34 research outputs found

    A NOVEL APPROACH TO ORBITAL DEBRIS MITIGATION

    Get PDF
    Since mankind launched the first satellite into orbit in 1957, we have been inadvertently, yet deliberately, creating an environment in space that may ultimately lead to the end of our space exploration. Space debris, more specifically, orbital debris is a growing problem that must be dealt with sooner, rather than later. Several ideas have been developed to address the complex problem of orbital debris mitigation. This research will investigate the possibility of removing orbital debris from the Low Earth Orbit (LEO) regime by using a metaheuristic algorithm to maximize collection of debris resulting from the February 2009 on-orbit collision of Iridium 33 and Cosmos 2251. This treatment will concentrate on the Iridium debris field for analysis. This research is necessary today, more than ever, as we embark on the launch of thousands of LEO spacecraft, which could result in the realization of the Kessler Syndrome, “The certain risk of failure on launch or during operations due to an on-orbit collision with debris” (Kessler & Cour-Palais, 1978)

    Cognitive radar network design and applications

    Get PDF
    PhD ThesisIn recent years, several emerging technologies in modern radar system design are attracting the attention of radar researchers and practitioners alike, noteworthy among which are multiple-input multiple-output (MIMO), ultra wideband (UWB) and joint communication-radar technologies. This thesis, in particular focuses upon a cognitive approach to design these modern radars. In the existing literature, these technologies have been implemented on a traditional platform in which the transmitter and receiver subsystems are discrete and do not exchange vital radar scene information. Although such radar architectures benefit from these mentioned technological advances, their performance remains sub-optimal due to the lack of exchange of dynamic radar scene information between the subsystems. Consequently, such systems are not capable to adapt their operational parameters “on the fly”, which is in accordance with the dynamic radar environment. This thesis explores the research gap of evaluating cognitive mechanisms, which could enable modern radars to adapt their operational parameters like waveform, power and spectrum by continually learning about the radar scene through constant interactions with the environment and exchanging this information between the radar transmitter and receiver. The cognitive feedback between the receiver and transmitter subsystems is the facilitator of intelligence for this type of architecture. In this thesis, the cognitive architecture is fused together with modern radar systems like MIMO, UWB and joint communication-radar designs to achieve significant performance improvement in terms of target parameter extraction. Specifically, in the context of MIMO radar, a novel cognitive waveform optimization approach has been developed which facilitates enhanced target signature extraction. In terms of UWB radar system design, a novel cognitive illumination and target tracking algorithm for target parameter extraction in indoor scenarios has been developed. A cognitive system architecture and waveform design algorithm has been proposed for joint communication-radar systems. This thesis also explores the development of cognitive dynamic systems that allows the fusion of cognitive radar and cognitive radio paradigms for optimal resources allocation in wireless networks. In summary, the thesis provides a theoretical framework for implementing cognitive mechanisms in modern radar system design. Through such a novel approach, intelligent illumination strategies could be devised, which enable the adaptation of radar operational modes in accordance with the target scene variations in real time. This leads to the development of radar systems which are better aware of their surroundings and are able to quickly adapt to the target scene variations in real time.Newcastle University, Newcastle upon Tyne: University of Greenwich

    Design of Heuristic Algorithms for Hard Optimization

    Get PDF
    This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, which illustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content

    Cluster Heads Selection and Cooperative Nodes Selection for Cluster-based Internet of Things Networks

    Get PDF
    PhDClustering and cooperative transmission are the key enablers in power-constrained Internet of Things (IoT) networks. The challenges for power-constrained devices in IoT networks are to reduce the energy consumption and to guarantee the Quality of Service (QoS) provision. In this thesis, optimal node selection algorithms based on clustering and cooperative communication are proposed for different network scenarios, in particular: • The QoS-aware energy efficient cluster heads (CHs) selection algorithm in one-hop capillary networks. This algorithm selects the optimum set of CHs and construct clusters accordingly based on the location and residual energy of devices. • Cooperative nodes selection algorithms for cluster-based capillary networks. By utilising the spacial diversity of cooperative communication, these algorithms select the optimum set of cooperative nodes to assist the CHs for the long-haul transmission. In addition, with the regard of evenly energy distribution in one-hop cluster-based capillary networks, the CH selection is taken into consideration when developing cooperative devices selection algorithms. The performance of proposed selection algorithms are evaluated via comprehensive simulations. Simulation results show that the proposed algorithms can achieve up to 20% network lifetime longevity and up to 50% overall packet error rate (PER) decrement. Furthermore, the simulation results also prove that the optimal tradeoff between energy efficiency and QoS provision can be achieved in one-hop and multi-hop cluster-based scenarios.Chinese Scholarship Counci

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    The Deep Space Network

    Get PDF
    Progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations are reported

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    corecore