higher utility than a lower value of δa. Hence,
if δa(〈s1, s2〉) > δa(〈s3, s4〉), then ua(〈s1, s2〉) > ua(〈s3, s4〉).

Definition B.4. The utility of a pair denoted as u(〈si, sj〉) is sum of the utilities of
each of the attributes. u(〈si, sj〉) = ∑n

i=1 uai .

Note that the utility of a pair is not the sum of the similarities of the attributes
(u(〈si, sj〉) 6= ∑n

i=1 δai ) but the sum of their utilities (u(〈si, sj〉) = ∑n
i=1 uai ).

Nevertheless, u(〈si, sj〉) = ∑n
i=1 δai = ∑n

i=1 uai is a specific case.

Definition B.5. A skyline of level k, Skyline(k), is the collection of pairs 〈si, sj〉 of
equal utility such that uSkyline(k) > uSkyline(k+1).

Obviously, Skyline(1) is the Pareto optimal frontier with the best values of
δa. In order to continue with Skyline(2), the points of Skyline(1) are removed,
and the frontier is calculated again. Every time we explore level k, the values
in Skyline(k) are the ones with the highest utility. This means that there is
no other point in a lower level that can bring a higher utility to the positive class.
This procedure continues until all the pairs are ranked according to their
skyline. Algorithm B.2 formalizes our proposed procedure Skyline Ranking
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(SkyRank) for ranking the pairs. The input is the set of pairs P produced from
the QuadFlex blocking technique and the number of skyline levels k that we
will explore. We find the points with the best combinations of δ that dominate
the rest of the points and, consequently, have a higher utility (line 3). Then,
we put these points in Pk, which keeps the explored skylines and remove
them from P (line 5). We stop when all the pairs are assigned to a skyline.

Algorithm B.2 Skyline Ranking (SkyRank)

Input: A set of pairs P = {〈si, sj〉}
Output: A set of pairs and their skyline Pk = {〈si, sj〉, k} ;

1: Pk ← ∅
2: while |Pk| < |P| do
3: Filter Skyline(k) = {〈si, sj〉} | ∀〈s′, s′′〉 ∈ P − {〈si, sj〉} , u(〈si, sj〉) >

u〈s′, s′′〉} // Find the Skyline
4: Add Skyline(k) to Pk // Move the skyline to Pk
5: P = P− Skyline(k)

return Pk

After obtaining the ranking, we can assume that the pairs of the first few
skylines are more likely to refer to the same physical entity than the rest.

6: Assumption B.1. The probability that a pair is labeled positive is inversely propor-
tional to its skyline level.
The assumption considers that for all 〈si, sj〉and〈s′i, s′ j〉 in P such that 〈si, sj〉 ∈
Skyline(k), 〈s′i, s′j〉 ∈ Skyline(k’) and k < k′, then 〈si, sj〉 is more likely to be a
match than 〈s′i, s′j〉.

7 Estimating k

In this section, we estimate the skyline level k that separates the positive from
the negative class. We introduce two different methods for fixing the value
of k: threshold-based (SkyEx-F and SkyEx-FES) and unsupervised (SkyEx-D).

7.1 SkyEx-F and SkyEx-FES

In contrast to the threshold-based methods used in entity resolution prob-
lems [12, 13, 18] where we have to find a threshold for each similarity of the
attributes and then a threshold for the similarity function that aggregates the
similarity scores, we have simplified our problem to only one parameter: k.
We need to find the value of k that best separates the classes. As a mea-
sure of a "good model", we choose to use the F-measure, given that our data
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tends to be unbalanced [35–37]. In the context of our problem, we define true
positives TP as pairs that refer to the same physical entity and are correctly
labeled as positives; true negatives TN as pairs referring to different physical
entities and are correctly labeled as negatives; false positive FP as pairs that
do not refer to the same physical entities but are wrongly labeled as positives;
FN as pairs that refer to the same physical entity but are wrongly labeled as
negatives. Thus, the precision is p = TP

TP+FP , the recall is r = TP
TP+FN and

F-measure (F1) = 2 p∗r
p+r .

Algorithm B.3 SkyEx-F

Input: A set of pairs P = {〈si, sj〉}
Output: A set of positive pairs P+ and a set of negative pairs P− ;

1: Pk ← ∅, F ← ∅
2: while |Pk| < |P| do

Lines 3-5 as Algorithm B.2 ...
6: P+ ← Pk
7: P− ← P
8: Calculate F1(k)
9: Add 〈k, F1(k)〉 to F

10:11: Find k f such that F1(k f ) = max(F1(k)) ∀k ∈ {1, |F|}
12: P+ ← ⋃k f

k=1 Skyline(k)
13: P− ← P− P+

return P+, P−

The higher the k, the more unlikely it is for a pair in the kth skyline to belong
to the positive class (Assumption 1). SkyEx-F explores the first skylines and
stops at the value of k = k f that achieves the highest F-measure. To find k f ,
we rank the pairs as in Algorithm B.2, but we add some extra calculations
within the loop (lines 6-9) and find the optimal k f (line 7) in Algorithm B.3.
SkyEx-F calculates the F-measure for each skyline k by considering the pairs
up to the kth skyline as positive and the rest as negative. We add F1(k) to the
set F, which keeps track of the evolution of F-measure while exploring more
skylines. We find k f as the value of k that achieves the highest F-measure in
F. The pairs from the first to the k f level of skyline are labeled as positive
and the rest as negative. Note that SkyEx-F explores all the skylines and then,
finds the threshold k f . However, we can optimize Algorithm B.3 by stopping
at k f before going through the full dataset P. Let us highlight some properties
of p and r.

Property B.1. The recall is a monotonically non-decreasing function with respect to
the number of skylines k.
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Proof. The recall after k skylines is r (k) = TP(k)
TP(k)+FN(k) . While we move to

the next, k + 1th skyline, we label more pairs as positive, so the probability
of finding true positives TP is higher. Thus, TP(k+1) ≥ TP(k). As for the
denominator, it is always the same despite the skyline level because the true
positives are fixed in P and are independent of our labelling. This means
that if we find more true positives (TP), then we automatically decrease the
false negatives (FN). Hence, TP(k+1)+ FN(k+1) = TP(k) + FN(k). We can then
show that TP(k+1)

TP(k+1)+FN(k+1) ≥
TP(k)

TP(k)+FN(k) so r (k+1) ≥ r (k).

Property B.2. Given Assumption 1, the precision is a monotonically non-increasing
function with respect to the number of skylines k.

The precision is TP
TP+FP . However, TP + FP is what our algorithm labels as

positive, which means all the pairs belonging to skylines up to the kth level.
According to Assumption 1, FP increase at a higher rate than TP while mov-
ing to higher k values. A proof of monotonic decreasing precision for sys-
tems that rank the results considering their relevance (like our skylines) can
be found in [38].

Theorem B.1. The F-measure function with respect to the number of skylines k is
increasing until a point or interval, and after that, it cannot increase again.

Proof. Let us suppose that while moving deeper into the skylines, we found
a peak point k or peak interval [ki, k j] with F1(k) as the corresponding F-
measure. Note that for a peak interval the F-measure is constant. Since F1(k)
belongs to a peak point/interval, there exists a F1(k + ε) ε skylines after k
such that F1(k + ε) < F1(k). Now, let us know suppose that we can find an-
other optimum in k + δ such that F1(k + δ) > F1(k). Since F1(k + ε) < F1(k),
consequently F1(k + δ) > F1(k) > F1(k + ε). F1 = 2 p∗r

p+r can be rewritten

as F1 = 2
1
p +

1
r

. So, we can rewrite: 2
1

p(k+δ)
+ 1

r(k+δ)

> 2
1

p(k)+
1

r(k)
> 2

1
p(k+ε)

+ 1
r(k+ε)

.

Using Property 2, p(k + δ) ≤ p(k + ε), so: 2
1

p(k+ε)
+ 1

r(k+ε)

≥ 2
1

p(k+δ)
+ 1

r(k+ε)

, which

means that: 2
1

p(k+δ)
+ 1

r(k+δ)

> 2
1

p(k+δ)
+ 1

r(k+ε)

. According to Property 1, this in-

equality cannot hold, because r(k + δ) ≥ r(k + ε). Thus, our assumption
of F1(k + δ) > F1(k) cannot hold and F1(k) remains the highest value of
F-measure.

Theorem 1 ensures that once we find the peak in the F-measure function,
we can stop finding all the skylines and label the pairs accordingly. Con-
sequently, we can allow Algorithm B.3 to stop early. The modifications of
Algorithm B.3 are reflected in Algorithm B.3a. We use the same procedure as
in Algorithm B.3, but we do not need to keep track of each of the skylines and
their corresponding F-measures. Rather, we only keep the previous F-measures
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Algorithm B.3a SkyEx-F Early Stop (SkyEx-FES)

Input: A set of pairs P = {〈si, sj〉}
Output: A set of positive pairs P+ and a set of negative pairs P− ;

1: Pk ← ∅, Fprevious ← 0
2: while |Pk| < |P| do

Lines 3-8 as Algorithm B.3...
9: if F1(k) < Fprevious then

10: break
11: else
12: Fprevious ← F1(k)
13: end if

14:15: P+ ← ⋃k f
k=1 Skyline(k)

16: P− ← P− P+

return P+, P−

in Fprevious. While moving to the next skyline, we calculate the F-measure and
the first time we notice a drop (line 9), we stop the loop (line 10) and return
both classes separated by the current k (lines 7-8)). Otherwise, we update
Fprevious to the current F-measure (line 12) and continue the search for the op-
timal k.

7.2 SkyEx-D

The methods described in the previous sections assume that the labels of the
pairs are present. In this section, we assume no information about the labels,
and thus, we propose a heuristic for fixing the value of k. The heuristic is
based on the distance between the positive and the negative class. We refer
to the k discovered by SkyEx-D as distance-based k or kd. Our classes are not
characterized by a small intra-class distance. Various patterns can reveal a
positive class; for example, a similar name but different category or similar
category and similar address, etc. Thus, the positive pairs, positioned in the
first skylines, are scattered and do not necessarily form a cluster. However,
they can still be separated from the rest, considering the distance to the neg-
ative class. Theoretically, the inter-class distance stays small when we are in
the first skylines (potential positives), then starts to increase while we move
into later skylines and finally falls again when we enter the deeper skylines
(potential negatives). SkyEx-D notices the increase of the inter-class distance
and sets kd accordingly. In order to have an approximation of the inter-class
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distance, we use the mean and denote it as µd as in Eq. 3.

µd =
∑ d(pk, p−k)

|Pk|
(B.3)

where |Pk| is the number of pairs from the 1st to the kth skyline, pk is a pair
in Pk, p−k is a pair in P− Pk, and d(pk, p−k) is the distance between pk and
p−k.
In order to fix kd, we monitor the value of µd while moving deeper into the
skylines. We denote by µd(k) the function of µd with regard to k. We use
the first derivative of µd(k), denoted as µ′d(k), to find the points where the
µd(k) function decreases. The intuition behind this approach is that in the
beginning, the distance µd(k) starts increasing, which means that the first
derivative has a positive slope (µ′d(k) > 0). Later, we enter the "grey area",
where there is a mix of potential positives and potential negatives. This is
where we need to stop because we might lose precision if we continue further.
In order to find the "grey area", we note when the first derivative changes its
slope to negative. In order to calculate µ′d(k), we estimate the value of µ′d(k)
in each point k as in Eq. 4:

µ′d(k) =
∂

∂k
≈ µd(k + 1)− µd(k)

1
(B.4)

In order to not be sensitive to small fluctuations in µ′d(k), we smoothen

slightly µ′d(k) with Gaussian function ( 1
σ
√

2π
e−(x−µ)2

/
2σ2

) using a small win-

dow. Then we monitor when µ′d(k) decreases for the first time and we set
kd accordingly. We modify Algorithm B.2 to accommodate this approach.
We calculate µ′d(k) for each point of k in line 7. Then, we have to find the
first negative value of the smoothened µ′d(k) (line 9) and fix kd accordingly
(line 10). Finally, we return the classes defined by kd in lines 16-17.
Summary. Algorithm B.4 estimates the skyline level k that best separates
the positive class from the negative class. Similarly to clustering techniques
that use heuristics to estimate their parameters, SkyEx-D uses the distance of the
positive class from the rest as an indicator of class separability. However, in con-
trast to clustering metrics, which focus on the robustness of clusters, this is
not a requirement for the SkyEx-* family of algorithms. The positive pairs do
not show similar patterns, but rather similar utilities, which can be better captured
by skylines (see Sect. 9.9). Experimentally, we show that our inter-class dis-
tance approach estimates kd very close to k f without loosing in F-measure.
In contrast to techniques that use a scoring function, the SkyEx-* family of
algorithms abstracts the concept of utility. Thus, no weights or similarity
function is needed. Even though the positive class can be characterized by
various patterns of attribute similarities, the SkyEx-* family of algorithms can
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Algorithm B.4 SkyEx-D

Input: A set of pairs P = {〈si, sj〉}
Output: A set of positive pairs P+ and a set of negative pairs P− ;

1: Pk ← ∅
Lines 2-6 as Algorithm B.2...

7: Calculate µ′d(k) in each k
8: while k < klast do
9: if smooth(µ′d(k)) < 0 then

10: kd ← k
11: break
12: else
13: k← k + 1
14: end if

15:16: P+ ← ⋃kd
k=1 Skyline(k)

17: P− ← Pk − P+

return P+, P−

still group together the positive class based on the high utility, while a clus-
tering technique would instead focus in grouping each pattern separately,
without putting the positive-class pairs together into one cluster. Moreover,
the flexibility of the SkyEx-* family of algorithms makes it applicable to all
problems where the expert knowledge on the contribution of the attributes is
missing. Finally, the SkyEx-* family of algorithms does not learn any behav-
ior, so there is no risk of overfitting.

8 Complexity Analysis of QuadSky

In this section, we discuss the time complexity of our algorithms and of our
QuadSky solution.
QuadFlex deals with points (not regions); thus, it behaves similarly to a point
quadtree. QuadFlex splits the same way as a quadtree, but in contrast to the
quadtree, the points can be assigned to more than one child. We construct
the QuadFlex structure only for forming the blocks. Hence, the construction
complexity is of interest to us. Let us denote by |S| the number of points
in S, c the smallest distance between any two points, and D1 and D2 the di-
mensions of the initial area containing all the points. Let us first estimate the
depth of QuadFlex. The distance c of any two points p1 and p2 in QuadFlex is
always less than the diagonal of the node they belong in. Given that Quad-
Flex allows neighboring points to be included in more than one child, this
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calculation needs to be modified. The physical diagonal of the initial (level 0)

node is
√

D2
1 + D2

2 . The diagonal of level i is
√

D2
1+D2

2
4i . To modify the calcula-

tion, we estimate the logical diagonals if QuadFlex would physically expand

to accommodate neighboring points, so: c ≤

√
3D2

1
2 +

3D2
2

2

4i Now, isolating i out

of this equation results in i ≤ log4

√
3
2 (D2

1+D2
2)

c = log4

√
3
2 + log4

√
D2

1+D2
2

c .

log4

√
3
2 ≈ 0.14 so we can discard it (less than one level): i ≤ log4

√
D2

1+D2
2

c .
For estimating the maximal depth, we need to add one more level (root) so

the depth is estimated as log4

√
D2

1+D2
2

c + 1. Finally, for constructing QuadFlex,

the complexity is O(|S|(log4

√
D2

1+D2
2

c + 1)).
SkyRank requires calculating the Pareto frontiers, which is time-consuming.
In the typical case, comparing the pairs P resulting from QuadFlex in terms

of all d dimensions has a O(2|P|
d
) time complexity [39], which is not scalable.

SkyRank uses the method proposed in [40], which first scales down the d-
dimensional domain and then pre-filters the data using a lattice. This yields
a time complexity of O(|P|2) for the first skyline. For the total number of K
skylines, the complexity is O(K|P|2).
SkyEx-F calculates the metrics while adding the next skyline to the positive
class; thus, these calculations do not add any complexity. Finally, we perform
a linear search on F to find the skyline with the highest F-measure. The size
of F is equal to K, so the complexity is O(K|P|2 + K).
SkyEx-FES stops earlier than SkyEx-F, avoiding a big part of the time-
consuming Pareto calculations. Given that the best pairs usually are focused
on the first skylines, the cut-off k� K. Moreover, according to Theorem 1, we
do not need to store F, so we avoid the linear search for the best F-measure.
The complexity is O(k|P|2).
SkyEx-D uses all K Pareto calculations and then, in order to estimate the
cut-off kd, it computes the distance between the positive class and the rest.
SkyEx-D creates a matrix where the rows are the positive class P+ and the
columns are the negative class data points |P| − P+, so the complexity is
P+ ∗ (|P| − P+). P+ ∗ (|P| − P+) = P+ ∗ |P| − (P+)

2 is the equation of a
vertical parabola that opens downwards −ax2 + bx + c, with the maximal
value at the vertex (− b

2a ). In our case, the maximum of P+ ∗ (|P| − P+) is

at |P|2 , resulting in a maximal complexity of |P|
2

4 . For each skyline k in K,

the maximal complexity is |P|
2

4 , thus, K |P|
2

4 for all. Note here that K � |P|
so it is far from a cubic complexity. SkyEx-D computes the mean distance

µd for each k, which can already be done within the |P|
2

4 complexity. Then,
we compute the derivative µ′d on the means, which has a linear complexity
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in K. Finally, we need another partial scan until kd (kd � K) where the
derivative µ′d becomes negative for the first time. Hence, the total complexity

is O(K|P|2 + K |P|
2

4 + K + kd) = O( 5K
4 |P|+ K + kd).

Summary . QuadFlex has O(n log n) complexity, the pairwise comparisons
have a linear O(n) complexity, while the SkyEx-* family of algorithms have
a quadratic complexity O(n2). However, there is a theoretical risk of a cu-
bic complexity in SkyEx-F and SkyEx-D if the number of skylines K = |P|.
This means that each skyline in K contains only one pair of entities, which
theoretically can happen but almost never happens in practice. Thus, the
algorithms have quadratic complexity in the average case. SkyEx-D has the
highest complexity, followed by SkyEx-F and SkyEx-FES. Overall, QuadSky
has a quadratic complexity.

9 Experiments

9.1 Dataset Description

The spatial entities that will be used in these experiments originate from
four sources, namely Google Places (GP), Foursquare (FSQ), Yelp, and Krak.
Krak (www.krak.dk) is a location-based source that offers information about
companies, enterprises, etc. in Denmark and is also part of Eniro Danmark
A / S., which publishes The Yellow Pages. The data is obtained by using
the available APIs and the algorithm detailed in [41]. The dataset consists
of 75,541 spatial entities where 51.50% comes from GP, 46.22% from Krak,
0.03% from FSQ, and 2.23% from Yelp (see Supp. Material Annex A for the
spread of these spatial entities on the map). The dataset is 69 MB. For a 100 m
blocking, there are 35,521 spatial entities that have at least one positive match
in the dataset, resulting in 27,102 pairs that need to be discovered. 7,795
of these pairs are within the same source, which shows that none of these
sources are free of duplicates. 3,546 of the same-source links come from GP,
3,789 from Krak, and 460 from Yelp. As for the different-source links, all the
sources overlap with each other, but the highest overlap of 17,405 pairs (90%
of different-source links) comes from Krak and GP.

9.2 QuadFlex Performance

In this section, we compare the performance of QuadFlex to the quadtree,
Fixed Radius Nearest Neighbors algorithm [42] (FNN), and having no index
at all (No-Index). FNN finds the neighbors that fall within a fixed radius
from each point. QuadFlex and the quadtree algorithm are implemented in
Java, while FNN is run on a Postgres database (https://www.postgresql.org)

107



Paper B.

using spatial indexes: GiST (optimized C implementation of B-trees and R-
trees) and SP-GiST
(optimized C implementation of quadtrees and k-d trees). Our dataset con-
tains 75,541 entities in the North Denmark region (around 16 towns, 7,933
km2), so the average density is not high, even though there are areas with high
density. A high data density means more pairs to compare. To test our Quad-
Flex on different data densities, we simulate up to 1,000,000 random points
from Aalborg (139 km2). Fig. B.3 shows the comparison of quadtree, QuadFlex
and FNN in terms of execution time (Fig. B.3a) and number of comparisons
(Fig. B.3b). The FNN versions with data are computed on the database, and
then the pairs are loaded back to the java implementation. The quadtree has
the lowest execution time, followed by QuadFlex. FNN SP-GiST is comparable
and sometimes even better than QuadFlex for small datasets. However, when
the size of the dataset increases, QuadFlex maintains an execution time that
is eight times less than FNN GiST and 3 times less than FNN SP-GiST. FNN
with SP-GiST index outperforms FNN GiST for all dataset sizes. No-Index
was very inefficient, up to 848 times slower than FNN Gist with data, and
up to 368,095 times slower than QuadFlex. Given that No-Index would have
dwarfed the other curves, it is not part of Fig. B.3a, but instead, refer to Fig.
2 in Supp. Material, Annex B. As for the number of comparisons, QuadFlex
enumerates 12 times more comparisons than quadtree. Moreover, QuadFlex
contains almost all (99.99%) comparisons of FNN, compared to the quadtree
that contains only 10% of FNN. Furthermore, given that the scalability of
QuadFlex is better than FNN, and QuadFlex is independent of the database
implementations, the loss of around 0.01% of comparisons is insignificant.
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Fig. B.3: Comparing quadtree, QuadFlex and FNN

108



9. Experiments

(a) precision and recall (b) F-measure

Fig. B.4: SkyEx-F performance on Dsample

(a) precision and recall (b) F-measure

Fig. B.5: SkyEx-F performance on Dfull

9.3 SkyEx-F Results

We ran QuadFlex with 100 m and no density restriction, and we obtained
777,452 pairs (1426 MB). Having the same website or phone is a strong indi-
cator of a match, so we use these attributes to infer the label. We refer to this
labeling as automatic labeling. However, cases with different phone number or
website but still the same entity, or same phone number but different entity
might occur. Hence, we manually checked the labels of a sample of 1,500
pairs of entities (1552 kB). We will refer to the sample of manually checked
pairs as Dsample and to the full dataset as Dfull. Checking the labels manually
on the full dataset of 777,452 pairs is unfeasible. Hence, we checked around
10,000 of the pairs, and for the rest, we rely on automatic labeling.
The results of SkyEx-F on Dsample and Dfull are presented in Figs. B.4 and B.5.
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(a) Actual classes (b) SkyEx classes

Fig. B.6: Positive (in pink) versus negative (in sky blue) classes for actual (a) and SkyEx-F (b)
results

The curves in Figs. B.4a and B.5a shows the evolution of p (y-axis) and r (x-
axis) while we move from one skyline to the next. The more we explore, the
more likely it is to retrieve more true positives and thus, improve the r. However,
the more we explore and label pairs as positives, the more likely it is to increase the
number of false positives, so the p degrades. The algorithm explores several trade-
offs; for example the points A and B are among the best. The point A with
0.87 p and 0.82 r in Fig. B.4a is the same best point in terms of F-measure as
well, so that is where SkyEx-F will fix k f . Fig. B.4b shows the levels of the
skyline, and the value of F-measure achieved. The highest value is 0.85 that
corresponds to k = 90. The evaluation on the full dataset yields lower values
(F-measure of 0.72) compared to the sample (F-measure of 0.85), which might
be a simple consequence of automatic labeling. Point A has 0.6 r and 0.87 p,
while B offers a higher r of 0.65 but a lower p of 0.76 (Fig. B.5b). To have an
idea of the real classes in Dfull and the skylines, we plotted their distribution
in Fig. B.6 (the actual positive classes in pink and the negative ones in sky
blue). It is noticeable that the positive class pairs are allocated in the highest
values of the dimensions. Despite the differences between both plots, SkyEx-
F shows promising results in separating the positive class from the negative
one with 0.6 r and 0.87 p.

9.4 Experimenting with Different QuadFlex Parameters

So far, we used QuadFlex blocking technique with 100 meters and no den-
sity restriction. In this section, we will evaluate our approach QuadSky for
different blocking parameters.
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Meters 1 20 40 60 80 100

Total 41053 118437 226331 372553 557421 777452
% of TP 17.11% 19.88% 11.28% 7.06% 4.82% 3.49%
Prec. 0.67 0.80 0.85 0.85 0.88 0.87
Rec. 0.60 0.69 0.65 0.64 0.61 0.61
F1 0.64 0.75 0.74 0.73 0.72 0.72

Table B.2: SkyEx-F results for different m

Changing m, no density limit In this experiment, we test different values of
m used in QuadFlex for creating spatial blocks. We test m values of 1, 20, 40,
60, 80, and 100 meters. The size of the dataset for each of them is presented
in Table B.2. The spatially closeby points are likely to be a match. Hence,
the percentage of the true positives is generally higher for smaller values of
m. An interesting case is m = 1, where the percentage of the true positives
(TP) is lower than m = 20. One would expect that points that are 1 meter
apart would unquestionably be a match. However, this is not always the case.
Shopping malls, buildings that host several companies, etc. are characterized
by the same coordinates but not necessarily the same spatial entities. The
results for different values of m are presented in Table B.2 (see the precision-
recall graphs for all cut-offs in Supp. Material, Annex C). For all cases, the r
is higher than 0.6. The p is higher than 0.8 for all values of m, except m = 1,
where the p is 0.67. For m = 1, the positive and negative class are mixed,
thus SkyEx loses a bit in p. This is also an argument against the works that
merge arbitrarily points that are 5 m apart. Spatial proximity is not a definitive
indicator of a match.
Changing d, m ≤ 100. We experiment with different values of density d
and its effect on the results. The size of the dataset, the percentage of the
true positives, and the results in terms of precision, recall, and F-measure
are in Table B.3 (see the precision-recall graphs for all cut-offs in Fig. 9 in
[14]). When the density is smaller, we force QuadFlex to split further and
create smaller blocks. Thus, the number of pairs reduces. Note that, on the
contrary, the percentage of the true positives (TP) increases. Indeed, further
splits allow us to create better blocks containing a higher percentage of TP.
However, when the density limit increases above 30s

1000m2 , fewer and fewer
blocks are split further, so the dataset size and the percentage of the TP do
not vary significantly. In all the cases, the r stays above 0.61 and the p above
0.87. A slightly better p (0.88) and r (0.63) is achieved in the case of a density
of 10s

1000m2 (the lowest parameter). SkyEx-F adapts very well in finding the correct
classes even when the size of blocks changes and even when the percentage of the true
positives over the true negatives varies.
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Den. 10s
1000m2

20s
1000m2

30s
1000m2

40s
1000m2

50s
1000m2

60s
1000m2

Total 290653 590583 711423 754195 770987 776664
% of TP 8.61% 4.57% 3.81% 3.59% 3.51% 3.49%
Prec. 0.88 0.88 0.87 0.87 0.87 0.87
Rec. 0.63 0.61 0.61 0.61 0.61 0.61
F1 0.74 0.74 0.72 0.72 0.72 0.72

Table B.3: SkyEx-F results for different d

9.5 SkyEx-FES Optimization

Given the theoretical guarantee in Theorem 1, we can stop SkyEx-F earlier as
described in Algorithm B.3a. We ran SkyEx-FES for spatial entities that are
30, 50, 80, and 100 m apart. For all the cases, SkyEx-FES found the same k f
values as SkyEx-F exploring only 27% of the skylines on average. The comparison
regarding the number of iterations is shown in Table B.4. For spatial entities
that are 30 m, 50 m, 80 m, and 100 m apart, SkyEx-FES finds the optimal k f
exploring 36%, 27%, 23%, and 22% of the skylines, respectively. Moreover,
our theoretical guarantee that the F-measure function has only one optimum
can also be noticed in Figs. B.4b and B.5b.

Distance 30 m 50 m 80 m 100 m

Number of pairs 168193 293833 557421 777452
% of TP 14.76% 8.8% 4.82% 3.49%
SkyEx-F skylines 1113 1182 1228 1228
SkyEx-FES skylines 403 327 284 274

Table B.4: Skyline explorations of SkyEx-FES compared to SkyEx-F for pairs that are 30, 50, 80,
and 100 m apart

9.6 SkyEx-D Performance

In these experiments, we use SkyEx-D (Algorithm B.4) to set kd and evaluate
our results in terms of F-measure. We apply SkyEx-D on spatial entities that
are 30, 50, 80, and 100 meters apart (see the dataset details in Table B.4).
We calculate the first derivative (µ′d) in each point as in Algorithm B.4. The
smoothed µ′d(k) with respect to k are presented in Fig. B.7. The red solid
line shows the value of k f , while the green dashed line represents kd found
by SkyEx-D. We note when µ′d(k) is negative for the first time and set kd
accordingly. In the case of spatial entities that are 30 m apart (Fig. B.7a), kd is
only 5 skylines apart from k f but 73 skylines for 50 m. These values of kd are
discovered using the first derivative (Eq. 4, Sect. 7.2). We illustrate the trend
of µk while increasing k, which means that we explore deeper skylines and
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(a) m=30 (b) m=50

(c) m=80 (d) m=100

Fig. B.7: Setting kd using µ′d

examine more pairs that are less likely to be a match. The distance from the
positive class to the negative is smaller in the beginning because the mean µk
is biased by the close points. While we increase k, µk increases, meaning that
the classes are becoming more and more distinguishable from one another.
The high values of µk show a high distance between the classes. For spatial
entities that are 80 m and 100 m apart, µk starts dropping faster than for those
that are 30 m and 50 m apart (Fig. B.8). This observation can be justified by
the fact that closeby entities are more difficult to classify, so the "grey" area of
the potential cut-off is larger. However, SkyEx-D detects the first decrease in
µk from the first derivative and fixes kd. Graphically, this point coincides with
the beginning of the "grey" area. Even though kd is sometimes fixed far from
k f (m=50), the corresponding F-measures are almost the same (Fig. B.9). The
red line in Fig. B.9 corresponds to k f and the green line to kd. The difference
in F-measure is 0.002 for 30 m, 0.009 for 50 m, 0.002 for 80 m, and 0.004 for 100
m. Thus, the difference in F-measure for the classifying the pairs using kd instead
of k f is always less than 0.01. This means that our SkyEx-D, even though fully
unsupervised, is almost optimal in terms of F-measure.
In terms of precision, recall and F-measure, QuadSky with SkyEx in [14], Quad-
Sky with SkyEx-F, and QuadSky with SkyEx-FES report the same values. How-
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(a) m=30 (b) m=50

(c) m=80 (d) m=100

Fig. B.8: µd(k) function with respect to k

ever, the underlying algorithms are different. SkyEx in [14] needs the thresh-
old k to separate the skylines, whereas for SkyEx-F and SkyEx-FES, there is
no need for specifying k because the algorithms will fix it through the skyline
explorations (only 30% of the skylines for SkyEx-FES). QuadSky with SkyEx-D,
being fully unsupervised, might yield different results. The optimal scenario
is if it fixes kd as the k f .

9.7 Comparison with Baselines

Even though there are several papers in spatial data integration, the works
of [11–13] are the most similar to ours, as the rest of the related work consid-
ers only spatial objects, not spatial entities, or uses supervised learning tech-
niques. We will compare QuadSky to Berjawi et al. [12], Morana et al. [13], and
Karam et al. [11]. Berjawi et al. [12] propose Euclidean distance for the ge-
ographic coordinates and Levenshtein similarity for all other attributes. The
similarities added together to a global similarity. The attributes mentioned
in the paper are the name and the phone. However, since the phone is part
of our automatic labeling, it can not be used in the algorithm as well. The
authors consider pairs with score ≥ 0.75 as a match with high confidence.
We use this threshold but also try other thresholds that might yield better
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(a) m=30 (b) m=50

(c) m=80 (d) m=100

Fig. B.9: F-measure values for different k

results (the versions with the suffix -Flex). We compare against two versions
proposed by the authors: name + address + geographic coordinates (V1) and
name + geographic coordinates (V2). Morana et al. [13] suggest filtering enti-
ties that share the same category or a token in the name. Then these entities
are compared using the Euclidean distance for the coordinates, Levenshtein
for the address and name, and Resnik similarity (Wordnet) for the category.
Attributes like address, phone, etc. are considered secondary, so they are
given 1

3 of the weight in the similarity score function, while name, category,
and geographic proximity carry 2

3 of the weight. The authors show top k
matches for each entity to the user to decide. Karam et al. [11] starts with
filtering spatial entities that are 5 m apart. Then, the similarity of the name
is measured with Levenshtein distance, the geographic similarity with Eu-
clidean distance and the keywords are compared semantically. In order to
decide which pairs to match and which not, the similarities are fused using
belief theory [26].
The results using Dfull and Dsample are presented in Table B.5. In general,
all the methods performed better in Dsample due to the better quality of the
labels. Berjawi et al.(V2) [12] yields reasonable results, the second best after
QuadSky, with an F-measure of 0.63 in Dfull and 0.74 in Dsample. If we allow
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flexible thresholds, Berjawi et al.(V2) [12]-Flex in Dfull finds the same best
threshold of 0.75, whereas in Dsample the threshold of 0.65 yields better results,
increasing the F-measure from 0.74 to 0.79 (see Supp. Material, Annex D for
all the thresholds and their results). To compare with Morana et al. [13], we
tried all values k from 1 to the maximal matches for a single point (see Fig.
10 in [14]). The highest value of F-measure corresponded to a p of 0.39 and a r
of 0.60. The behavior of Morana et al. [13] in Dsample is similar; the best value
of F-measure was achieved for k = 3 and results are similar to those in Dfull.
The work of Karam et al. [11] achieves the highest r of 0.73 but a very low
value of p of 0.23 for Dfull. As a result, the F-measure is only 0.47. However,
in Dsample, the method performs better overall (F-measure =0.6).
The QuadSky versions provide the best trade-off between p and r, and thus, the high-
est F-measure in both datasets. In Dsample, QuadSky with SkyEx-F and QuadSky
with SkyEx-D achieve the best r compared to all baselines. What is more
important, QuadSky with SkyEx-D, even using an unsupervised algorithm, is still
better than the threshold-based baselines. The highest p values for both datasets
is achieved by Berjawi et al.(V1) [12] but a very low r and poor model perfor-
mance overall. In fact, models that achieve extreme values (high precision-
low recall or low precision-high recall) are not a viable solution because they
are either too restrictive or too flexible, and their predictability is poor. Ber-
jawi et al. [12](V2)-Flex assumes the same weights for all similarities, and the
reported values of p and r are good. However, the behaviors of the pairs can be
of all types. QuadSky can capture these different behaviors better than a simple sum
would.
Regarding the complexity of the baselines, we cannot judge in terms of the
blocking techniques because there are no details on whether the authors used
an index to create the blocks. However, as we show in Fig. B.3, the available
FNN solutions in Postgres still do not scale as well as our QuadFlex. There-
fore, we perform better in the blocking step. The pairwise comparison has
a linear complexity for all baselines and our solution. As for the labeling,

Dfull Dsample

Approach Prec. Rec. F1 Prec. Rec. F1

Berjawi et al.(V1) [12] 0.93 0.26 0.41 1.00 0.27 0.43
Berjawi et al.(V1) [12]-Flex 0.87 0.50 0.63 0.79 0.42 0.55
Berjawi et al.(V2) [12] 0.73 0.56 0.63 0.97 0.60 0.74
Berjawi et al.(V2) [12]-Flex 0.73 0.56 0.63 0.82 0.76 0.79
Morana et al. [13] 0.39 0.60 0.47 0.33 0.60 0.43
Karam et al. [11] 0.23 0.73 0.35 0.54 0.68 0.60
QuadSky with SkyEx-F 0.87 0.60 0.72 0.87 0.82 0.85
QuadSky with SkyEx-D 0.85 0.62 0.71 0.87 0.82 0.85

Table B.5: Comparison with the baselines
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the baselines do not need the quadratic complexity induced by our skylines.
Our SkyEx-* family of algorithms run for 1 minute in Dsample and up to 2
hours in Dfull with 777,452 pairs. Nevertheless, the entity linkage problem
is performed offline, and consequently, even though a fast solution is prefer-
able in general, the effectiveness is much more important, and here QuadSky
significantly outperforms the baselines.

9.8 Comparison with Supervised Learning Techniques

In this section, we keep our QuadSky steps but replace the labeling of the
pairs with a supervised learning technique. We decided to compare the
SkyEx-* family of algorithms with logistic regression [43], support vector
machines (SVM) [44], decision trees [45], and Naive Bayes [46], which are
supervised learning techniques commonly used in entity resolution prob-
lems [8, 10, 25, 33, 47]. We applied these methods on Dfull pairs that are at
most 30 meters apart (dataset description in Table 3). We experimented with
training on 75% of Dfull and testing on the remaining 25% with 4-fold cross
validation (Dfull-Dfull), training on 75% of Dsample and testing on the remaining
25% with 4-fold cross validation (Dsample-Dsample), and training on Dsample and
testing on Dfull (Dsample-Dfull). The results are presented in Table B.6. While
logistic regression and SVM yield a slightly higher F-measure of 0.76 in Dfull-
Dfull, our algorithms, which do not build their model on labeled data, have
almost the same F-measures (0.74 for SkyEx-F and SkyEx-D) in Dfull-Dfull. For
the manually labeled dataset in Dsample-Dsample, our algorithms perform the
second best (F-measure of 0.84), after the decision trees. SkyEx-F and SkyEx-D
outperform the logistic regression, SVM, and the Naive Bayes, which yield
F-measures of 0.81, 0.81, and 0.72, respectively. Having a large training set
as in Dfull-Dfull is unrealistic in most real cases. Thus, we tried a more re-
alistic scenario, where one would prepare a small manually labeled training
set, and then, test the trained model on the full data (Dsample-Dfull). In this
(most realistic) case, SkyEx-F and SkyEx-D outperform all supervised methods by
0.03-0.05 in F-measure, showing the main weakness of supervised models, namely

Dfull -Dfull Dsample-Dsample Dsample-Dfull

Method Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

Log. reg. 0.83 0.70 0.76 0.80 0.83 0.81 0.70 0.72 0.71
SVM 0.88 0.67 0.76 0.81 0.80 0.81 0.71 0.70 0.71
Dec. Tree 0.88 0.66 0.75 0.93 0.82 0.87 0.65 0.74 0.69
Naive B. 0.71 0.77 0.74 0.63 0.85 0.72 0.62 0.77 0.69
SkyEx-F 0.80 0.69 0.74 0.87 0.82 0.84 0.80 0.69 0.74
SkyEx-D 0.81 0.68 0.74 0.87 0.82 0.84 0.81 0.68 0.74

Table B.6: Comparison with supervised learning
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that the Dsample model is not representative enough when applied to Dfull.
In general, the spatial entity linkage problem suffers from the lack of labeled
data [12–14]. Consequently, the applicability of supervised learning tech-
niques is limited. On the contrary, SkyEx-D is completely unsupervised and
can still achieve results similar to a supervised technique. If the labeled data
is present, note that supervised learning techniques build the model on the
labeled data, whereas SkyEx-F and SkyEx-FES use the labels only to tune the
threshold because the construction of the skylines is independent of the la-
bels. For this reason, in contrast to supervised learning, SkyEx-F, and SkyEx-FES
do not require a big and representative training set, do not struggle with class imbal-
ance, do not overfit the data, and their dimensionality is minimal (one skyline versus
high-dimensional data).

9.9 Comparison of SkyEx-D to Clustering Techniques

In Sect. 7.2, we claimed that clustering techniques would not manage to cre-
ate two clusters: one for the positive-class pairs and one for the negative-class
pairs. In this section, we will replace SkyEx-D with common clustering tech-
niques and evaluate the formed clusters. We are comparing to distance-based
clustering (k-means [48] and k-medoids [49]), hierarchial clustering [50] (ag-
glomerative), and density-based clustering (DBSCAN [51]). The results are
presented in Table B.7. For k-means and k-medoids, we specified the num-
ber of clusters as 2. For the hierarchical clustering, we cut the dendrogram
to create two clusters. For DBSCAN, we tried several values of minimum
points and ε to form either two clusters, or one cluster and noise points. We
report the version with the noise points in the table because it yields better
results. For the labeling, we tried both versions (labeling cluster 1 as positive
and the rest as negative and vice-versa) and report the best version in the
table. Distance-based clustering yields the best results, having the highest
recall but with a very low precision of 0.28 in Dfull, and the second-best (after
SkyEx-D) F-measure of 0.74 in Dsample. Hierarchical clustering achieves higher
precision than distance-based but with a very low recall of 0.11 in Dfull, while
the results are reversed to a high recall of 0.91 and a low precision of 0.23
in Dsample. For DBSCAN, the best values were achieved when we labeled the
cluster as negative, and the noise points as positive, resulting in a recall of 1.0,
but a very low precision of 0.23 in Dfull and 0.26 in Dsample. This means that
the positive-class pairs are not dense enough to form a cluster. Our SkyEx-
D focuses more on the distance between the classes rather than within the
classes, and thus outperforms clustering.
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10 Conclusions and Future Work

Location-based sources provide rich details and semantics about spatial en-
tities. However, identifying which pairs of spatial entities refer to the same
physical entity is a challenging problem. In this paper, we addressed the
problem of spatial entity linkage across multiple location-based sources. We
proposed QuadSky, an approach that consists of a spatial blocking technique
QuadFlex, pairwise comparisons with suitable similarity metrics for each at-
tribute, a skyline-based ranking algorithm SkyRank, and the SkyEx-* family of
algorithms for classifying the pairs. QuadFlex arranges the spatial entities into
spatial blocks with a low execution time (4-8 times less than FNN [42]) and
without missing relevant comparisons (99.99% of FNN comparisons). SkyEx-
F achieves 0.84 p and 0.84 r on a manually labeled dataset and 0.87 p and 0.6
r on an automatically labeled dataset. We provided a theoretical guarantee to
prune 73% of the skyline explorations in SkyEx-F with the novel SkyEx-FES
without any loss of F-measure. Our fully unsupervised SkyEx-D finds kd very
close to the optimal k f (an F-measure loss of just 0.01). The SkyEx-* family
of algorithms outperforms the existing baselines in terms of F-measure and
approximates the results of a supervised learning solution without the need
of a labeled dataset, while SkyEx-D yields far better results than the clus-
tering techniques. SkyEx-F and SkyEx-D are already available in the R skyex
package [52], together with other functions for entity linkage. In future work,
we aim to study different blocking techniques that combine several attributes
and extend our SkyEx-* family of algorithms to general (non-spatial) entity
resolution problems.
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Abstract

As the data is becoming bigger, more heterogeneous, and originating from different
sources, the availability of the same information in different forms leads to various
entity linkage problems. We demonstrate our skyex package, an R package that
supports all three steps of entity linkage: blocking, pairwise comparison, and labeling.
Thus, the user can solve the whole process using skyex, but not necessarily; the
skyex modules are independent, meaning that the user can easily integrate them
with other packages or even other environments. Additionally, we are the first to
provide the implementation of two skyline-based algorithms (SkyEx-F and SkyEx-
D) that can label the compared pairs without the need for weights, scoring functions,
etc. skyex supports the typical workflow of entity linkage, using minimalist, user-
friendly function calls.

© 2020 ACM. Reprinted, with permission from Suela Isaj, and Torben
Bach Pedersen. Multi-Source Spatial Entity Linkage. In: 23rd Interna-
tional Conference on Extending Database Technology (EDBT), 2020. ACM. ISBN:
978-3-89318-083-7

126

ISBN: 978-3-89318-083-7
ISBN: 978-3-89318-083-7


1. Introduction

1 Introduction

The entity linkage problem, sometimes called data matching, entity resolution,
duplicate detection, reconciliation, etc., detects different records that belong to
the same entity. Even though the process varies in different domains, the
main steps are the same: blocking, pairwise comparison, and labeling the
pairs (Fig.C.1). The entity linkage process starts with a set of entities that
might contain duplicates. First, a blocking method is used to group entities
that show a certain level of similarity and are of interest to compare further.
Then, the pairwise comparison step compares the entities in the same blocks,
e.g., using similarity metrics of the attributes of the entities or comparing
the structure of their connections. Finally, the labeling step decides whether
a pair of candidates belongs to the same entity or not. The entity linkage
process results in a set of labeled pairs.

Fig. C.1: The entity linkage process

We present an R package, skyex, that supports all three steps of the entity
linkage problem. In the labeling step, we provide the novel SkyEx-F and
SkyEx-D algorithms in [1, 2]. The R language is in the top five languages of
data science, and even more importantly, R is the second most used software
in data science scientific papers, corresponding to 50,000 articles 1. More-
over, R is used by different industries besides academia, such as healthcare,
government, insurance, etc., where entity resolution is a common obstacle 2.
The current entity linkage tools [3–9] offer rule-based solutions with blocking
and comparison functions [3, 4], crowdsourcing solutions [5, 9], or machine
learning solutions [6–8]. In contrast to all the current tools, we contribute
with a Labeling module that implements two novel algorithms (SkyEx-F and
SkyEx-D) [1, 2], which can label the pairs without the need of weights, scor-
ing functions, or exhaustive experiments. In order to support the full entity
linkage workflow, we provide functions to perform blocking based on text
and spatial attributes, and we offer a module for textual, spatial, semantic
pairwise comparison. Similarly to [6], we support analysis and visualiza-
tion functions that assist in the interpretation of the results and assessing the
quality of the labeling. Analogously to [8] that uses Python, skyex uses the
R ecosystem and can be easily integrated with other packages, in contrast to
the current standalone tools. Finally, we demonstrate the different scenarios

1http://r4stats.com/articles/popularity/
2https://stackoverflow.blog/2017/10/10/impressive-growth-r/
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that can be supported by our tool using three real-world datasets. Overall,
skyex solves the entity linkage problem with minimal effort and background
knowledge.
The remainder of the paper continues with the functionalities covered by our
skyex package in Section 2, a description of our on-site demonstration in
Section 3, and finally, concluding in Section 4.

2 SkyEx package functionalities

The skyex package is composed of 17 functions corresponding to four main
modules: Blocking, Pairwise Comparison, Labeling, and Analysis and Visu-
alization. The workflow of using skyex is illustrated in Fig. C.2. The user
starts with a dataframe (a common data type for storing tables in R) of en-
tities. In order to illustrate the workflow and our functions, we will use a
real-world dataset of spatial entities extracted as in [10] and used in the ex-
periments of [1]. The dataset contains spatial entities in the North Denmark
region, originating from four sources, Google Places, Yelp, Krak (online yel-
low pages in Denmark, www.krak.dk), and Foursquare. We also introduce
the running example of six records of entities (entities) from this dataset
in Fig. C.2, which are identified by an ID, by geographic coordinates lati-
tude and longitude, categories that explain the type of spatial entity, and the
address.

Blocking module After loading the data, we can use a blocking technique
(textual or spatial) from the Blocking module. The textual blocking is exe-
cuted by the textual.blocking function, choosing a similarity metric among
levenshtein, cosine, jaccard, jaro-winker, and qgram, and setting a maximal dis-
tance allowed. For example, textual.blocking on the attribute "name" with
levenshtein and maximal distance 4 will group the entities with names "Bil-
huset Biersted A/S" and "Bilhuset Biersted" (from entities in Fig. C.2).
Note that textual.blocking is accurate but time-consuming. Alternatively,
prefix.blocking and suffix.blocking produce faster results. Besides, in
some domains, e.g., for species names, these methods can be more relevant
than textual blocking. For spatial entities, being spatially close is often a
better indicator of block quality than the name. For example, two records
with the same name, e.g., Fakta supermarkets in different cities, are two dif-
ferent entities. spatial.blocking creates blocks of entities that are at most
max_distance meters apart. The code snippets for these blocking methods are
as follows:
#Textual blocking using levenshtein distance and max_distance=4
blocks <-textual.blocking(data=entities , column = "name",

method = "levenshtein", max_distance = 4)
#Prefix blocking for the first 4 characters
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Fig. C.2: skyex workflow
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blocks <-prefix.blocking(data=entities , column = "name", prefix_size = 4)
#Spatial blocking for entities at most 50 m apart
blocks <-spatial.blocking(data=entities , longitude = "long",

latitude = "lat", max_distance = 50)

Pairwise Comparison module The Blocking module outputs a dataframe
of pairs, which saves the user from the task of having to create the pairs
from each block. The Pairwise Comparison module offers three functions
that compare text syntactically and semantically, as well as spatial attributes.
Moreover, all three functions output normalized values, which can be directly
used in the Labeling module. text.similarity calculates the similarity of
the pairs based on a text attribute using similarity metrics such as levenshtein,
cosine, jaccard, jaro-winker. levenshtein similarity is calculated using the for-
mula in [1, 11] in order to return a normalized value. spatial.similarity
also requires a maximal distance for the normalization. For example, for a
max_distance = 70, "Uno-X" and "Fakta" will have a similarity of 0.0, because
their distance of 83 meters is beyond the threshold. In the case of Bilhuset
Biersted A/S and Bilhuset Biersted, this distance is 63 meters, which trans-
lates to a similarity of 0.09.
Regarding the semantic similarity, our work in [1] uses the Wu&Palmer met-
ric from Wordnet. There exists a wordnet library in R, but it does not provide
the metrics. Moreover, Wu&Palmer needs the whole path of both words that
need to be compared, which in R, it could be resolved only through recursive
calls. Through experimentation, this implementation turned out to be non-
efficient. Thus, we include two Python scripts in the skyex package for two
different metrics in Wordnet. These scripts are wrapped in R functions; thus,
the user only needs to have a Python interpreter installed and give its path
to the R function. The code for the pairwise comparisons is as follows:

#Text similarity using cosine
blocks$SimName <-text.similarity(data=blocks , method = "cosine",

column1 = "name.x", column2 = "name.y")
#Spatial similarity with max_distance=70
blocks$SimSpatial <-spatial.similarity(data=blocks , lat1 = "lat.x",

long1 = "long.x", lat2 = "lat.y", long2 = "long.y",
max_distance = 70)

#Semantic similarity with Wu&Palmer
blocks$SimSemantic <-semantic.similarity(data=blocks ,

column1 = "categories.x", column2 = "categories.y",
pythonpath = "/Users /..", method = "wup" )

Labeling module After the pairs are compared, the user can decide which
similarities should go into the labeling process. Usually, he would select
those similarities that are likely to indicate a match, e.g., the similarity of the
names of the entities. We will consider the similarity of the name "SimName",
the similarity of the address "SimAddress", and the semantic similarity of the
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categories "SimSemantic" as in [1]. Then, the user decides on the prefer-
ence function for the Pareto Optimality calculations. In our case, we prefer
a high value for each similarity. Depending on the availability of the labels,
the user can choose between running skyexf or skyexd, corresponding to
the threshold-based SkyEx-F, or to the fully unsupervised SkyEx-D, respec-
tively [2]. SkyEx-F finds that skyline level k that separates best the classes
and maximizes the F-measure. It starts with assigning the skyline to all the
points and then checking different cut-offs while measuring precision, recall,
and f-measure. Finally, it labels the data, and the skyexf obj is returned,
containing the classes, an analysis data frame, the proposed cut-off k, and the
corresponding f-measure.
For unlabeled data, SkyEx-D finds the skyline level k where the mean distance
of the points in the positive class starts to drop, meaning that we are entering
the denser area of the negative class. It starts by assigning the correspond-
ing skyline to each point; then, calculating the cumulative mean distance in
the positive class and its first derivative; later, finding where the first deriva-
tive becomes negative for the first time. Finally, SkyEx-D labels the data and
wraps the classes, the analysis data frame, and the proposed cut-off k in
a skyexd obj. Detailed explanations about both algorithms can be found
in [2]. Our skyex package hides all the details above from the user, mean-
ing that the processes inside the dotted line boxes (Fig. C.2) are performed
simply by the skyexf and skyexd function calls. The script for running both
algorithms, storing the results of each labeling algorithm in separate objects,
and attaching the predicted classes to the dataset is as follows:
#Define the preference
p<-high(SimName )*high(SimSemantic )*high(SimAddress)
#Call SkyEx -F algorithm and store the result in f.obj
f.obj <-skyexf(data=blocks , p=p, label="Class",posclass=1, negclass=0)
#Call SkyEx -D algorithm and store the result in d.obj
d.obj <-skyexd(data=blocks , p=p, simlist=c("SimName", "SimSemantic",

"SimAddress"), posclass=1, negclass=0, smooth.coefficient=5)
blocks$fpred <-f.obj$classes
blocks$dpred <-d.obj$classes

We thus provide a labeling procedure that can be used with only two lines
of code: defining the preference and calling the labeling function. However,
for a more knowledgeable user, we offer the possibility to do analysis and
visualize the results through the Analysis and Visualization module.

Analysis and Visualization module To illustrate the analysis of the label-
ing, we will use the 1500 manually-labeled pairs in [1]. Additionally, this
dataset is also available in our package under the name pairsManual and
can be loaded simply by data(pairsManual). The Analysis and Visualiza-
tion module needs the output of the Labeling module as input, which is a
skyexd or skyexf object. The raw analysis can be accessed simply by call-
ing the dataframe analysis from obj (inspect obj$analysis in Fig. C.2). In
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the case of a skyexf object, analysis contains all the cut-offs, the size of the
positive class, precision, recall, and f-measure. In order to facilitate the explo-
ration of analysis, the user can call plot.skyexf.cutoffs, which produces
graphs that monitor the evolution of the metrics when passing to the deeper
skylines (see Fig. C.2). plot.skyexf.cutoffs by default plots the f-measure.
However, it is possible to plot the precision and the recall separately, and also
all metrics together. The code snippets for plotting the f-measure (first two),
the precision, the recall, and all the metrics are as follows:
plot.skyexf.cutoffs(f.obj)
plot.skyexf.cutoffs(f.obj , "fmeasure")
plot.skyexf.cutoffs(f.obj , "precision")
plot.skyexf.cutoffs(f.obj , "recall")
plot.skyexf.cutoffs(f.obj , "all")

The resulting plots from the above script on pairsManual are shown in Fig.
C.2 in the Analysis and Visualization module. Understandably, precision is
high in the first skylines because it is very likely that the pairs in the first
skylines that we label as positives are actual positives, but it degrades while
moving in deeper cut-offs. On the contrary, recall is always increasing, the
more we label as positive, the more likely it is to find an actual positive.
The F-measure gives the trade-off between both metrics. All graphs show
the suggested cut-off by f.obj in the red dotted line. However, the user can
explore different trade-offs for his problem. In that case, plotting all metrics
in a graph (the last script) gives a better overview.
In the case of a skyexd object, analysis keeps the cut-offs, the size of
the positive class, the first derivative, and the smoothed values. Sim-
ilarly, plot.skyexd.cutoffs aids exploring the raw analysis by plot-
ting the smoothed first derivative function for each cut-off. If the plot
looks too "smoothed" or too "raw", it is possible to play with different
smoothing coefficients without having to re-run skyexd again by calling
plot.skyexd.smooth. (see the code below). Fig. C.2 shows the analysis of
skyexd, which was run with smooth.coefficient=5, and also the results of
plot.skyexd.smooth(d.obj, 10). The higher the smoothing coefficient, the
higher the cut-off k, since smoother values push the cut-off towards deeper
skylines.
#Plot the first derivative and the current cut -off k
plot.skyexd.cutoffs(d.obj)
#Smooth the first derivative with 10
plot.skyexd.smooth(d.obj , 10)

evaluate.skyex can also be called as in the code below, to measure preci-
sion, recall, and f-measure when the labels are available. The values of these
metrics will be printed in the console.
evaluate.skyex(prediction=d.obj$classes , labels=data$Class , posclass = 1)

Additionally, we offer user-friendly functions to plot the data and the obj
results. We offer 2D plots, 3D plots, and interactive 3D plots, where the user
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can play and move the dimensions while looking at the data. The color of the
points reflects if the pair is a true positive TP (an actual positive labeled as
positive), a true negative TN (an actual negative labeled as negative), a false
positive FP (an actual negative labeled as positive), and a false negative FN
(an actual positive labeled as negative). The user can decide to change the
colors of the points based on his preference. The code for these plots is as
follows:
#Plot 2D using SimName and SimSemantic
plot.pairs2D(data=data , sim1="SimName", sim2="SimSemantic",

prediction=f.obj$classes , labels=data$Class , posclass = 1)
#Plot 3D using SimName , SimSemantic , and SimAddress
plot.pairs3D(data=data , sim1="SimName", sim2="SimSemantic",sim3="SimAddress",

prediction=f.obj$classes , labels=data$Class , posclass = 1)
#Plot 3D interactive plot using SimName , SimSemantic , and SimAddress
plot.pairs.interactive.3D(data=data , sim1="SimName", sim2="SimSemantic",

sim3="SimAddress", prediction=f.obj$classes ,
labels=data$Class , posclass = 1)

Fig. C.2 shows the results of pairsManual with the three types of plots. These
graphs can also be considered as an analysis since they show the problems
with labeling and where to locate them. For example, it is noticeable that we
have a bigger problem with the false positives then with the false negatives,
thus if precision is fundamental to the domain, we could go back to the
analysis and evaluation module and consider a smaller k for the cut-off. The
interactive 3D plot offers a better view of the data points since it is possible
to move and rotate the graph.

Summary The workflow of skyex supports typical entity linkage tasks,
from blocking to evaluating the quality of the labels. The Blocking, Pair-
wise Comparison, and Labeling modules are completely independent, which
means that the user can decide to perform his own methods and still be able
to connect to the workflow of skyex. The labeling task can be as simple as just
calling two lines of code to get the classes and as detailed as performing anal-
ysis, playing with the parameters, visualizing the labels, and highlighting the
errors, etc. Moreover, the user can always go back, choosing new similarities
and new preferences until the results are satisfactory. The skyex package
is dependent on rPref, dplyr, fields, rgl, plot3D, smoother, fuzzyjoin,
stringr, stringdist, geosphere, reticulate, and pracma which support
some basic functionalities in our functions. skyexf and skyexd) scale rel-
atively well for an R environment; e.g. they run in less than a minute for
50,000 pairs, less than 15 minutes for 150,000 pairs, and around 1 hour for
300,000 pairs.
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3 Demonstration Overview

In the on-site demonstration, the user can download skyex3, which is pub-
licly available in GitHub, by following the README instructions, or use our
pre-installed R environment. We will provide three datasets: entities (2814
spatial entities in the North Denmark region with an ID, name, categories,
and address) [1], restaurants4 (a collection of 864 restaurant records with
name, address, city, and type), and pairsManual (1500 labeled pairs with
pre-compared similarities of the name, address, and categories) [1]. Addi-
tionally, we have published a full video5 demonstrating our functionalities
for all three datasets, and a short video6 for the restaurants dataset. We
will provide example scripts, which the user can adapt based on his prefer-
ence. The user will start with different blocking techniques on entities and
restaurants, discussing with us what would be a good blocking technique
for this dataset. Afterwards, he can play with different similarity metrics and
different thresholds for the pairwise comparison. Later, the user can decide
either to continue with the dataset of pairs he created so far from entities
and restaurants, or move to the pre-compared pairsManual and play with
the labeling parameters. The user can try both algorithms and will be guided
by us through the Analysis and Visualization module. He can try the visual-
izations (including the interactive plotting) in order to detect problems with
the labeling. Finally, he can discuss with us the applicability of the method
across domains and possibilities for improvement.

4 Conclusions and Future Work

We introduced the skyex package, a user-friendly R package that supports all
three steps of the entity linkage process. We demonstrated the functions of
skyex with scripts and sample data, and supported the full workflow of the
user. We showed that our Labeling module could solve the labeling problem
with only two lines of code, but at the same time, offer the possibility for
deeper analysis for the knowledgeable user. As future work, we intend to
work on the scalability of our tool for big data, as well as on a similar package
in Python.

3https://github.com/suelai/skyex
4source: https://www.cs.utexas.edu/users/ml/riddle/data.html
5https://youtu.be/TdxVsUtKRjw
6https://youtu.be/Zn8FOOh_xwA
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Abstract

The ease of publishing data on the web has contributed to larger and more diverse
types of data. Entities that refer to a physical place and are characterized by a location
and different attributes are named spatial entities. Even though the availability
of spatial entity data from multiple sources seems attractive, there is unavoidable
redundancy and ambiguity. We address the problem of spatial entity linkage with
SkylineExplore-Trained (SkyEx-T), a skyline-based algorithm that can label an entity
pair as being the same physical entity or not. We introduce LinkGeoMl-eXtended
(LGM-X), a meta-similarity function which computes similarity features specifically
tailored for spatial entities. The skylines of SkyEx-T are created using a preference
function, which ranks the pairs based on the likelihood of referring to the same entity.
We propose deriving the preference function using a tiny training set (down to 0.05%
of the dataset). Additionally, we provide a theoretical guarantee for the cut-off that
can best separate the classes, and we show experimentally that it results in a near-
optimal F-measure (on average only 2% loss). SkyEx-T yields an F-measure of 0.71-
0.73 and 0.81-0.83 in two different real-world datasets, respectively. In summary,
SkyEx-T offers state-of-the-art machine learning level performance using very little
training data, high model explainability, and high robustness in real deployment (the
model will not need parameter tuning or further configuration to be deployed).

© Reprinted, with permission from Suela Isaj, Vassilis Kaffes, Torben Bach
Pedersen, and Giorgos Giannopoulos. Explainable and Robust Skyline-Based
Spatial Entity Linkage on Tiny Training Data. Under submission
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1 Introduction

Web data is growing continuously in size and heterogeneity, providing rich
and diverse information about different entities. Nowadays, we can rely on
different sources for the same information, making the process of obtain-
ing data more transparent and source-independent. Some of this web data
is connected to a location, like a geographical point, or an address, thus,
referring to a physical spatial entity. A spatial entity, apart from pointing
to a location, is also characterized by an identity, which is constructed by
a set of attributes, such as the name, the type, the phone number, reviews
of people, etc. For example, “Restaurant Ambiance" is a spatial entity, lo-
cated at (55.6,7.9), with the phone +4511111111 and the tags “restaurant" and
“cosy". Different and independent sources can provide information about
the same spatial entity. However, this independence of the sources and the
ease of publishing data has also brought redundancy and sometimes even
ambiguity. Several records of the same spatial entity might exist in the same
source or across different sources. Continuing the previous example, another
source might contain similar information about “Restaurant Ambiance", but
now located at (55.7,7.8), with a different phone +4522222222 and the tags
“restaurant" and “classy". The process of deriving which records belong to
the same real-world physical spatial entity is known as spatial entity linkage.
The problem of spatial entity linkage can aid the research fields that work
with spatial entities such as geo-recommender systems, influential locations,
trajectory pattern mining, etc. Linked spatial entities contain a richer and in-
tegrated representation of the real entity. Additionally, spatial entity linkage
can also improve the quality of the data for the industries that use spatial
entities as the main input for their activities, such as marketing companies,
tax offices, etc. Hence, spatial entity linkage is a problem that involves multi-
ple stakeholders in different fields. Unfortunately, research on spatial entity
linkage has not progressed at the same rate as the entity resolution research.
Many papers focus on entity linkage of human entities [1–6], while spatial
entity linkage has only been superficially addressed, usually contributing
only a tool and leaving the decisions to be made by the user, rather than
providing an automatic algorithm [7–9]. The works give little details about
the accuracy of their methods and make arbitrary decisions to choose thresh-
olds and scoring functions. The latest works in the field [10–14] provide
solid progress on the accuracy of the models. The solutions in [10, 11] use
preference functions to form skylines and rank the pairs based on the like-
lihood of referring to the same physical entity, but they choose them in an
ad-hoc fashion, while [12–14] rely fully on machine learning without offering
explainability for the end-user. Instead, combining two different approaches
(skyline-based and traditional machine learning), we propose a skyline-based
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algorithm SkyEx-T trained on a tiny training set of domain-specific similarity
features LGM-X, which have proven to increase the interlinking accuracy in
similarity comparison based [12] and classification based [13] settings. We
make the following contributions:

• We propose a skyline-based algorithm SkyEx-T that can learn a prefer-
ence function and a cut-off using a tiny training set (down to 0.05% of
the data).

• We provide a theoretical guarantee for the cut-off selection in SkyEx-
T, and we show experimentally that the selected cut-off yields a near-
optimal F-measure.

• We propose the domain-specific LinkGeoMl-eXtended (LGM-X)
similarity-based features that accommodate the specifics of spatial enti-
ties.

• We offer high model explainability and robustness for immediate de-
ployment while providing machine-learning-level accuracy.

• We evaluate our approach on two real-world datasets, each originating
from four and two different sources, respectively.

We study the related work in Section 2, formulate the problem of spatial
entity linkage in Section 3, describe the main components of our solution, in-
troduce LGM-X, and propose SkyEx-T in Section 4, provide the experimental
results in Section 5, and finally, conclude and point to future work in Section
6.

2 Related Work

The entity linkage problem is addressed widely in several papers, across var-
ious domains [1, 5, 6, 15–17]. There are several terms related to this problem,
such as data integration, entity resolution, deduplication, etc. The entity link-
age process consists of three main steps: blocking, pairwise comparison, and pair
labeling. Our work is focused on pairwise comparison and the pair labeling.

Entity resolution. A vast amount of research in entity resolution focuses on
humans. Textual attributes [18], profile photos [4], network of friends [15, 19],
publications [3, 20, 21], social media posts [5, 6] are used to distinguish the
pairs of entities that might refer to the same individual. The spatial entity
resolution problem shares only the basics with the human entity resolution
problem in terms of comparing attributes such as name, keywords, etc., while
the recent advances of the entity resolution research focus entirely on human
networks, human activities, temporal and spatial traces of humans, etc. Con-
sequently, they cannot apply to spatial entities.
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Spatial entity blocking. There are several blocking techniques that use tex-
tual attributes to group similar entities [22–25], but few considering spatial
entities and their geographical coordinates [8–11]. In most of the works, the
spatial entities are grouped using user-defined distance thresholds. For ex-
ample, in [7], the spatial entities that are at most 5 m apart are grouped. The
work in [9] defines a threshold based on the type of spatial entities, e.g., 50
m for restaurants, but 500 m for parks. Following the same idea, the authors
of [10, 11] propose an algorithm, QuadFlex, that is inspired from a quadtree
and can adapt the radius based on the density of the spatial entities in an
area. In this way, the algorithm will be more restrictive for spatial entities in
the city center, setting a smaller radius than spatial entities in the country-
side. Spatial blocking techniques are not in the scope of this work, so we use
the state of the art QuadFlex approach [10, 11] to create our pairs.

Spatial entity pairwise comparison. There is research on spatial data inte-
gration, focusing on integrating spatial objects, which, in contrast to spatial
entities, are identified only by their geographic coordinates and sometimes
their shape [26–29]. Spatial entities might share the same spatial object while
still belonging to different entities, e.g., a restaurant and a hairdresser are
located in the same geographical point, but on different floors of the same
building. As a result, we need to compare the attribute values of spatial
entities in order to decide whether they belong to the same physical entity
or not. The more similar two spatial entities are, the more likely they refer
to the same physical spatial entity. To measure the similarity, the attribute
values of the entities are compared, and similarity features are calculated.
For name similarities, one could use Levenshtein, Jaccard, Cosine [5, 6], or
more advanced metrics such as a Soft-TFIDF measure combined with Lev-
enshtein [30]. Santos et al. [31] present a thorough overview of 13 differ-
ent string similarity functions and perform an extended comparison of these
functions on the accuracy achieved on the name attributes of entities. Addi-
tionally, the computed similarity scores are used as training features in state-
of-the-art supervised machine learning algorithms for classification. How-
ever, these metrics are general and not designed explicitly for spatial entities.
The metrics proposed in [32, 33] are specifically designed for the name at-
tributes of spatial entities that mostly correspond to variations of the proce-
dures used for generic name matching. Davis et al. [32] present a hybrid,
three-stages method, i.e., the DAS similarity measure, that combines features
from token-based and edit-based approaches. In [33], a four-stage process
is proposed that takes into account accentuation and other language-specific
aspects of spatial entities names. Recchia et al. [34] evaluates the set of algo-
rithms presented in [35] on place names listed in the GEOnet Names Server,
that contains romanized entity names from 11 different countries. Based
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on their study, no similarity measure achieves the highest accuracy in all
datasets. A different approach is followed in the problem of business places
deduplication by Delvi et al. [36]. In the proposed solution, authors identify
words of higher significance (core terms) that use to build a name model.
This model is properly combined with a spatial context model using an un-
supervised learning algorithm. Although the above methods attempt to in-
corporate the specifics of spatial entities name attributes, they do not achieve
state-of-the-art accuracy results in the entity matching problem.
Deep learning methods for the name entity matching problem are also be-
ing proposed in the literature. Santos et al. [37] present a method, based on
Siamese RNNs, for addressing the task of entity matching. Their method
yields better accuracy results than traditional classifiers on similarity-based
training features. Alexis et al. propose an Attention-based network model
and a hybrid scheme model that combines individual machine and deep
learning approaches and achieves the highest accuracy reported results on
the Geonames toponym dataset. However, these methods require large
amounts of data to properly engineer and train deep network model archi-
tectures, which does not apply in our setting.
In [13, 14] the authors propose the LGM-Sim meta-similarity function that
incorporates domain knowledge for the toponym interlinking problem. They
demonstrate that applying their method on top of several baseline similarity
functions improves the interlinking effectiveness by a large extent. More-
over, they utilize training features derived from LGM-Sim within classifiers,
showing a further increase in accuracy.

Spatial entity pair labeling. After having pairwise similarities and features,
the pairs need to be labeled as positive if they belong to the same physical
entity or as negative, otherwise. Sehgal et al. [38] stand between spatial data
integration and spatial entity integration because their entities have names,
geographical coordinates, and types but they refer to spatial objects repre-
senting landscapes (lakes, hills, rivers, etc.). They used supervised learning
to calculate the similarity of the spatial entity/object types and another classi-
fier that learns the weights of each similarity in a training set and assigns the
class accordingly. Similarly, the works in [7, 8] assign weights to the similar-
ity scores of the attributes: Berjawi et al. [8] arbitrarily constructs a similarity
score based on an average of the attribute similarities, while Karam et al. [7]
use the coefficient 2

3 for the name, the coordinates and the type of the en-
tity and the coefficient 1

3 for the website, the address and the phone number.
Morana et al. [9] uses textual and semantic attributes and takes the labeling
decision based on belief theory [39]. Isaj et al. [10, 11, 40] propose a skyline-
based labeling method that instead of assigning weights, construct a prefer-
ence function using the Pareto dominance concept and separate the classes
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by defining the number of skylines. In [10, 40], the number of skylines, which
was a parameter in [11], is set using an unsupervised algorithm. However,
the authors do not provide a feature selection method, and the preference
function is chosen arbitrarily. Besides, all the research mentioned above uses
general similarity metrics, sometimes with slight tuning [38], which are not
very effective on spatial entities.

Summary. While we can observe significant advances in the field of entity
resolution, the spatial entity linkage has mostly been handled as a non-spatial
entity linkage problem and has only been explicitly addressed in very few
papers. The research in spatial entity pairwise comparison has proposed
effective spatial metrics for measuring the similarity between entities [33, 36,
37] and the current state of the art [12–14] achieves high accuracy without the
need to train deep networks. In contrast to the current spatial entity linkage
works, our proposed solution SkyEx-T uses LGM-X features, which extend
the state of the art LGM-Sim features used for toponym interlinking [13, 14].
Moreover, for spatial pair labeling, instead of using weights like in [7, 8, 38],
we use the Pareto operator. However, differently from [10, 11, 40], besides the
Pareto operator, we can also prioritize features, and the preference function
is not chosen arbitrarily; instead, we propose an algorithm for selecting the
preference selection and the cut-off using very little labeled data.

3 Problem Definition

In this section, we will introduce some definitions and formulate the problem
of Spatial Entity Pair Labeling. First, let us define a spatial entity:

Definition D.1. A spatial entity s is a uniquely identified entity, located in a ge-
ographical point with coordinates 〈long, lat〉, and described by a set of attributes
A = {a1, a2, ..., an} with values {va1 , va2 , ..., van}.

Example D.1
An example of a spatial entity is a restaurant located in a point 〈55.7, 8.9〉
with the name “Restaurant Amelie”, with a phone number, an address, and
categories such as {food, coffee, cosy}. In this case, the name, the phone
number, the address, and the categories are the attributes a1, a2, a3, and a4,
respectively. Similarly, the values of the attributes are {va1 = “Restaurant
Amelie”, va2 = +45111111, and va3 = {food, coffee, cosy}.

To discover which spatial entities belong to the same physical entity, we need
to compare them. The spatial entities can be compared to each other in an
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exhaustive way (Cartesian product), or, to reduce the number of comparisons,
they can be grouped in blocks based on one or more attributes [11, 22–25].
Within the blocks, the spatial entities are compared pairwise with respect
to their attribute values. From the pairwise comparison, we obtain features,
defined as follows:

Definition D.2. A feature Xan
i (A×A 7→[0, 1]) is a function that computes the sim-

ilarity between the values van
i and van

j of the attribute an for the spatial entities si

and sj, respectively.

Note that from the definition, there can be more than one computed feature
for the same attribute, for example:

Example D.2
Let us consider two spatial entities s1 and s2 named “Amelie” and “Ami”,
respectively. Let a1 be the name attribute. Thus, we have va1

1 = “Amelie”
and va1

2 = “Ami”. We can compute several similarities on the name at-
tribute, e.g., Jaccard, cosine, Jaro-Winker. Let Xa1

1 , Xa1
2 , and Xa1

3 be the Jac-
card, cosine, and Jaro-Winker computed similarities of va1

1 and va1
2 . There-

fore, we have Xa1
1 = 0.6, Xa1

2 = 0.6123724, and Xa1
3 = 0.8333333.

For two spatial entities, we will compute the features and obtain a featured
pair of spatial entities:

Definition D.3. A featured pair of spatial entities 〈si, sj, X〉 is formed by
two spatial entities si and sj and their features X = {Xa1

1 , Xa2
2 , ...., Xan

N },
where the features are computed for their respective pairs of attribute values
{〈va1

i , va1
j 〉, 〈v

a2
i , va2

j 〉, ..., 〈van
i , van

j 〉} for the attributes {a1, a2, ..., an}.

Note that we need methods to compare the different attributes of the spatial
entities. In the next sections, we will discuss similarity metrics and machine-
learning techniques to compare the spatial entities (the features). The in-
tuition behind the comparison is that the more similar two spatial entities
are regarding their features, the more likely it is that they refer to the same
physical spatial entity. Thus, we want to assign a label to each pair; a posi-
tive label if the entities of the pair have high values of similarities and are the
same physical spatial entity, and a negative label if they are different physical
spatial entities.

Definition D.4. A labeled pair of spatial entities 〈si, sj, Cij〉 is formed by two spatial
entities si and sj and their class Cij. The class Cij is either positive (Cij = 1) when the
pair 〈si, sj〉 is likely to refer to the same physical spatial entity, or negative (Cij = 0),
otherwise.
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Problem definition: The Spatial Entity Pair Labeling problem is a classification
problem that for a given pair of spatial entities 〈si, sj〉, aims to determine whether si
and sj refer to the same physical spatial entity or not.
In other words, the Spatial Entity Pair Labeling problem aims to transform
unlabeled pairs of spatial entities into labeled ones. In the next sections, we
will introduce our solution that computes the features of the pairs and labels
them based on the similarity of the spatial entities.

Fig. D.1: Overview of SkyEx-T with LGM-X

4 SkyEx-T with LGM-X

In this section, we introduce our approach to solving the spatial entity linkage
problem, SkyEx-T with LGM-X features, which uses domain-specific features
for expressing the similarity between spatial entities and a skyline-based al-
gorithm trained on a tiny dataset for labeling the pairs of spatial entities.

4.1 Overview of SkyEx-T with LGM-X

We will briefly introduce the main components and the workflow of our pro-
posed approach (Fig. D.1). We start with a set of pairs of spatial entities. We
apply LGM-X (detailed in Section 5.1) to produce domain-specific features,
which capture better the characteristics of spatial entities (Step 1 in Fig. D.1).
LGM-X produces featured pairs of spatial entities. We split this output into a
small training set and the rest as a test set. We use the training set for train-
ing the skyline-based algorithm SkyEx-T (detailed in Section 5.2). We start
by reducing the dimensionality (Step 2 in Fig. D.1 and detailed in Section
5.2.1). This step will output featured pairs but with fewer features. Then, in
Step 3, we learn the preference function p (Sections 5.2.2 and 5.2.3) and the
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cut-off ct (Section 5.2.4) by training SkyEx-T, which are needed to label the
pairs. Finally, in Step 4, we use the preference function p to put the pairs in
the test set into skylines, and the cut-off ct to separate the ranked pairs and
assign them into a class (Section 5.2.5). This final step produces the labeled
pairs.

4.2 LGM-X

In this section, we present the LGM-X (inter-Linking Geo-spatial entities us-
ing Machine learning - eXtended), our proposed training features to feed
the SkyEx-T algorithm for better capturing and exploiting the different at-
tributes of spatial entities and their geographical coordinates. In the follow-
ing subsections, we present a summary of the LGM-Sim [13] algorithm, a
meta-similarity function that aims to capture meaningful entity characteris-
tics and incorporate the specifics of spatial entities attributes related to name
and address. Consequently, we discuss the training features we introduce,
i.e. features derived from the proposed meta-similarity and additional entity
specific features, that enhance the process of similarity matching.

4.2.1 LGM-Sim Overview

The LGM-Sim algorithm aims at properly splitting the strings of compared
attributes of the spatial entities into discrete lists of terms, with each list con-
taining terms of different semantics. It takes as input the name attributes of
the two strings which are pre-processed in order to remove accents and punc-
tuation marks. Further, a separate process decides whether the terms within
the two strings should be alphanumerically sorted. Afterwards, the algorithm
initiates the process of splitting the initial strings into three separate lists of
terms each, i.e., (i) two base lists, (ii) two mismatch lists and (iii) two frequent
terms lists. It firsts identifies frequent terms within the two strings and moves
them to the respective lists, i.e., the frequent terms lists. This way, we isolate
the least significant terms that are the least important in determining whether
the two strings refer to the same entity or not. The other two types of lists
will contain terms that potentially are of higher significance in the problem
of spatial entity linkage. Specifically, the base lists will contain terms from
the two strings that (loosely) match to each other and the mismatch lists will
contain the rest of the terms that failed to match to the terms from the other
string. Finally, for each type of list, individual similarity scores are computed
which are differently weighted in order to produce the final similarity score
of the two spatial entities. All the parameters of LGM-Sim, i.e., comparison
thresholds and individual score weighting, are automatically learned on a
training dataset. Additionally, the set of frequent terms are automatically
gathered by the corpus of spatial entities contained in this training dataset.
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Feature Type
Attribute

Name
Address

Coords
name no

Basic similarities 14 14
Sorted similarities 13 13
LGM-Sim based sims. 13 13
Individual sim. scores 3 3
Numerical 1
Spatial 1

Table D.1: The considered LGM-X training features specialized for spatial entities

4.2.2 LGM-X Features

In this work, we adopt the set of training features presented in [13, 31] and
enrich it with entity-specific defined features, that concern numerical and
spatial aspects of the compared entities. Specifically, we adopt the features
presented in Santos et al. [31] where a combinations of several generic sim-
ilarity measures, like Damerau-Levenshtein, Jaro-Winkler, Jaccard N-Grams
etc., are encoded as features for classifiers. Moreover, we generate a corre-
sponding set of features by applying LGM-Sim on top of all similarity mea-
sures presented in [31]. Further, an “intermediate" set of training features
are considered, again corresponding to the similarity measures presented
in [31]. However, in this case, we apply only the sorting function of LGM-
Sim, which decides whether to sort the terms of each string alphanumerically
or not, before computing the similarity score of the entity names. Addition-
ally, we consider the three individual similarity scores computed on the three
types of individual lists that LGM-Sim splits the two entity names into. Note
that the above set of features are applied to the name and address (only the
text part of it) attributes of spatial entities. In addition to these, we define
entity-specific training features, that concern numerical and spatial aspects
of the compared entities. Specifically, the numerical distance of the address
numbers of the compared spatial entities form one integer feature, whereas
the Euclidean distance of their geographical coordinates form one float fea-
ture. Eventually, we consider six groups of training features (Table D.1): (i)
the basic similarity features as presented in [31]; (ii) the sorted similarity fea-
tures; (iii) the LGM-Sim based similarity features; (iv) the individual scores on
the split of the attributes produced by applying LGM-Sim based Damerau-
Levenshtein similarity on respective attributes; (v) the numerical feature on
address number; and (vi) the spatial feature on geographical coordinates.

4.3 SkyEx-T

In this section, we present SkyEx-T (Skyline Explore - Trained), our skyline-
based algorithm which labels the pairs as positives when there is a high
likelihood that they belong to the same spatial entity, and negative, otherwise.
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In the following subsections, we will detail how SkyEx-T learns the preference
function p in a small training set, selects a cut-off ratio ct, and then ranks the
data based on the preference p and separates the classes according to ct.

4.3.1 Reducing the dimensionality

Each pair is described as a set of N LGM-X features {Xa1
1 , Xa1

2 , Xa2
3 , ..., Xan

N }
that are computed on the values of the attributes {a1, a2, ..., an} as described in
Section 5. To have a simpler notation, from now on, we will not use the super-
script of the attribute in the features but will simply write {X1, X2, X3, ..., XN}.
Some of these features are highly correlated, given that they measure the sim-
ilarity of the same attributes, e.g., measuring Jaccard and cosine similarity on
the names of the spatial entities. To remove highly correlated features, we
use the mutual information (MI) [41] to detect the dependency between two
variables. MI can detect different relationships, and it is not limited to linear
correlation (like Pearson’s correlation). MI measures the similarities of the
joint distribution of the two variables. If px(x) and py(y) are the marginal
probability density functions of variables x and y, respectively, and px,y(x, y)
is the joint probability function of both x and y, then the MI of x and y is
defined as:

MI(x, y) =
∫

x

∫
y

px,y(x, y)log
px,y(x, y)

px(x)py(y)
(D.1)

After the features are pairwise compared using MI, we identify those pairs
of features that are highly correlated. Then, we remove one from each of
the highly correlated pairs; we choose to remove the feature with the largest
mean correlation overall. From the remaining features, we need to build a
model to predict the class of the pairs.

4.3.2 Preference functions

In contrast to traditional machine learning techniques that fit the training set
to a model, we propose having a function that is expressed as a preference of
feature values; the pairs that are ranked better with respect to the preference
function are the pairs that are likely to refer to the same physical entity.

Definition D.5. A preference function p : P 7→Pk is a function that takes as input
a set of pairs P = {〈si, sj〉} and outputs the partially ranked (some pairs share the
same rank) list of pairs Pk = {〈si, sj, k〉} with respect to their feature values, where
k ∈ [1, m] is the rank of a pair 〈si, sj〉, and m is the maximal rank.

The preference function ranks the pairs from the most preferred pairs to the
least preferred ones, meaning that the first rank pairs are more likely to be
the same spatial entity than the rest. To show that a pair 〈si, sj〉 is preferred
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over another pair 〈s′i, s′j〉, we will use the symbol �, so 〈si, sj〉 � 〈s′i, s′j〉. The
definition of the preference is based on the definition of the skylines. We use
a definition similar to [10]:

Definition D.6. A skyline of level k is a set of pairs Skyline(k) = {〈si, sj〉} ranked
in the kth position according to the preference function p such that for each pair
〈si, sj〉 ∈ Skyline(k) and for each pair 〈s′i, s′j〉 ∈ Skyline(k′) where k′ > k, 〈si, sj〉 �
〈s′i, s′j〉.

According to the above definition, the pairs in Skyline(k) are more likely to
be the same spatial entity than the pairs in Skyline(k′), for k > k′. Let us now
further detail the components of the preference functions: the preferred feature
direction and the preference operators, defined as below:

Definition D.7. The preferred feature direction d() : X 7→N is a function that takes
as input the list of values of a feature X, orders them preferring either high values
(high()) or low values (low()), and outputs the rank for each feature.

d() is a generic way to express the preferred feature direction, but in prac-
tice, we will use high() or low() based on the feature. Instead of coefficients,
the preference function only specifies if we prefer high or low values of a
feature. For example, for a pair to be labeled as positive (they are the same
physical spatial entity), we would prefer a high Levenshtein similarity, so
high(Xlevenshtein). Note that we can construct a very basic preference function
by using the preferred feature direction on only one feature. For example,
p = high(Xlevenshtein) will rank the pairs P based on their Levenshtein sim-
ilarity and assign them to skylines. If we want to include more than one
preferred feature direction in a preference function, we will need the prefer-
ence operators. We introduce two types of preference operators: the Pareto
operator and the Priority operator:

Definition D.8. The Pareto operator 4 is a binary operator connecting two pre-
ferred feature directions according to the Pareto Optimality concept.

The Pareto Optimality [42] concept is widely used in multi-criteria optimiza-
tion problems. A combination of (x, y) is Pareto optimal when there is no other
combination that can increase x without decreasing y. In our context, the Pareto
operator prefers one solution over the rest if it is better in terms of at least
one feature value, while for the remaining feature values it is either the same
or better. Otherwise, the solutions are Pareto-Optimal, meaning that we have
no preference of one over the other. Let us illustrate this concept with an
example:
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Example D.3
Let us consider the pair of spatial entities 〈s1, s2〉, which are compared
with regards to their name. We have two computed features that indicate
the similarity of the name: X1=0.7 and X2=0.3. Since a high similarity is
likely to indicate a match of the pairs, we prefer high values. Hence, the
preferred feature direction is high() for both features. Given that we have
no information on whether we should prefer one feature over another, we
choose to connect these features with the Pareto operator, so high(X1)4
high(X2). This means that for another pair 〈s3, s4〉 to be preferred over
〈s1, s2〉 (〈s3, s4〉 � 〈s1, s2〉), 〈s3, s4〉 has to be better at least in one of the
features, while the other does not increase. For example {X1 = 0.7, X2 =
0.4}, {X1 = 0.9, X2 = 0.3}, {X1 = 0.8, X2 = 0.4} would be combinations
which are preferred over the {X1 = 0.7, X2 = 0.3}.

Besides the Pareto operator, we can also choose to prefer one feature over
another. We introduce the Priority operator defined as follows:

Definition D.9. The Priority operator . is a binary operator connecting two pre-
ferred feature directions such that the feature direction on the left side of the operator
is preferred over the one on the right side.

The Priority operator expresses an order of the feature importance; for exam-
ple, if the cosine similarity is more likely to detect matches than the Jaccard
similarity, we prioritize those pairs that have high cosine similarity over those
with high Jaccard similarity. Let us give an example:

Example D.4
Let us consider the pair of spatial entities 〈s1, s2〉 of the previous example,
with the similarities of the name: X1=0.7 and X2=0.3. Let us suppose that
X2 can detect the class better than X1. Even though high values of both
features are preferred, we would be more interested in having high values
of X2. Thus, we express the preference as high(X2) . high(X1). This means
that for another pair 〈s3, s4〉 to be preferred over 〈s1, s2〉 (〈s3, s4〉 � 〈s1, s2〉),
〈s3, s4〉 has to have a higher X2, or the same X2 but a better X1. For example
{X1 = 0.8, X2 = 0.3} and {X1 = 0.7, X2 = 0.4} would be combinations
which are preferred over the {X1 = 0.7, X2 = 0.3}.

After defining the preferred feature directions and the preference operators,
we can construct different preference functions. Let us illustrate this with an
example:
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Example D.5
Let us consider a pair of spatial entities 〈s1, s2〉 of the previous example,
with the similarities of the name: X1=0.7 and X2=0.3 and physical dis-
tance (in meters) from each other X3 = 10. Since X1 and X2 express
the similarity of the name, we prefer a high value, so the preferred fea-
ture direction is high(X1) and high(X2). On the contrary, we prefer the
spatial entities to be as close as possible to each other, thus, we prefer a
low value on the distance, so low(X3). Let us suppose that we do not
have any preferred order of X1 and X3, while X2 can detect the class bet-
ter than X1 and X3. In that case, we use the Pareto operator between
X1 and X3 as in high(X1) 4 low(X3) and the Priority operator for X2
as in high(X2) . (high(X1)4 low(X3)). Hence, the preference function is
p = high(X2) . (high(X1)4 low(X3)).

When we have few features and little domain knowledge, we can select the
preference function ourselves. However, when having many features, there
are many possible ways to connect them with operators. In the next sub-
section, we introduce our algorithm SkyEx-T that automatically determines a
suitable preference function.

4.3.3 Preference Training

The preference function in [10, 11] was chosen ad hoc, and the only operator
was Pareto. To improve the process of preference selection, we offer expres-
siveness and agility by introducing a preference function that can be trained
on a rather small training set, and thus automatically learn optimal prefer-
ences for each dataset. We propose the SkyEx-T algorithm (Skyline Explore
- Trained) for preference training which further reduces the dimensionality
and selects a preference function based on the importance of each feature for
detecting the class. Then, SkyEx− T ranks the pairs according to p and finds
the cut-off ratio for separating the classes (this procedure will be detailed in
the next section). The pseudocode of SkyEx-T is formalized in Algorithm D.1.
To learn which remaining features are more suitable for the preference func-
tion, we calculate their correlation with the class C. C is 0 if the pairs are
not a match and 1 otherwise. We want to find those features whose increase
is usually associated with an increase in the class label (C changes from 0
to 1). We use Spearman’s correlation because it is capable of detecting these
monotonic relationships between variables, and it is not limited only to linear
relationships.

ρXi =
cov(Xi, C)

σXi σC
(D.2)
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where cov(Xi, C) is the covariance of the feature Xi and the class C, and σXi
and σC are the standard deviations of Xi and C, respectively.
After having all ρXi values for each Xi, we select those Xi which have high
values of ρXi . Note that even high negative values are preferred: an increase
in Xi leading to a decrease in C indicates that we can change the preferred
direction of the feature from high(Xi) to low(Xi). To choose the features, we
plot the absolute values of ρXi in decreasing order and notice when ρXi falls
considerable. This will be graphically associated with an elbow in the curve.
We denote the first elbow as ε1 and the Xi features with |ρXi | ≤ ε1 as Xε1

.
Xε1

are showing the strongest monotonic relationships to C, so their increase
is closely related to C. Given that these are the most important features, they
will be prioritized over the rest of the features while using the Pareto operator
amongst Xε1

themselves, treating them equally. In order to make the function
more accurate, we can refine it further using the less important features. For
that, we will again search for the next elbow in the curve, denoted as ε2.
We denote with Xε2

the features with |ρXi | ≤ ε2 and ρXi > ε1. Xε2
will be

connected by the Pareto operator themselves, while they will be connected by
the Priority operator with Xε1

. To sum up, we have two groups of features:
Xε1

and Xε2
. We use the Pareto operator among the Xε1

and Xε2
but the

Priority operator for Xε1
over Xε2

. Let us illustrate this procedure with an
example:

Example D.6
Let us suppose we have two spatial entities s1 and s2 with 10 features
{X1, X2, ...X10}. After computing ρXi for each feature and ordering their
absolute values in a descending order, we get these values {0.6, 0.56, 0.55,
0.54, 0.34, 0.33, 0.33, 0.32, 0.11, 0.06}, which are the |ρXi | values of {X3,
X4, X7, X1, X9, X2, X5, X8, X10, X9}, respectively. Fig. D.2 shows |ρXi |
values ordered from the highest to the lowest. It is possible to notice the
two elbows in the curve, ε1 and ε2. Let us suppose that the preferred
direction of each feature is high(). Then, the preference function will be as
follows: p = (high(X3)4 high(X4)4 high(X7)) . (high(X1)4 high(X9)4
high(X2)4 high(X5)).

The above procedure is formalized in lines 1-10 in Algorithm D.1. We first
initialize RX in line 1 to store all ρXi . Then we calculate ρXi for each feature
and order RX in lines 2-3. We find the elbows ε1 and ε2 in line 4. Then, we
connect the features within Xε1

and Xε2
by the Pareto operator in lines 5-10.

Finally, we prioritize Xε1
over Xε2

in line 11.
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4.3.4 Skyline ranking and fixing the cut-off ratio

After having the preference function, we can apply it to the pairs and rank
them accordingly. We use the skylines as in [11] to first find those pairs
who are preferred the most when using preference p. Let us suppose that
Skyline(1) contains all the pairs {〈si, sj〉} that, given preference p, 〈si, sj〉 �
〈s′i, s′j〉 for each 〈s′i, s′j〉 ∈ Skyline(k), where k > 1. Thus, all pairs in Skyline(1)
dominate the rest of the pairs. Then, we need to remove Skyline(1) from the
set of pairs. Applying the same preference, we choose the next set of most
preferred pairs (Skyline(2)). We continue this procedure until there are no
more pairs left.
While moving from one skyline to the next, we need to define which cut-off
number of skylines best separates the classes. Given that the preferred pairs
are likely to indicate a match, we will label as positive the first skylines up to
the cut-off and the remaining as negative. Cutting too early will result in high
precision, but low recall, while cutting too late will improve the recall, but at
the cost of lower precision. Thus, we use a well-known balanced indicator,
the F-measure (F1 = 2∗precision∗recall

precision+recall ). We measure the F-measure for each cut-
off and fix the cut-off to kl where the F-measure is maximized. We express
this cut-off as a ratio of kl

b where b is the maximal level of skylines. Let us
provide theoretical guarantees that a cut-off ratio found in a training set can
satisfy the F-measure maximization in the whole dataset or the test set.

Theorem D.1. Let us apply the preference function p on two random samples P1
and P2 from the pairs P. If Pk

1 and Pk
2 are the ranked pairs of P1 and P2 with regards

to p, and D1 and D2 are the probability density of Pk
1 and Pk

2 , respectively, then
D1 ∼ D2.

Proof. Based on the Central Limit Theorem [43], the sample distributions will
respect the population distribution, around the same mean µ as the popula-
tion P but with a smaller standard deviation proportional to the size of the

Fig. D.2: Finding ε1 and ε2
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Algorithm D.1 SkyEx-T training

Input: A set of labeled pairs Pt = {〈si, sj, Cij〉}
Output: A trained preference function p and cut-off ct

1: RX ← ∅
2: Calculate ρXi for each Xi and add each |ρXi | to RX
3: Order RX in a descending order
4: Find ε1 and ε2 elbows in RX
5: for each Xi that |ρXi | ≤ ε1 do
6: p1 = d(X1)4 d(X2)...4 d(Xm)
7: end for
8: for each Xi that |ρXi | > ε1 and |ρXi | ≤ ε2 do
9: p2 = d(Xm + 1)4 d(Xm+2)...4 d(Xn)

10: end for
11: p = p1 . p2
12: Pk ← ∅
13: F ← ∅
14: while |Pk| < |P| do
15: Find Skyline(k) = {〈si, sj〉} | ∀〈s′, s′′〉 ∈ Pt − {〈si, sj〉} , 〈si, sj〉 �

〈s′, s′′〉}
16: Remove Skyline(k) from P and add it to Pk
17: Label Pk as positive
18: Calculate F1(k) and add F1(k) to F
19: Pt = Pt − Skyline(k)

20:21: Find kl such that F1(kl) = max(F1(k)) ∀k ∈ {1, |F|}

22: ct =
∑

kl
i=1 Skylinei

∑
max(k)
i=1 Skylinei

return p, ct

sample σ√
n . Let us denote by f (k) the probability density function of the

pairs with relation to their skyline level k. After applying p on P1, P2 and P,
the new ranked pairs in Pk

1 and Pk
2 will respect their order of ranking in each

sample. Note that f (k) is deterministic. Let us suppose that we apply the
preference p in P and we obtain the ranked pairs Pk. For every 〈s1, s2〉 and
〈s3, s4〉 in Pk, if 〈s1, s2〉 � 〈s3, s4〉, 〈s1, s2〉 ∈ P1, and 〈s3, s4〉 ∈ P1, then we have
that 〈s1, s2〉 � 〈s3, s4〉 in Pk

1 as well. Similarly, For every 〈s1, s2〉 and 〈s3, s4〉
in Pk, if 〈s1, s2〉 � 〈s3, s4〉, 〈s1, s2〉 ∈ P2, and 〈s3, s4〉 ∈ P2, then we have that
〈s1, s2〉 � 〈s3, s4〉 in Pk

2 . This means that f (k) will simply, in a determinis-
tic way, reorder the observations of the samples, which already have similar
distributions, strictly respecting the order in the in Pk. As a result, the new
probability density distributions will be similar, so D1 ∼ D2.
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Theorem D.2. Let us apply the preference function p on two random samples P1
and P2 from P and denote by Pk

1 and Pk
2 their respective ranked pairs with regards to

p. If k1 is a cut-off in the probability density function D1 =
∫ b1

1 f1(k)dk (limits in
[1, b1]) of Pk

1 such as the F-measure is maximal, then k1b2
b1

will also be a near-optimal

cut-off for Pk
2 with probability density function D2 =

∫ b2
1 f2(k)dk (limits in [1, b2]).

Proof. The probability density distribution for the ranked pairs Pk
1 and Pk

2 is∫ b1
1 f1(k)dk and

∫ b2
1 f1(k)dk, respectively, and the skyline levels lie in [1, b1]

for Pk
1 and [1, b2] for Pk

2 . The work in [44] presents the preferred solutions of
a decision maker in relation to the mean, variance, and third moments of a
distribution. In other words, a preferred cut-off in a probability distribution
D1 is a preferred solution for a probability distribution D2 as long as the
mean, variance, and third moments are similar. When sampling P1 and P2
from P, we gain a sample of pairs with a mean µ as in P [43]. After ranking,
the pairs near µ will be assigned in the kµ1-th skyline for the pairs Pk

1 and
in kµ2 skyline for the pairs Pk

2 . According to Theorem D.1, D1 ∼ D2, so

kµ2 ' kµ1. The variances will be σ1 =
∫ b1

1 (k− kµ1)
2 f (k)d(k) and σ2 =

∫ b2
1 (k−

kµ2)
2 f (k)d(k) for P1 and P2, respectively. Given that kµ2 ' kµ1, we have that

σ1 ' σ2. The third moment is an indicator of skewness and it is defined as:

m3
1 =

∫ b1
1 (y−kµ1)

3dF(y)
σ3

1
and m3

2 =
∫ b2

1 (y−kµ2)
3dF(y)

σ3
2

for P1 and P2, respectively.

Given that kµ1 ' kµ2 and σ1 ' σ2, then m3
1 ' m3

2. The pairs in the first
skylines have a high likelihood to belong to the same physical spatial entity
and usually, they form a skewed long-tail distribution [10]. Let us suppose
that k = k1 is a cut-off in the probability density function

∫ b1
1 f (k)dk such

that when labeling pairs in a skyline smaller than k1 as positive and the rest
as negative, the F-measure is maximized. In other words, k1 is the preferred
cut-off for the decision maker. According to the skewness condition in [44],
a similar cut-off in the probability density distribution

∫ b2
1 f (k)dk of P2 will

yield a near-optimal F-measure value. In order for k1 to be applicable to P2,
we need to express it as a ratio k1

b1
and adapt it to P2 as in k1b2

b1
.

Note that this process is stochastic, meaning that it might not always find the
optimal cut-off, but it will always find the near-optimal cut-off value (we also
show this experimentally in Section 5). We will learn the cut-off ratio from
a training set and then, given Theorem D.2, we will apply it to the test set.
However, having the cut-off ratio k1

b1
requires that we rank all the pairs in the

training set and moreover, to find k1b2
b1

, we need b2, which again will need the
ranking of all the pairs in the test set. For a big dataset, this procedure will
be time-consuming. Therefore, we use a simple derivative of Theorem D.2,
formalized in Lemma 1, where instead of a cut-off in the number of skylines,
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we use the percentage of the data belonging to the optimal level of skylines.

Lemma D.1. If c1 =
∑

k1
i=1 Skylinei

∑
b1
i=1 Skylinei

is the ratio of the total pairs in Pk
1 that belong to

a skyline level of at most k1, where k1 is a cut-off in the probability density function
D1 =

∫ b1
1 f1(k)dk (limits in [1, b1]) of Pk

1 such as the F-measure is maximal, then
c1 ∗ |Pk

2 | is a near-optimal cut-off for Pk
2 for maximizing the F-measure.

Proof. The cut-off k1 in Pk
1 corresponds to the skyline level which can best

separate the classes. Given that the probability density distributions D1 and
D2 of P1 and P2 are similar (Theorem D.1), for each pair 〈si, sj〉 in Pk

1 , the

probability of belonging to the positive class is P(k〈si ,sj〉 ≤ k1) ∼
∑

k1
i=1 Skylinei

∑
b1
i=1 Skylinei

.

According to Theorem D.2, the cut-off ratio k1
b1

is near-optimal for Pk
2 in order

to best separate the classes. Let us denote with c2 =
∑

k2
i=1 Skylinei

∑
b2
i=1 Skylinei

the ratio

of total pairs in Pk
2 that corresponds to skyline levels up to k2. Given that

Theorem D.2 and D1 ∼ D2, ∑
k1
i=1 Skylinei

∑
b1
i=1 Skylinei

∼ ∑
k2
i=1 Skylinei

∑
b2
i=1 Skylinei

. Thus, the ratio c1 ∼ c2,

so c1 is the near-optimal for Pk
2 .

The skyline ranking is detailed in lines 12-19 in Algorithm D.1. We start with
an empty set of explored skylines Pk in line 12. Note that in line 13 we are
initializing F, which will keep the F-measure for each cut-off. We will need
F later when we learn the cut-off ct. While there are still pairs that are not
ranked, we find the next skyline that satisfies the preference function (line
15) and remove it from the pairs Pt. We label all pairs in Pk as positive and
calculate the F-measure for this cut-off in lines 17-18. Then, we remove the
current skyline and continue the ranking. We find the best cut-off kl that
maximizes the F-measure in line 21. We express the cut-off as a data ratio
(Lemma 1), which makes it applicable to any sample (line 22). Finally, we
return the learned preference function p and the cut-off ratio ct.

4.3.5 Classification of Pairs

In the previous subsections, we discussed the training of SkyEx-T (Algorithm
D.1) that determines the preference function, ranks the pairs, and selects the
cut-off. In this subsection, we will formalize SkyEx-T labeling algorithm for
classifying the pairs (Algorithm D.2). We start with a set of unlabelled pairs
P, a trained preference function p and cut-off ratio ct from Algorithm D.1.
We apply the preference function p on P. We rank the pairs in P according
to the preference function p and assign them to skylines (1-5). Note that we
do not rank all the pairs but only the pairs in the first skylines that constitute
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the ratio ct of all pairs, so a total of ct|P| pairs. These pairs are the ones that
later will be labeled as positive (Lemma 1). When ct|P| pairs are ranked, we
need to label them. We label all the ranked pairs in Pk as positive and the
remaining unranked pairs as negative. Finally, we return the labeled P′.

Algorithm D.2 SkyEx-T labeling

Input: A set of unlabeled pairs P = {〈si, sj〉}, a trained preference function
p and a cut-off ratio ct

Output: A set of labeled pairs P′ = {〈si, sj, Cij〉}
1: Pk ← ∅
2: while |Pk| < ct|P| do
3: Find Skyline(k) = {〈si, sj〉} | ∀〈s′, s′′〉 ∈ P−{〈si, sj〉} , 〈si, sj〉 � 〈s′, s′′〉}

based on p
4: Remove Skyline(k) from P and add it to Pk
5: P = P− Skyline(k)
6:

7: Set Cij = 1 (positive class) for all 〈si, sj〉 ∈ Pk and add them to P′.
8: Set Cij = 0 (negative class) for all 〈si, sj〉 ∈ P− Pk and add them to P′.

returnP′

5 Experimental Results

In this section, we will describe our datasets and then, report the results of
our experiments with SkyEx-T and several machine learning techniques.

5.1 Dataset

We are using two datasets of spatial entities for the experiments: North Den-
mark spatial entities (North-DK) and the Fodor’s and Zagat’s restaurants (Restau-
rants).
North Denmark spatial entities (North-DK) contains spatial entities from
Denmark, originating from four different sources, Google Places (GP),
Foursquare (FSQ), Yelp, and Krak1. The spatial entities are retrieved by using
the seed-driven approach described in [45]. We obtained 75,541 spatial en-
tities, where 51.50% originate from GP, 46.22% from Krak, 0.03% from FSQ,
and 2.23% from Yelp. The 75,541 retrieved spatial entities were grouped us-
ing the spatial blocking techniques in [11]. After the spatial blocking, we

1Krak (www.krak.dk) contains businesses, organizations, companies, etc. with their attributes
such as name, location, address, phone, categories, etc. Krak is part of Eniro Danmark A / S.,
which is responsible for The Yellow Pages
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obtained 777,446 pairs. To establish a ground truth, we apply the following
rule; if the phone number or the website is the same, then we infer that the
pair should refer to the same physical entity. By using this rule, we obtain
27,102 positive pairs (3.5% of the total pairs). In Table D.2, we observe that
most of the positive pairs are from different sources, especially from Krak
and Google Places (64.2% of the total positive pairs). Even though the spatial
entities are uniquely identified within a source, we can still find duplicates
within the same source. 28.7% of the total positive pairs originate from same-
source pairs, especially in Krak and in Google Places.
Fodor’s and Zagat’s restaurants2 (Restaurants) is a dataset of 864 restaurant
entities, where 61.69% are extracted from Fodor’s Travel3 and 38.31% from
Zagat website4. The entities are characterized by the name, the address, the
city, the phone number, and the type of the spatial entity. Given that the
geographical coordinates are missing in this dataset, we do not perform the
spatial blocking but rather use all the pairs. We obtain 372,816 pairs, 112 out
of which refer to the same spatial entity (0.03% of the total pairs). These 112
pairs are already given, so we did not have to compute the ground truth for
this dataset. However, the phone number attribute has been used to derive
the class, so we exclude the phone number from the pairwise comparison of
attributes.

Source Krak GP Yelp FSQ
Krak 3,789 17,405 902 7
GP 3,546 968 13
Yelp 460 12
FSQ 0

Table D.2: The sources of the positive pairs

5.2 Comparing SkyEx-T to Machine Learning Solutions

In this section, we will compare the results of SkyEx-T to some popular ma-
chine learning techniques, used in spatial entity linkage [13]. We compare
our results to Support Vector Machine (SVM) [46], Decision Trees [47], Ran-
dom Forest [48], Extremely Randomized Trees (Extra Trees) [49], Extreme
Gradient Boosted Trees (XGBoost) [50], Multi Layer Perceptron (MLP) [51].
To have a fair comparison, the machine learning techniques use the same
LGM-X features as SkyEx-T, meaning that there was no further tuning to the
features. We selected this experimental configuration in order to (a) assess
the generalization of algorithms in different spatial entity datasets and (b) to

2https://www.cs.utexas.edu/users/ml/riddle/data.html
3https://www.fodors.com
4https://www.zagat.com
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Training size 0.05% 0.10% 0.40% 0.80% 1% 4% 8% 12% 16% 20% 80%

Precision

SVM 0.901 0.912 0.896 0.885 0.890 0.885 0.880 0.882 0.882 0.880 0.876
DecisionTree 0.597 0.571 0.591 0.598 0.599 0.608 0.616 0.617 0.626 0.630 0.654
RandomForest 0.818 0.839 0.857 0.860 0.868 0.870 0.868 0.871 0.871 0.871 0.874
ExtraTrees 0.837 0.842 0.867 0.865 0.871 0.876 0.874 0.877 0.877 0.877 0.877
XGBoost 0.761 0.779 0.797 0.811 0.812 0.832 0.828 0.833 0.834 0.835 0.850
MLP 0.781 0.804 0.826 0.818 0.826 0.851 0.857 0.853 0.843 0.855 0.859
SkyEx-T 0.844 0.804 0.852 0.813 0.879 0.882 0.913 0.899 0.908 0.915 0.907

Recall

SVM 0.520 0.511 0.552 0.569 0.569 0.590 0.599 0.601 0.605 0.608 0.616
DecisionTree 0.613 0.614 0.629 0.631 0.625 0.636 0.649 0.651 0.656 0.658 0.681
RandomForest 0.587 0.576 0.587 0.593 0.587 0.607 0.617 0.621 0.624 0.628 0.655
ExtraTrees 0.569 0.566 0.577 0.588 0.584 0.597 0.607 0.612 0.616 0.619 0.645
XGBoost 0.611 0.602 0.624 0.625 0.622 0.631 0.643 0.647 0.650 0.653 0.666
MLP 0.609 0.602 0.624 0.642 0.630 0.624 0.621 0.630 0.646 0.630 0.631
SkyEx-T 0.591 0.620 0.607 0.626 0.594 0.632 0.591 0.599 0.584 0.581 0.606

F-measure

SVM 0.655 0.653 0.683 0.692 0.694 0.708 0.713 0.715 0.718 0.719 0.723
DecisionTree 0.596 0.589 0.609 0.613 0.612 0.622 0.632 0.634 0.641 0.644 0.667
RandomForest 0.678 0.682 0.696 0.702 0.700 0.715 0.721 0.725 0.727 0.730 0.749
ExtraTrees 0.670 0.676 0.693 0.700 0.699 0.710 0.717 0.721 0.723 0.726 0.744
XGBoost 0.673 0.679 0.700 0.705 0.704 0.717 0.724 0.728 0.731 0.733 0.747
MLP 0.678 0.688 0.708 0.719 0.709 0.719 0.719 0.724 0.731 0.724 0.727
SkyEx-T 0.682 0.690 0.708 0.705 0.706 0.736 0.717 0.718 0.711 0.711 0.727

Difference from Max F-measure in %

SVM 3.96% 5.36% 3.53% 3.76% 2.12% 3.80% 1.52% 1.79% 1.78% 1.91% 3.47%
DecisionTree 12.61% 14.64% 13.98% 14.74% 13.68% 15.49% 12.71% 12.91% 12.31% 12.14% 10.95%
RandomForest 0.59% 1.16% 1.69% 2.36% 1.27% 2.85% 0.41% 0.41% 0.55% 0.41% 0.00%
ExtraTrees 1.76% 2.03% 2.12% 2.64% 1.41% 3.53% 0.97% 0.96% 1.09% 0.95% 0.67%
XGBoost 1.32% 1.59% 1.13% 1.95% 0.71% 2.58% 0.00% 0.00% 0.00% 0.00% 0.27%
MLP 0.59% 0.29% 0.00% 0.00% 0.00% 2.31% 0.69% 0.55% 0.00% 1.23% 2.94%
SkyEx-T 0.00% 0.00% 0.00% 1.95% 0.42% 0.00% 0.97% 1.37% 2.74% 3.00% 2.94%

Table D.3: SkyEx-T versus Machine Learning on North-DK

retain the complexity of our models, e.g., depth of each tree in random forest
search, comparable to SkyEx-T.

5.2.1 Model accuracy

We trained on 0.05%, 0.1%, 0.4%, 0.8%, 1%, 4%, 8%, 12%, 16%, and 20% of the
North-DK dataset, and 1%, 4%, 8%, 12%, 16%, and 20% of the Restaurants
dataset. We could not train on less than 1% of data in Restaurants because
there are only 112 positive pairs, and we would then have 0 positive pairs.
For SkyEx-T, we first removed the highly-correlated features and learned the
correlation of the remaining features with the class. We used ε1 and ε2 to
find Xε1

and Xε2
as explained in Algorithm D.1. We found the cut-off ct

and applied it to the rest of the data as in Algorithm D.1. For each training
size, we repeated the experiment 10 times with disjoint training sets, and we
report the averages of precision, recall and F-measure in Table D.3 and Table
D.4, and the evolution of F-measure while increasing the training set in the
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Fig. D.3: SkyEx-T vs Maching Learning

Fig. D.3. Overall, the choice of LGM-X features proved highly effective for all
methods, even on small training sets, which are atypical for machine learning,
a finding also shown experimentally for LGM-Sim in [13]. LGM-X was used
on an initial set of parameters and was still able to generalize and achieve
good effectiveness on various dataset sizes and configurations, especially on
training sizes of over 8%.
We can notice the advantage of SkyEx-T over the machine learning techniques
for small training sets in North-DK. SkyEx-T has the highest F-measure for
0.05%, 0.1%, 0.4% (together with MLP), and 4% (see Fig: D.3b). Overall,
SkyEx-T is in the top 3 best methods in terms of F-measure for North-DK in
small training sets). For Restaurants, SkyEx-T is in the top 3 best methods for
1% and 4%. More importantly, SkyEx-T starts at a very high F-measure when
most of the machine learning techniques fail (see Fig. D.3c). SkyEx-T has the
highest precision of all methods for 8%, 12%, 16%, 20%, and 80% training in
North-DK, and the highest recall for 0.1% in North-DK, and highest recall
for 1%-8% in Restaurants. To sum up, even though the training of SkyEx-T is
significantly lighter compared to machine learning techniques (we only use
the label for checking correlations), it is still on average, on the top 3 best
methods in terms of F-measure in small training sets.
If we observe the difference in percentage from the maximal F-measure for
each training size (Table D.3), in North-DK, SkyEx-T differs on average by
only 0.83% for training sets up to 20% of the data. In Restaurants (Table D.4),
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Training size 1% 4% 8% 12% 16% 20% 80%

Precision

SVM 0.600 0.988 0.944 0.952 0.941 0.952 0.931
DecisionTree 0.847 0.872 0.821 0.846 0.870 0.862 0.893
RandomForest 0.920 0.905 0.911 0.929 0.918 0.940 0.923
ExtraTrees 0.910 0.917 0.920 0.932 0.925 0.942 0.937
XGBoost 0.000 0.979 0.915 0.953 0.928 0.956 0.930
MLP 0.311 0.885 0.904 0.910 0.911 0.939 0.884
SkyEx-T 0.773 0.826 0.851 0.839 0.855 0.863 0.849

Recall

SVM 0.132 0.644 0.770 0.764 0.790 0.812 0.855
DecisionTree 0.804 0.746 0.782 0.788 0.801 0.781 0.864
RandomForest 0.675 0.769 0.787 0.777 0.781 0.796 0.845
ExtraTrees 0.753 0.777 0.807 0.793 0.807 0.839 0.877
XGBoost 0.000 0.581 0.754 0.737 0.783 0.803 0.895
MLP 0.047 0.721 0.785 0.851 0.838 0.826 0.868
SkyEx-T 0.830 0.820 0.824 0.817 0.794 0.802 0.796

F-measure

SVM 0.196 0.777 0.847 0.846 0.858 0.875 0.889
DecisionTree 0.818 0.798 0.796 0.810 0.831 0.816 0.875
RandomForest 0.743 0.830 0.843 0.844 0.843 0.859 0.879
ExtraTrees 0.823 0.836 0.857 0.853 0.860 0.885 0.904
XGBoost 0.000 0.724 0.823 0.827 0.847 0.870 0.910
MLP 0.077 0.789 0.837 0.877 0.870 0.874 0.871
SkyEx-T 0.782 0.813 0.831 0.823 0.821 0.828 0.820

Difference from Max F-measure in %

SVM 76.23% 7.13% 1.23% 3.46% 1.41% 1.07% 2.30%
DecisionTree 0.56% 4.59% 7.16% 7.61% 4.56% 7.79% 3.84%
RandomForest 9.74% 0.77% 1.66% 3.67% 3.14% 2.88% 3.41%
ExtraTrees 0.00% 0.00% 0.00% 2.65% 1.18% 0.00% 0.66%
XGBoost 100.00% 13.46% 4.06% 5.61% 2.72% 1.70% 0.00%
MLP 90.62% 5.62% 2.40% 0.00% 0.00% 1.26% 4.22%
SkyEx-T 4.98% 2.78% 3.12% 6.09% 5.70% 6.41% 9.92%

Table D.4: SkyEx-T versus Machine Learning on Restaurants

SkyEx-T yields, on average, an F-measure of 4.85% less than the maximal
on training sets up to 20%. Furthermore, on training sets less than 8%, this
difference is only 3.63%, the second-best after ExtraTrees, while SVM, MLP
and XGBoost yield an F-measure which is on average 30% lower than the
maximal. Overall, SkyEx-T performs better than the machine learning techniques
for small training sets and as good as them for larger ones. Additionally, it is
important to note that there was no single best machine learning model that
would give the best F-measure consistently for all the training sizes; apart
from SkyEx-T, four different methods (RandomForest, ExtraTrees, XGBoost,
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and MLP) competed for the highest F-measure; thus, there was no obvious
winner.

5.2.2 Model explainability

Additionally to the results in terms of F-measure, we can compare the meth-
ods in terms of other criteria. Considering that spatial entities are impor-
tant in many business applications, the models used for spatial entity link-
age need to be explainable for the end-user, especially when these decisions
have a high impact on the business. Moreover, “the right to explanation"
is now officially a requirement of EU’s General Data Protection Regulation
(GDPR) [52]. In the case of SkyEx-T, the preference model is human-readable
and easily explainable. An example of a preference function is:
(high(SimName) 4 high(LGM_baseScore) 4 high(SimAddress)) .
(high(Sorted_Dice_bigrams) 4 high(Dice_bigrams) 4 high(Sorted_Soft_Jaccard)
4 high(LGM_Dice_bigrams)).
It is simple to understand which s1 and s2 matched noticing what features
the model prefers overall and which features over others. We can trace back
the skyline ranking and understand why a specific label was assigned. As
for the machine learning techniques, their complexity usually comes with a
lack of explainability.
For the linear SVM, we can use the proposed probability estimates by Platt
[53] to derive individual feature effects on the model outcome by perturbing
one feature at a time through a range of values, whilst keeping the other
features fixed. The Decision Trees model interpretation is rather simple, in
theory, since each feature’s importance can be computed by measuring the
amount of “impurity", i.e., the reduced variance or Gini index compared to
the parent node. However, in practice, this is feasible only in cases where
the tree depth is rather small. In our case, the depth of Decision Trees was
small enough for the trees to be somewhat explainable for very small train-
ing sets in Restaurants: 2-3 for training sets of 0-10%, 4-6 for 10-20%, 7-9 for
80% but very large in North-DK: 28-34 for 0-10%, 30-42 for 10-20%, 40-45 for
80%, which makes the model unexplainable in practice. Nevertheless, both
SVM and Decision Trees are outperformed, in terms of F-measure, in most
scenarios by other algorithms, as presented in Tables D.3 and D.4. The inter-
pretation gets even harder in tree-based models, e.g., Random Forest, Extra
Trees and XGBoost, which consist of a large number of deep trees. Com-
plex techniques, like Impurity Feature Importance or Conditional Permuta-
tion Feature Importance [54], are required to gain insights for the importance
of the training features where each approach has problems and drawbacks
and makes it difficult to apply in every case. Finally, the MLP (MultiLayer
Perceptron) model is far from explainable since it is a type of a basic artificial
neural network and, thus, it is treated as a black-box in most cases. To sum
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up, all the machine learning techniques failed in terms of model explain-
ability on both datasets while SkyEx-T successfully demonstrated very high
explainability.

5.2.3 Model configuration and robustness

SkyEx-T has a very light configuration, meaning no coefficients or layered
structures. This guarantees that firstly, SkyEx-T cannot potentially overfit the
training set, and secondly, it requires no tuning at all. On the contrary, the
machine-learning techniques with LGM-X are composed of parts that require
a heavy fine-tuning pre-processing step. Each machine learning model needs
hyperparameter tuning to select the optimal model architecture for the ex-
amined problem. Additionally, the core meta-similarity function LGM-X re-
quires an additional search for optimal values in a set of parameters, like
thresholds for sorting/splitting and assigned weights, applied to the name
parts that each spatial entity consists of. Thus, when new data arrives in de-
ployment, both these configuration processes will need to be performed again
when using machine learning. In contrast, SkyEx-T is robust for deployment,
while the machine learning techniques will require continuous configuration
and re-tuning, making them fragile in a real deployment.
Summary. SkyEx-T outperforms machine learning on very small training sets
and performs similarly for larger training sets. Furthermore, SkyEx-T is fully
explainable, in contrast to the machine learning techniques, which behave
like black boxes, with no possibility to comprehend their model. What is
more, SkyEx-T is robust for deployment, while with machine learning, we
might need to play with the parameters and re-configure them over and over
as new data arrives.

5.3 SkyEx-T cut-off prediction

In this section, we evaluate the prediction of the cut-off ct for SkyEx-T. The
cut-off ct is learned from the training set as in Algorithm D.1. Alternatively,
we found the optimal cut-off c∗ that would yield the highest F-measure for
the learned preference function. To do so, we exhaustively tried all the cut-
offs in the test set, measured the F-measure in each of them, and noted the
highest value. In practice, this is not only time-consuming but even impos-
sible since the labels are not present in the test set. By having the optimal
cut-off, we can evaluate how accurately SkyEx-T can predict the cut-off. We
repeated this procedure 10 times on disjoint training sets for each of the train-
ing sizes and report the averages in Table D.5 and Table D.6.
For both datasets, SkyEx-T finds a cut-off that is nearly-optimal. For small
training sets (0.05% and 0.1% in North-DK and 4% in Restaurants), SkyEx-T
yields an F-measure that is around only 0.025 smaller than the optimal, cor-
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Training size 0.05% 0.1% 0.4% 0.8% 1% 4% 8% 12% 16% 20% 80%

SkyEx-T F-meas. 0.682 0.690 0.708 0.705 0.706 0.736 0.717 0.718 0.711 0.711 0.727
SkyEx-T F-meas. in c* 0.707 0.715 0.714 0.718 0.713 0.740 0.721 0.719 0.712 0.712 0.731
Diff F-meas. 0.025 0.025 0.006 0.014 0.007 0.004 0.004 0.001 0.001 0.001 0.005
Diff F-meas. in % 3.49% 3.46% 0.81% 1.90% 0.95% 0.48% 0.62% 0.13% 0.17% 0.13% 0.65%

Table D.5: SkyEx-T F-measure vs SkyEx-T F-measure in the optimal cut-off (c*) in North-DK

Training size 1% 4% 8% 12% 16% 20% 80%

SkyEx-T F-meas. 0.782 0.813 0.831 0.823 0.821 0.828 0.820
SkyEx-T F-meas. in c* 0.841 0.840 0.840 0.839 0.834 0.839 0.838
Diff F-meas. 0.059 0.027 0.009 0.015 0.013 0.011 0.018
Diff F-meas. in % 6.99% 3.26% 1.07% 1.84% 1.54% 1.31% 2.18%

Table D.6: SkyEx-T F-measure vs SkyEx-T F-measure in the optimal cut-off (c*) in Restaurants

responding to 3.4% difference. When using 1% of the data as a training set
in Restaurants, SkyEx-T predicts a cut-off that results in an F-measure that is
0.059 smaller than the optimal. However, considering that 1% of the train-
ing set in the Restaurants dataset might contain only 1 or 2 positive pairs,
the SkyEx-T prediction is highly satisfactory. The F-measure values improve
rapidly when moving to larger training sets; here, the difference between the
F-measures is only 0.01, a small 0.95% difference on average, for 0.04%-8%
training sets on North-DK and on average 1.44% for 8%-20% training sets on
Restaurants. Furthermore, for 12%-20% of the data as training set, the loss
in F-measure in the North-DK dataset is 0.001 (0.13%), which is insignificant.
SkyEx-T predicts a cut-off that is near-optimal, with a difference of only 0.01 in
F-measure (1.34%) in North-DK and 0.02 (2.6%) in Restaurants. Thus, we suc-
cessfully experimentally validated our theoretical findings of Theorem D.1,
Theorem D.2, and Lemma D.1.

6 Conclusions

We addressed the problem of spatial entity linkage with a skyline-based ap-
proach, SkyEx-T, which, in contrast to the previous works [10, 11], trains the
preference function and learns the cut-off for separating the classes, even in a
tiny training set. We used better similarity features, computed with LGM-X,
which specifically capture the characteristics of spatial entities. We showed
that SkyEx-T outperforms the machine learning when using very small train-
ing sets and achieves similar results to them when increasing the training
size, while offering a human-readable and easily explainable model. More-
over, in contrast to the machine learning techniques, SkyEx-T is robust and
does not require further tuning. As future work, we plan to improve the scal-
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ability of SkyEx-T and adapt it to other classification problems. Moreover,
we will experiment with further tuning all the parameters of LGM-X and
also the hyperparameters related to machine learning classifiers in order to
achieve better results.
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Abstract

Besides the traditional cartographic data sources, spatial information can also be de-
rived from location-based sources. Location-based sources offer rich spatial in-
formation describing the semantics of locations. However, even though different
location-based sources refer to the same physical world, each one has only partial
coverage of the spatial entities of interest, describe them with different attributes, and
sometimes provide contradicting information. Hence, the problem of finding which
pairs of spatial entities belong to the same physical spatial entity demands specific
attention. We propose a solution (QuadSky) to the problem of spatial entity link-
age across diverse location-based sources. QuadSky starts with a spatial blocking
technique (QuadFlex) that inherits the concept and the complexity from the quadtree
algorithm but improves the splitting technique not to separate nearby points. Af-
ter comparing the spatial entities of the same block, we propose a novel algorithm,
referred to as SkyEx that separates the pairs considered as a match (positive class)
from the rest (negative class) by using Pareto optimality. SkyEx does not require
weights on the attributes, scoring function, or a training set. QuadSky achieves
0.85 precision and 0.85 recall for a manually labeled dataset of 1,500 pairs and 0.87
precision and 0.6 recall for a semi-manually labeled dataset of 777,452 pairs. More-
over, QuadSky provides the best trade-off between precision and recall and conse-
quently, the best F-measure compared to the existing baselines.
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ternational Symposium on Spatial and Temporal Databases (SSTD’19) 2019, ACM.
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1 Introduction

Web data and social networks are growing in terms of information volume
and heterogeneity. Almost all online sources offer the possibility to intro-
duce locations (geo-tagged entities accompanied by semantic details). A
specific type of sources is location-based sources, whose primary focus is lo-
cations. In contrast to cartographic data sources, locations in location-based
sources have a hybrid form that stands between a spatial object and an en-
tity. We refer to them as spatial entities since they are spatially located but
also identified by several other attributes such as the name of the location,
the address, the phone, keywords, etc. Given that spatial entities provide
richer semantics, several systems that rely on spatial information such as geo-
recommender systems, selecting influential locations, search engines that use
geo-preferences, etc. could improve further their results by using spatial en-
tities instead of spatial objects. Hence, it is of interest to collect and integrate
spatial entities from location-based sources.
While a spatial object is identified only by the coordinates, this is not the
case for spatial entities. Different spatial entities might co-exist in the same
coordinates (shops in a shopping mall), or the same entity might be located
in different but nearby coordinates across different sources. The identity of a
spatial entity is the combination of several attributes. Nevertheless, the iden-
tity of a spatial entity is sometimes difficult to infer due to the inconsistencies
in the sources; each location-based source contains different attributes; some
attributes might be missing and even contradicting. For example, the spatial
entity "Lygten" is located in (57.436 10.534) and associated to keywords such
as "coffee", "tea", and "cocoa and spices" in source A. In the meantime, source
B contains the spatial entity named "Restaurant Lygten" in (57.435 10.533),
described by the keyword "restaurant". We need a technique that can auto-
matically decide whether these two spatial entities are the same real-world
entity. The problem of finding which spatial entities belong to the same
physical entity is referred to as spatial entity linkage or spatial entity resolution.
According to [1], entity linkage establishes a link between spatial entities,
whereas entity resolution goes further by merging related entities into one
merged representative entity. Since we do not perform the latter, we use the
term entity linkage.
There are several works that apply entity linkage in various fields [2–4, 4, 5, 5–
10] but little regarding spatial entities [11–13]. In general, the entities studied
in the current entity linkage paper refer to people; thus, the methodologies
and the models are based on the similarities that two records of the same
individual would reveal. Moreover, these works discard the spatial charac-
ter of spatial entities. As for the works in spatial entity integration [11–13],
their main contribution is a tool rather than an algorithm. What is more, the

172



2. Related Work

methods propose arbitrarily attribute weights and score functions without
experimentation nor evaluation. To sum up, with the growing amount of infor-
mation from location-based sources and the necessity for richer spatial information, a
method to link spatial entities across different sources is needed.
In this paper, we address the problem of spatial entity linkage across differ-
ent location-based sources. First, we propose a method that uses the geo-
coordinates to arrange the spatial entities into blocks. Then, we pairwise
compare the attributes of the spatial entities. Finally, we introduce a novel
technique for deciding whether the pairs of compared entities belong to the
same physical entity. Our contributions are:

1. We introduce QuadSky, a technique for linking spatial entities and we
evaluate it on real-world data from four location-based sources.

2. We propose an algorithm called QuadFlex that organizes the spatial en-
tities into blocks based on their spatial proximity. QuadFlex inherits the
concept and the complexity of quadtrees but avoids assigning nearby
points in different blocks.

3. To decide whether a of pair spatial entities refers to the same physi-
cal entity or not, we propose a flexible technique (SkyEx) that is based
on the concept of Pareto optimality and needs no weights, no scoring
functions, nor a training set.

The remainder of the paper is structured as follows: first, we describe and
compare to state of the art in Section 2; then, we detail our proposed algo-
rithm in Section 3; later, we provide experiments regarding the performance
of our proposed solution in Section 4 and finally, we conclude in Section 5.

2 Related Work

The spatial entity linkage problem has not been explicitly addressed, but
there are several works on entity resolution and also on spatial data integration.
The general data integration problem covers three aspects: schema matching,
entity resolution and data fusion [4, 14]. In general, there are various works that
tackle the entity resolution problem but few that deal with spatial entities.

Entity resolution The entity resolution problem has been referred in the lit-
erature with multiple terms including deduplication, entity linkage, and entity
matching. Entity resolution has been used in various fields such as matching
profiles in social networks [2], bioinformatics data [3], biomedical data [15],
publication data [4, 5], genealogical data [6], product data [4, 5], etc. The at-
tributes of the entities are compared, and a similarity value is assigned. The
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decision of whether to link two entities or not is usually based on a scoring
function. However, finding an appropriate similarity function that combines
the similarities of attributes and decides on whether to link or not the entities
is often difficult. Several works use a training set to learn a classifier [7, 8, 16],
others base the decision on a threshold derived through experiments [9, 17].
Other approaches that deal with uncertainty are described in the survey of
Magnani and Montesi [18], including probabilistic, rule-based probabilistic,
fuzzy, and preference-based relationships between records as well as aggre-
gation of multi-matches. Finally, the decision on whether to link to entities
or not can also be based on the feedback of an oracle [4, 5] or of a user [5].

Spatial data integration There are several works on integrating geograph-
ical data; some integrate purely spatial objects, some spatial entities. Spatial
objects differ from spatial entities mainly because a spatial object is fully de-
termined by the coordinates and the spatial shape whereas a spatial entity,
in addition to being geo-located, has a well-defined identity (name, phone,
opening hours, categories). The works on spatial object integration aim to
create a unified spatial representation of the spatial objects that come from
single/multiple sources. The solutions in [19–22] are purely spatial and dis-
cuss the integration of spatial objects originating from sensors and radars to
have a better representation of the surface in 2D or even in 3D. Road network
integration is tackled by Schafers at al [23] where rules are used to detect
matching and non-matching roads. The matching is performed on the simi-
larity of the roads in terms of the length, angles, shape, as well as the name
of the street if available. Nonetheless, this approach is based on roads only
and cannot apply to the linking of spatial entities.
Entity resolution of spatial entities has been discussed in [11–13, 24]. The
work in [24] is a bridge between the works in spatial data integration and
spatial entity linkage because the entities have names, coordinates, and types
but similarly to spatial objects, they refer to landscapes (rivers, deserts, moun-
tains, etc.). The method used in [24] is supervised and requires labeled data.
Moreover, even the similarity of the attribute "type" is learned through a
training set. Regarding [11–13], the main contribution of these works relies
on designing a spatial entity matching tool rather than an integration algo-
rithm. The authors of [13] provide a general matching technique for spatial
entity matching. Spatial entities within a radius are compared with each
other, and the value of the radius is fixed depending on the type of spatial
entity. For example, the radius is 50 m for restaurants and hotels, but 500 m
for parks. All attributes (except coordinates) are compared using the Leven-
shtein similarity. Since the name, the geodata and the type of the entity are
always present, they carry two-thirds of the weight in the scoring function
whereas the weights of the website, the address and the phone number are
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tuned to one-third. The prototype of the spatial entity matching in [12] relies
on a technique that arbitrarily uses an average of the similarity scores of all
textual attributes without providing a discussing on this choice. Similarly
to [11, 12], the main contribution of the work in [13] is designing a tool for
spatial entity integration. The underlying algorithm considers spatial entities
that are 5 m apart from each other and compares the name of the entities
syntactically and the metadata related to an entity semantically. Finally, the
decision is taken using the belief theory [25]. The works in [11–13] lack an
evaluation of the algorithms.

Summary On the one hand, the general entity resolution approaches pro-
pose interesting solutions, but they do not consider the spatial character of a
spatial entity. They do not deal with geographic coordinates and are designed
to match entities that represent individuals (profiles in social networks, au-
thors and publications, medical records, genealogical connections, etc.) or
even linking species in nature. The proposed solutions for the former [en-
tity resolution in individuals], either supervised or based on an experimental
threshold, are learned on human entity datasets. One can not merely assume
the resemblance of behaviors in a human entity dataset to a spatial entity one.
The solutions in the latter [species in nature] are based on domain-specific al-
gorithms that have little to no applicability in other fields. On the other hand,
there is little specific work in spatial entities [11–13], mostly focusing on a tool
for spatial data integration rather than on the algorithm. In all these works,
the scoring function is chosen arbitrarily and no evaluation provided.

3 Spatial Entity Linkage

In this section, we introduce definitions, the problem of spatial entity linkage,
and our proposed solution.

3.1 Problem Definition

The basic concept used in this work is a spatial entity, used for locations,
places, businesses, etc. Spatial entities originate from location-based sources
such as directories with location information (yellow pages, Google Places,
etc.) and location-based social networks (Foursquare, Gowalla, etc.).

Definition E.1. A spatial entity s is an entity identified uniquely within a source I,
located in a geographical point p and accompanied by a set of attributes A = {ai}.

The attributes connected to an s can be categorized as:

• Spatial: the point where the entity is located, expressed in longitude
and latitude.
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• Textual: attributes that are in the form of text such as name, address,
website, description, etc.

• Semantic: attributes in the form of text that enrich the semantics be-
hind a spatial entity. Examples of this type are categories, keywords,
metadata, etc.

• Date, time or number: other details about a spatial entity such as phone,
opening hours, date of foundation, etc.

An example of a spatial entity originating from Yelp can be a place named
"Star Pizza" in the point (56.716 10.114), with the keywords "pizza, fast food",
and with address "Storegade 31". The same spatial entity can be found again
in Yelp or other sources, sometimes having the same attributes, more, less
or even attributes with contradictory values. Thus, there is a need for an
approach that can unify information within and across different sources in
an intelligent manner.
Problem definition: Given a set of spatial entities S originating from multiple
sources, the spatial entity linkage problem aims to find those pairs of spatial enti-
ties 〈si, sj〉 that refer to the same physical spatial entity.
In the following section, we introduce QuadSky, our solution to the spatial
entity linkage problem.

3.2 QuadSky Approach

We propose QuadSky, a solution based on a quadtree data partitioning and
skyline exploration. The overall approach is detailed in Fig. E.1. QuadSky
consists of three main parts: spatial blocking (QuadFlex), pairwise compar-
isons and labelling the pairs (SkyEx). S contains all spatial entities from all
sources I. We propose QuadFlex, a quadtree-based solution that can perform
the spatial blocking by respecting the distance between spatial entities and
the density of the area. The output of QuadFlex is a list of leaves with spatial
entities located nearby. Within the leaves, we perform the pairwise compar-
isons of the attributes. After this second phase, we obtain a list of pairs of
spatial entities and their similarities of attributes. In order to decide which
pairs dictate a match and which not, we propose a novel technique, referred
to as SkyEx that explores k skylines (concepts detailed in Section 3.5) of the
pairs. SkyEx separates the pairs that refer to the same physical spatial en-
tity (the positives class) from the rest (the negative class). In the following
sections, we detail each of the phases of QuadSky.

3.3 Spatial Blocking

Performing all possible comparisons between pairs of spatial entities is time-
consuming. Since spatial proximity is a strong indicator in finding a match,
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Fig. E.1: QuadSky approach

the first step is to group nearby spatial entities in blocks. Several generic
blocking techniques have been discussed in [26, 27], including methods based
only on one attribute or several ones, block purging (discards the blocks that
are over the size limit), etc. However, these techniques are mostly based
on textual attributes and not applicable to spatial blocking. We propose
a quadtree-based solution (QuadFlex) that uses a tree data structure but
also preserves the spatial proximity of spatial entities. Our contribution is
twofold; we use quadtrees (meant for spatial indexing) for spatial blocking,
and we modify the recursive procedure of the quadtrees to accommodate
more points that are nearby instead of splitting them arbitrarily in different
children.

Fig. E.2: QuadFlex versus quadtree

A quadtree is a tree whose nodes are always recursively split into four chil-
dren when the capacity is filled [28]. Quadtrees of n points and d depth
can be constructed in O((d + 1)n) time. After the quadtree is constructed,
the points that fall in the same leaf are nearby spatially. Hence, these leaves
are good candidates to be spatial blocks. There are several issues with the
existing quadtree algorithm. First, a quadtree needs a capacity (number of
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points) as a parameter. The capacity is not a meaningful parameter for spa-
tial blocking, while the density of the area is a better candidate. For example,
if the area is too dense (e.g., city center), even though the capacity is not
reached, a further split would be more beneficial. Spatial entities in the city
center tend to be nearby, but they are more unlikely to be the same. On the
contrary, two points in the countryside (e.g., a farm) might be farther apart,
but they still might be the same entity. Second, a quadtree does not limit the
distance between points. Even though two points might be in an area that
respects the density, if they are quite distant from each other, it is not neces-
sary to compare them. The maximal distance between two points in a child
is the diagonal of the area (all quadtree children are rectangular). We used
m, the diagonal of an area, as a parameter that controls the distance of points
rather than comparing all distances. Finally, a quadtree splits into four chil-
dren, and sometimes nearby points might fall into different leaves. Hence,
we might miss good pairs. We modify the procedure of the assignment of
the points into a child by allowing more than one assignment.
Fig. E.2 shows the modifications that we do to the construction of the tradi-
tional quadtree for our version QuadFlex. The traditional quadtree divides
the area of each parent into four smaller areas, the children. A point belongs
only to one child. In our modification, the area will split similarly to the
quadtree, but when we assign a point to a child, we will consider including
points that fall near the border also in the current child. For example, in
Fig. E.2, the red dashed line shows the area that will be considered to include
points in the neighbors. We will add two points in child[0], one coming from
child[1] and one from child[3]. Similarly, child[1] and child[3] will receive a
point from child[4].
Algorithm E.1 details the procedure for retrieving the spatial blocks with
QuadFlex. The algorithm creates the root of the QuadFlex tree with the bound-
ing box of the data and parameters m and d (line 1). Then, it inserts each
spatial entity into the QuadFlex (line 4) and finally returns its leaves. The
methods insert(s) and getIndex(s) are self calls on the QuadFlex object (this).
The insertion procedure is similar to the traditional quadtree except that the
constraint is not the capacity but the diagonal of the area m (maximal dis-
tance between points) and the density of the area d. Hence, if the diagonal
of the QuadFlex is more than the distance m or the density is larger than
our defined value d (line 12), the QuadFlex, similarly to a quadtree, will split
into four children. However, in contrast to the traditional quadtree, a spatial
entity might belong to more than one child. The method getIndex(s) gets the
list of indexes of the children where the new point will be assigned. Even
though Q splits into 4 children, the lines vertical and horizontal (correspond-
ing to the red dashed lines in Fig. E.1) allow a logical overlap of the areas and
thus, neighboring spatial entities will not be separated.
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Algorithm E.1 QuadFlex algorithm

Input: A set of entities S = {si}, diagonal m, density d
Output: The leaves QuadFlex Q Q.leaves() ;

1: Create Q(m, d) where Q has the dimensions of the bounding box of S
2: for each s in S do
3: Q.insert(s) // Insert s into the QuadFlex
4: end for

return Q.leaves()

Method insert (s)
5: if this.children 6= ∅ then
6: Indexes← getIndex(s) // Find where s belongs
7: for each i in Indexes do
8: this.child[i].insert(s) // Insert s to the children it belongs
9: end for

10: end if
11: if this.diagonal > m or this.density > d then
12: Split the current object this into 4 children // The area is larger or denser

than our restrictions, so split as in the traditional quadtree
13: end if
14: Indexes← getIndex(s)
15: for each i in Indexes do
16: this.child[i].insert(s)
17: end for

return

Method getIndex (s)
18: Let vertical be the line that passes at 0.75 of the width of this
19: Let horizontal be the line that passes at 0.75 of the height of this
20: if s is left of vertical and above horizontal then
21: Indexes.add(1) // s fits in child[1]
22: end if
23: if s is right of vertical and above horizontal then
24: Indexes.add(2) // s fits in child[2]
25: end if
26: if s is left of vertical and below horizontal then
27: Indexes.add(3) // s fits in child[3]
28: end if
29: if s is right of vertical and below horizontal then
30: Indexes.add(4) // s fits in child[4]
31: end if

return Indexes

179



Paper E.

3.4 Pairwise Comparisons

After the spatial blocking, we perform a pairwise comparison of spatial enti-
ties that fall in the same leaf. Next, we describe the metrics for different types
of attributes.

Textual Similarity We measure the textual similarity of spatial entities us-
ing the edit distance between the words. The Levenshtein distance [29] be-
tween string s1 and string s2 d(s1, s2) is the number of edits (insertion, dele-
tion, change of characters) needed to convert string s1 to string s2. We define
the similarity as:

TextSim(s1, s2) = (1− d(s1, s2)

max(|s1|, |s2|)
) (E.1)

Example E.1
Let us consider "Skippers Grill" and "Skippers Grillbar". The Levenshtein
distance to convert "Skippers Grill" to "Skippers Grillbar" is 3 (3 insertions).
The lengths of the first and the second string are 14 and 17 respectively.
So, TextSim("Skippers Grill", "Skippers Grillbar") = 1− (3/max(14, 17) =
0.8235.

Note here that not all textual attributes can be handled similarly. String sim-
ilarity metrics are usually appropriate for attributes like names, usernames,
etc. Some other textual attributes require other metrics that need to be cus-
tomized. In this paper, we consider address as a specific textual attribute.
The similarity between two addresses cannot be measured with Levenshtein,
Jaccard, Cosine, etc. since a small change in the address might be a giant
gap in the spatial distance between the entities. For example, "Jyllandsgade
15 9480 Løkken" and "Jyllandsgade 75 9480 Løkken" have a distance of 1
and Levenshtein similarity of 0.963, but they are 650 meters apart. However,
"Jyllandsgade 15 9480 Løkken" and "Jyllandsgade 15 9480 Løkken Denmark"
have a distance of 8 and Levenshtein similarity of 0.772, but they are the
same building. In [11, 12] the address is considered as another textual at-
tribute without using its real semantics. In our case, we perform some data
cleaning (removing commas, punctuation marks, lowercase, etc.), and then
we search for equality (s1 = s2) or inclusion (s1 ⊂ s2 or s2 ⊂ s1). We as-
sign a similarity of 1 in the case of equality and 0.9 in the case of inclusion.
Otherwise, the strings are not considered the same.

Semantic Similarity The similarity of fields like categories, keywords or
metadata cannot be compared only syntactically. Sometimes, several syn-
onyms are used to express the same idea. Thus, we need to find a similarity
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than considers the synonyms as well. We use Wordnet [30] for detecting the
type of relationship between two words and Wu&Palmer similarity measure
(wup) [31], which calculates how related two words are by taking into account
the depths of the two synsets (sets of synonyms) in WordNet, along with the
depth of the Least Common Subsumer (the most specific concept that is an
ancestor of both words). The semantic similarity between two spatial en-
tities is the maximal similarity between their list of categories,keywords or
metadata. The semantic similarity of the spatial entities s1 and s2 is:

SemSim(s1, s2) = max{wup(ci, cj)} (E.2)

where ci ∈ C1 and cj ∈ C2 and C1 is the set of keywords of s1 and C2 is the
set of keywords s2.

Example E.2
Let us take an example of two spatial entities s1 and s2 and their
corresponding semantic information expressed as keywords C1 =
{"restaurant", "italian"} and C1 = {"food", "pizza"}. The similarity between
each pair is wup("restaurant", "food") = 0.4, wup("italian", "food") = 0.4286,
wup("restaurant", "pizza") = 0.3333 and wup("italian", "pizza") = 0.3529.
Finally, the semantic similarity of s1 and s2 is SemSim(s1, s2) = max{0.4,
0.4286, 0.3333, 0.3529} = 0.4286.

Date, time or numeric similarity The similarity between two fields ex-
pressed as numbers, dates, times or intervals is simply a boolean decision
(true or false). For example, if the phone numbers change with only one digit,
they are still different. Even though the similarity of these fields relies only
on an equality check, most of the effort is put in data preparation. For exam-
ple, before the comparison, the different phone formats should be identified
and cleaned from prefixes. Other data formats like intervals (opening hours)
might require temporal queries for similarity, inclusion, and intersection of
the intervals. In this paper, we do not use these attributes for measuring the
similarity between spatial entities, but for constructing the ground truth.

Summary Spatial entities are characterized by different spatial attributes
that differ in formats but also in the semantics. Textual attributes are the
most studied in the literature, and several similarity metrics have already
been proposed. We use Levenshtein while comparing the names of spatial
entities, and customized comparisons for the address. Thus, we check for
equality or inclusion to detect similar addresses. Metadata, keywords, cate-
gories, etc. are attributes that carry semantics. Since textual similarity cannot
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measure the similarity between synonyms, we rely on Wordnet to detect sim-
ilar keywords attached to the spatial entities. Finally, other formats such as
numbers, intervals, timestamps, etc. can be checked for equality, but also
some background knowledge might be needed to detect matches.

3.5 Labeling the Pairs

After the pairwise comparison, the pairs are represented as points in a space
with n dimensions, where each dimension is an attribute. A pair has n sim-
ilarity values, one for each attribute. We denote as δa the similarity of two
spatial entities for attribute a. For example, a pair 〈s1, s2〉 is represented as
(δa1 , δa2 ...δan). The problem that we need to solve is which 〈si, sj〉 pairs in-
dicate a strong similarity and should be considered for a match. This is an
old problem in the entity linkage community. A classifier [7, 8, 32] can learn
the behavior of the matches and detect the positive class. However, it is dif-
ficult to obtain labeled data, especially across different sources. Moreover,
there is always the risk of overfitting when training a classifier on a sample.
Some works assign weights on the similarity scores and test different combi-
nations [9, 17, 32]. The problem that arises with these methods is that finding
the best combination might require extensive experiments and might overfit
the data.
We propose a more relaxed technique that uses Pareto optimality [33] for
filtering the positive class. A solution (x, y) is Pareto optimal when no other
solution can increase x without decreasing y. The points in the same Pareto fron-
tier or skyline have the same utility. Widely used in economics and multi-
objective problems, Pareto optimality is free of weights and similarity score
functions. In the context of entity resolution, the skylines provide a selection
of points that are better than others, but without quantifying how much bet-
ter. The pairs that refer to the same physical spatial entity (the positive class)
are expected to have high values of δ. In general, the positive class is the mi-
nority and is spread all over the dataset, resembling outliers. This means that
the first Pareto optimal frontier might contain only a couple of points. Thus,
an exploration of several skylines (k levels) is needed. Under the assumption
that the best values of δ belong to the pairs from the positive class, we label
the k skylines as the positive class and the rest as the negative. To the best
of our knowledge, we are the first to propose a Pareto optimal solution for detecting
matches for an entity linkage/resolution problem.

Definition E.2. An attribute a is positive discriminating if its similarity δa indi-
cates a positive class rather than a negative.

An example of a positive discriminating attribute is the similarity of name. A
higher name similarity is more likely to indicate a match than a non-match.
For example, the name similarity for Mand & Bil and Mand og Bil is 0.75, and
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for Solid and Sirculus ApS is 0.16 . Hence, the former pair has a higher proba-
bility of being a match than the second. Examples of negative discriminating
attributes are the edit distance between two names. If the distance between
the names is high, then the pairs are less likely to be a match.

Definition E.3. The utility of a positive discriminating attribute a to the positive
class, denoted as ua, is a monotonically increasing function that quantifies the con-
tribution of the similarity of attribute δa to indicate a match.

Each attribute contributes to the labeling problem. A higher similarity δa
of a has a higher utility than a lower value of δa. Hence, if δa(〈s1, s2〉) >
δa(〈s3, s4〉), then ua(〈s1, s2〉) > ua(〈s3, s4〉).

Definition E.4. The utility of a pair denoted as u(〈si, sj〉) is sum of the utilities of
each of the attributes. u(〈si, sj〉) = ∑n

i=1 uai .

Note that the utility of a pair is not the sum of the similarities of the attributes
(u(〈si, sj〉) 6= ∑n

i=1 δai ) but the sum of their utilities (u(〈si, sj〉) = ∑n
i=1 uai ).

Nevertheless, u(〈si, sj〉) = ∑n
i=1 δai = ∑n

i=1 uai is a specific case.

Definition E.5. A skyline of level k denoted as Skyline(k) is the collection of pairs
〈si, sj〉 of equal utility such that uSkyline(k) > uSkyline(k−1).

Obviously, Skyline(1) is the Pareto optimal frontier with the best values of
δa. In order to continue with Skyline(2), the points of Skyline(1) are removed,
and the frontier is calculated again. Every time we explore level k, the values
in Skyline(k) are the ones with the highest utility. This means that there is
no other point in a lower level that can bring a higher utility to the positive class.
This procedure continues for k steps. Algorithm E.2 formalizes our proposed
procedure Skyline Explore (SkyEx) for labelling the pairs. The input is the set
of pairs P produced from the QuadFlex blocking technique and the number
of skyline levels k that we will explore. We find the points with the best
combinations of δ that dominate the rest of the points and consequently, have
a higher utility (line 3). Then, we put these points in P+ and remove them
from P (line 5). After all k levels are computed, we return the positive set of
pairs P+ and the negative P−.
In contrast to techniques that use a similarity score function, SkyEx abstracts
the concept of utility. Thus, no weights or similarity function is needed.
Given that the points with a high utility are generally scattered, SkyEx can de-
tect the positive class better than a clustering technique, which would fail in
clustering together the positive class. Moreover, the flexibility of SkyEx makes
it applicable to all problems where the expert knowledge on the contribution
of the attributes is missing. Finally, SkyEx does not learn any behavior, so
there is no risk of overfitting.
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Algorithm E.2 Skyline Explore (SkyEx)

Input: A set of pairs P = {〈si, sj〉}, a number of skyline levels k
Output: A set of positive pairs P+, a set of negative pairs P− ;

1: P+ ← ∅
2: for m in [1, k] do
3: Filter Skyline(m) = {〈si, sj〉} | ∀〈s′, s′′〉 ∈ P − {〈si, sj〉} , u(〈si, sj〉) >

u〈s′, s′′〉} // Find the Skyline
4: Add Skyline(m) to P+ // Label the skyline pairs as positive
5: P = P− Skyline(m)
6: end for
7: P− ← P // Label the rest as negative

return P+, P−

4 Experiments

4.1 Dataset Description

The spatial entities that will be used in these experiments originate from
four sources, namely Google Places (GP), Foursquare (FSQ), Yelp, and Krak.
Krak (www.krak.dk) is a location-based source that offers information about
companies, enterprises, etc. in Denmark and is also part of Eniro Danmark
A / S., which publishes The Yellow Pages. The data is obtained by using
the available APIs and the algorithm detailed in [34]. The distribution of the
spatial entities can be observed in Fig. E.3. The dataset consists of 75,541
spatial entities where 51.50% comes from GP, 46.22% from Krak, 0.03% from
FSQ, and 2.23% from Yelp. All the sources internally might contain possible
links, so we need to compare entities within and outside the sources.

Fig. E.3: North Denmark dataset
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4.2 QuadFlex Performance

In this section, we compare the performance of our proposed block-
ing technique to the traditional quadtree and Fixed Radius Nearest
Neighbors algorithm [35] (FNN). FNN finds the neighbors that fall
within a fixed radius from each point. QuadFlex and the quadtree al-
gorithm are implemented in Java, while FNN is run on a Postgres
database (https://www.postgresql.org) using spatial indexes; more specifi-
cally, two spatial indexes: GiST (https://www.postgresql.org/ docs/curren-
t/gist.html) (optimized C implementation of B-trees and R-trees) and SP-
GiST (https://www.postgresql.org/docs/current/ spgist.html) (optimized C
implementation of quadtrees and k-d trees). Our original dataset contains
75,541 entities in the whole North Denmark region (around 16 towns, 7,933
km2), so the density is not high. A high data density means more neigh-
bors and consequently, more pairs to compare. In order to test our QuadFlex
on different data densities, we simulate up to 1,000,000 random points from
Aalborg (139 km2).
Fig. E.4 shows the comparison of quadtree, QuadFlex and FNN in terms of
execution time (Fig. E.4a) and number of comparisons (Fig. E.4b). The FNN
versions with data are computed on the database, and then the pairs are
loaded back to the java implementation. The quadtree has the lowest execu-
tion time, followed by QuadFlex. FNN SP-GiST is comparable and sometimes
even better than QuadFlex for small datasets. However, when the size of the
dataset increases, QuadFlex manages to maintain an execution time that is
eight times less than FNN GiST and 3 times less than FNN SP-GiST. FNN
with SP-GiST index outperforms FNN GiST for all dataset sizes. As for the
number of comparisons, QuadFlex enumerates 12 times more comparisons
than quadtree, so our technique for not missing nearby pairs turned out
effective. Moreover, QuadFlex contains almost all (99.99%) comparisons of
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FNN, compared to quadtree that contains only 10% of FNN. Furthermore,
given that the scalability of QuadFlex is better than FNN, and QuadFlex is
independent of the database implementations, the loss of around 0.01% of
comparisons is insignificant. Moreover, this difference in comparisons can
simply be explained by the fact that QuadFlex uses a rectangular area with
diagonal of m meters, whereas FNN uses a circle with radius m

2 . In the case
of a square with diagonal m, the surface will be m2

2 , but for the circle with the
diameter m the surface is π m2

4 . So, the surface of the circle is π
2 times more.

4.3 SkyEx results

In this section, we evaluate the results of our proposed SkyEx. In the context
of our problem, we define true positives TP as pairs that refer to the same
physical entity and correctly labeled as positives, true negatives TN as pairs
referring to different physical entities and correctly labeled as negatives , false
positive FP as pairs that do not refer to the same physical entities but wrongly
labeled as positives, and FN as pairs that refer to the same physical entity but
wrongly labeled as negatives. We measure precision = TP

TP+FP , recall = TP
TP+FN

and F-measure (F1) = 2 precision∗recall
precision+recall .

We ran QuadFlex with 100 m and no density restriction, and we obtained
777,452 pairs. Having the same website or phone is a strong indicator of a
match, so we use these attributes to infer the label. We refer to this labeling
as automatic labeling. However, cases with different phone number or website
but still the same entity, or same phone number but different entity might
occur. For example, an entrepreneur who owns a fishing company and also
a restaurant might use the same phone for both. Another example is the
case of two different phones for the same entity on different sources. For this
reason, we manually checked the labels of a sample of 1,500 pairs of entities,
sometimes checking them even on maps and on the original sources. We
will refer to the sample of manually checked pairs as Dsample and to the full
dataset as Dfull. Checking the labels manually on the full dataset of 777,452
pairs is unfeasible. Hence, we checked around 10,000 of the pairs, and for the
rest, we rely on automatic labeling.
The results of SkyEx on Dsample and Dfull are presented in Figs. E.5 and E.6.
The curves in Figs. E.5a and E.6a shows the evolution of precision (y-axis)
and recall (x-axis) while we move from one skyline to the next. As expected,
the more we explore, the more likely it is to retrieve more true positives and thus,
improve the recall. However, the more we explore and label pairs as positives, the
more likely it is to increase the number of false positives, so the precision degrades.
The algorithm explores several trade-offs, where points A and B are among
the best. Point A with 0.87 precision and 0.82 recall in Fig. E.5a is the same
best point in terms of F-measure as well. Fig. E.5b shows the levels of the
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(a) Precision and recall (b) F-measure

Fig. E.5: SkyEx performance on Dsample

skyline, and the value of F-measure achieved. The highest value is 0.85 that
corresponds to k = 90. Point B is also a good candidate with 0.84 precision
and recall.

(a) Precision and recall (b) F-measure

Fig. E.6: SkyEx performance on Dfull

The evaluation on the full dataset yields lower values compared to the sam-
ple, which might be a simple consequence of automatic labeling. Even
though the labels are not all checked, precision and recall in Dfull yield sat-
isfactory values. Two of the best combinations are points A and B, where
A is the combination also with the highest F-measure of 0.72 and 271 skyline
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levels Fig. E.6b. A offers 0.6 recall and 0.87 precision while B offers a higher
recall of 0.65 but a lower precision of 0.76. To have an idea of the real classes
in Dfull and the skyline, we plotted their distribution in Fig. E.7. Fig. E.7a
shows the actual positive classes in pink and the negative ones in sky blue.
It is noticeable that the positive class pairs are allocated in the highest values
of the dimensions. SkyEx with 271 levels (Fig. E.7b) is able to capture this
behaviour and achieve 0.6 recall and 0.87 precision. Despite the differences
between both plots, SkyEx shows promising results in separating the positive
class from the negative one.

(a) Actual classes (b) SkyEx classes

Fig. E.7: Positive (in pink) versus negative (in sky blue) classes for actual (a) and SkyEx (b)
results

4.4 Experimenting with Different QuadFlex Parameters

So far, we used QuadFlex blocking technique with 100 meters and no den-
sity restriction. In this section, we will evaluate our approach QuadSky for
different blocking parameters.

Meters 1 20 40 60 80 100

Total 41053 118437 226331 372553 557421 777452
% of pos 17.11% 19.88% 11.28% 7.06% 4.82% 3.49%

Table E.1: Dataset characteristics for different m
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Changing m, no density limit In this experiment, we test different values
of m used in QuadFlexfor creating spatial blocks. We test m values of 1, 20, 40,
60, 80, and 100 meters. The size of the dataset for each of them is presented
in Table E.1. The spatially close points are likely to be a match. Hence, the
percentage of the positive class is generally higher for smaller values of m. An
interesting case is m = 1, where the percentage of the positive class is lower
than m = 20. One would expect that points that are 1 meter apart would
unquestionably be a match. However, this is not always the case. Shopping
malls, buildings that host several companies, etc. are characterized by the
same coordinates but not necessarily the same spatial entities.

(a) m=1 (b) m=20 (c) m=40

(d) m=60 (e) m=80 (f) m=100

Fig. E.8: Performance of SkyEx for different m, no density limit

The results for different values of m are presented in Fig. E.8. The point A
is the value with the highest F-measure (F1). For all cases, the recall is higher
than 0.6. The precision is higher than 0.8 for all values of m, except m = 1,
where the precision is 0.67. For m = 1, the positive and negative class are
mixed, thus SkyEx loses a bit in precision. This is also an argument against
the works that merge arbitrarily points that are 5 m apart. Spatial proximity is
not a definitive indicator of a match.

Changing d, m ≤ 100 The density is another parameter of QuadFlex that
helps in creating smaller blocks in dense areas and larger ones in sparse
areas. In this experiment, we test different values of density d and its effect
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on the results. The size of the dataset and the percentage of the classes in
Table E.2. When the density is smaller, we force QuadFlex to split further and
create smaller blocks. Thus, the number of pairs reduces. Note that, on the
contrary, the percentage of positives increases. Indeed, further splits allow us
to create better blocks containing a higher percentage of positives. However,
when the density increases above 30s

1000m2 , fewer and fewer blocks are split
further, so the dataset size and the percentage of the positives do not vary
significantly.

Density 10s
1000m2

20s
1000m2

30s
1000m2

40s
1000m2

50s
1000m2

60s
1000m2

Total 290653 590583 711423 754195 770987 776664
% pos 8.61% 4.57% 3.81% 3.59% 3.51% 3.49%

Table E.2: Dataset characteristics for different d

The results after running SkyEx are presented in Fig. E.9. In all the cases, the
recall stays above 0.61 and the precision above 0.87. A slightly better precision
(0.88) and recall (0.63) is achieved in the case of a density of 10s

1000m2 (the lowest
parameter). From both experiments with QuadFlex parameters, we can con-
clude that SkyEx adapts very well in finding the correct classes even when the size
of blocks change and even when the percentage of positives over negatives varies.

(a) d=10/1000 m2 (b) d=20/1000 m2 (c) d=30/1000 m2

(d) d=40/1000 m2 (e) d=50/1000 m2 (f) d=60/1000 m2

Fig. E.9: Performance of SkyEx for different d, m=100
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4.5 Comparison with Baselines

Even though there are several papers in spatial data integration, the works
of [11–13] are the most similar to ours, as the rest of the related work con-
siders only spatial objects, not spatial entities, or uses supervised learning
techniques. We will compare QuadSky to the following baselines:

1. Berjawi et al. [12] propose Euclidean distance for the geographic coordi-
nates and Levenshtein similarity for all other attributes. The similarities
are integrated into a global similarity computed as a simple sum of the
attribute similarities. The attributes mentioned in the paper are the
name and the phone. However, since the phone is part of our auto-
matic labeling, it can not be used in the algorithm as well. The authors
consider pairs with score ≥ 0.75 as a match with high confidence. We
compare to this technique using name + address + geographic coordi-
nates (V1) and name + geographic coordinates (V2).

2. Morana et al. [13] suggest filtering entities that share the same category
or a token in the name. Then these entities are compared using the
Euclidean distance for the coordinates, Levenshtein for the address and
name, and Resnik similarity (Wordnet) for the category. Attributes like
address, phone, etc. are considered secondary, so they are given 1

3 of
the weight in the similarity score function, while name, category and
geographic proximity carry 2

3 of the weight. The authors show top k
matches for each entity to the user to decide.

3. Karam et al. [11] starts with filtering spatial entities that are 5 m apart.
Then, the similarity of the name is measured with Levenshtein distance,
the geographic similarity with Euclidean distance, and the keywords
are compared semantically. In order to decide which pairs to match
and which not, the similarities are fused using belief theory [25].

Fig. E.10: Performance of Morana et al. [13] on Dfull

The results using Dfull and Dsample are presented in Table E.3. In general, all
the methods performed better in the manually labeled dataset Dsample due to
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the better quality of the labels. Berjawi et al.(V1) [12] has the highest precision
of above 0.93, but a poor recall of at most 0.27 for both datasets and thus, a
low F-measure of at most 0.43. It is actually expected, as Levenshtein similarity
does not perform well with fields like address or phone, where a change in
the digits makes a huge difference in the similarity of attributes. Berjawi et
al.(V2) [12] yields reasonable results, the second best after QuadSky, with a
precision of 0.73 in Dfull and 0.97 in Dsample, and a recall of 0.56 in Dfull and 0.60
in Dsample. The F-measure is 0.63 in Dfull and 0.74 in Dsample.
To compare with Morana et al. [13], we tried all values k from 1 to the max-
imal matches for a single point. We plotted all combinations of precision and
recall for different values of k in Fig. E.10 for Dfull. The highest value of
F-measure corresponded to a precision of 0.39 and a recall of 0.60. The behav-
ior of Morana et al. [13] in Dsample is similar; the best value of F-measure was
achieved for k = 3 and results are similar to those in Dfull. The work of Karam
et al. [11] achieves the highest recall of 0.73 but a very low value of precision
of 0.23 for Dfull. As a result, the F-measure is only 0.47. However, in Dsample,
the method performs better overall (F-measure =0.6).
In comparison to all the baselines, QuadSky provides the best trade-off between
precision and recall, and thus, the highest F-measure in both datasets. In the case
of Dsample, QuadSky achieves the best recall compared to all baselines. The
highest precision values for both datasets is achieved by Berjawi et al.(V1) [12]
but a very low recall and poor model performance overall. In fact, models
that achieve extreme values (high precision-low recall or low precision-high
recall) are not a viable solution because they are either too restrictive or too
flexible, and their predictability is poor. Most of the current work base their
scoring function on the assumption that the geographical proximity is es-
sential, so besides spatial blocks, they include Euclidean distance in their
similarity functions. QuadSky uses the spatial proximity for identifying candidates
but not for making a decision. Berjawi et al. [12] (V2) assumes the same weights
for all similarities, and the reported values of precision and recall are reason-
able. However, the behaviors of the pairs can be of all types. QuadSky can capture
these different behaviors better than a simple sum would.

Dfull Dsample

Approach Precision Recall F1 Precision Recall F1

Berjawi et al.(V1) [12] 0.93 0.26 0.41 1.00 0.27 0.43
Berjawi et al.(V2) [12] 0.73 0.56 0.63 0.97 0.60 0.74

Morana et al. [13] 0.39 0.60 0.47 0.33 0.60 0.43

Karam et al. [11] 0.23 0.73 0.35 0.54 0.68 0.60

QuadSky 0.87 0.60 0.72 0.87 0.82 0.85

Table E.3: Comparison with the baselines
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5 Conclusions and Future Work

Location-based sources provide rich information about spatial entities in
terms of details and semantics. However, identifying which pairs of spatial
entities refer to the same physical entity across different sources is a chal-
lenging problem due to the lack of labeled data, data quality problems in
the sources and the difficulty of coming up with a data independent scoring
function. In this paper, we addressed the problem of spatial entity linkage
across multiple location-based sources. We proposed QuadSky, an approach
that consists of two novel algorithms QuadFlex and SkyEx. QuadFlex arranges
the spatial entities into spatial blocks with a low execution time (4-8 times
less than Fixed Radius Nearest Neighbors algorithm [35] (FNN)) and a high
percentage of comparisons (99.99% of FNN comparisons). SkyEx solves the
data labeling problem using Pareto optimality and yields good results in
terms of precision and recall. Moreover, due to its flexibility, SkyEx better cap-
tures the behavior of pairs and outperforms the existing baselines in terms
of F-measure. More specifically, SkyEx achieves 0.84 precision and 0.84 recall
on a manually labeled dataset and 0.87 precision and 0.6 recall on an auto-
matically labeled dataset. In future work, we aim to study different blocking
techniques that combine several attributes. Moreover, we plan to improve
our proposed SkyEx in order to automatically select the k number of skylines
based on the dataset characteristics.
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