23 research outputs found

    dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans

    Get PDF
    Retrotransposons constitute over 40% of the human genome and play important roles in the evolution of the genome. Since certain types of retrotransposons, particularly members of the Alu, L1, and SVA families, are still active, their recent and ongoing propagation generates a unique and important class of human genomic diversity/polymorphism (for the presence and absence of an insertion) with some elements known to cause genetic diseases. So far, over 2,300, 500, and 80 Alu, L1, and SVA insertions, respectively, have been reported to be polymorphic and many more are yet to be discovered. We present here the Database of Retrotransposon Insertion Polymorphisms (dbRIP; http://falcon.roswellpark. org:9090), a highly integrated and interactive database of human retrotransposon insertion polymorphisms (RIPs). dbRIP currently contains a nonredundant list of 1,625, 407, and 63 polymorphic Alu, L1, and SVA elements, respectively, or a total of 2,095 RIPs. In dbRIP, we deploy the utilities and annotated data of the genome browser developed at the University of California at Santa Cruz (UCSC) for user-friendly queries and integrative browsing of RIPs along with all other genome annotation information. Users can query the database by a variety of means and have access to the detailed information related to a RIP, including detailed insertion sequences and genotype data. dbRIP represents the first database providing comprehensive, integrative, and interactive compilation of RIP data, and it will be a useful resource for researchers working in the area of human genetics. © 2006 Wiley-Liss, Inc

    Tracking Alu evolution in New World primates

    Get PDF
    BACKGROUND: Alu elements are Short INterspersed Elements (SINEs) in primate genomes that have proven useful as markers for studying genome evolution, population biology and phylogenetics. Most of these applications, however, have been limited to humans and their nearest relatives, chimpanzees. In an effort to expand our understanding of Alu sequence evolution and to increase the applicability of these markers to non-human primate biology, we have analyzed available Alu sequences for loci specific to platyrrhine (New World) primates. RESULTS: Branching patterns along an Alu sequence phylogeny indicate three major classes of platyrrhine-specific Alu sequences. Sequence comparisons further reveal at least three New World monkey-specific subfamilies; AluTa7, AluTa10, and AluTa15. Two of these subfamilies appear to be derived from a gene conversion event that has produced a recently active fusion of AluSc- and AluSp-type elements. This is a novel mode of origin for new Alu subfamilies. CONCLUSION: The use of Alu elements as genetic markers in studies of genome evolution, phylogenetics, and population biology has been very productive when applied to humans. The characterization of these three new Alu subfamilies not only increases our understanding of Alu sequence evolution in primates, but also opens the door to the application of these genetic markers outside the hominid lineage

    Identification and characterization of novel polymorphic LINE-1 insertions through comparison of two human genome sequence assemblies

    Get PDF
    Mobile elements represent a relatively new class of markers for the study of human evolution. Long interspersed elements (LINEs) belong to a group of retrotransposons comprising approximately 21% of the human genome. Young LINE-1 (L1) elements that have integrated recently into the human genome can be polymorphic for insertion presence/absence in different human populations at particular chromosomal locations. To identify putative novel L1 insertion polymorphisms, we computationally compared two draft assemblies of the whole human genome (Public and Celera Human Genome assemblies). We identified a total of 148 potential polymorphic L1 insertion loci, among which 73 were candidates for novel polymorphic loci. Based on additional analyses we selected 34 loci for further experimental studies. PCR-based assays and DNA sequence analysis were performed for these 34 loci in 80 unrelated individuals from four diverse human populations: African-American, Asian, Caucasian, and South American. All but two of the selected loci were confirmed as polymorphic in our human population panel. Approximately 47% of the analyzed loci integrated into other repetitive elements, most commonly older L1s. One of the insertions was accompanied by a BC200 sequence. Collectively, these mobile elements represent a valuable source of genomic polymorphism for the study of human population genetics. Our results also suggest that the exhaustive identification of L1 insertion polymorphisms is far from complete, and new whole genome sequences are valuable sources for finding novel retrotransposon insertion polymorphisms. © 2006 Elsevier B.V. All rights reserved

    Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements

    Get PDF
    Genus Macaca (Cercopithecidae: Papionini) is one of the most successful primate radiations. Despite previous studies on morphology and mitochondrial DNA analysis, a number of issues regarding the details of macaque evolution remain unsolved. Alu elements are a class of non-autonomous retroposons belonging to short interspersed elements that are specific to the primate lineage. Because retroposon insertions show very little homoplasy, and because the ancestral state (absence of the SINE) is known, Alu elements are useful genetic markers and have been utilized for analyzing primate phylogenentic relationships and human population genetic relationships. Using PCR display methodology, 298 new Alu insertions have been identified from ten species of macaques. Together with 60 loci reported previously, a total of 358 loci are used to infer the phylogenetic relationships of genus Macaca. With regard to earlier unresolved issues on the macaque evolution, the topology of our tree suggests that: 1) genus Macaca contains four monophyletic species groups; 2) within the Asian macaques, the silenus group diverged first, and members of the sinica and fascicularis groups share a common ancestor; 3) Macaca arctoides are classified in the sinica group. Our results provide a robust molecular phylogeny for genus Macaca with stronger statistical support than previous studies. The present study also illustrates that SINE-based approaches are a powerful tool in primate phylogenetic studies and can be used to successfully resolve evolutionary relationships between taxa at scales from the ordinal level to closely related species within one genus. © 2009 Elsevier B.V. All rights reserved

    Potential gene conversion and source genes for recently integrated Alu elements

    Get PDF
    Alu elements comprise \u3e10% of the human genome. We have used a computational biology approach to analyze the human genomic DNA sequence databases to determine the impact of gene conversion on the sequence diversity of recently integrated Alu elements and to identify Alu elements that were potentially retroposition competent. We analyzed 269 Alu Ya5 elements and identified 23 members of a new Alu subfamily termed Ya5a2 with an estimated copy number of 35 members, including the de novo Alu insertion in the NFI gene. Our analysis of Alu elements containing one to four (Ya1-Ya4) of the Ya5 subfamily-specific mutations suggests that gene conversion contributed as much as 10%-20% of the variation between recently integrated Alu elements. In addition, analysis of the middle A-rich region of the different Alu Ya5 members indicates a tendency toward expansion of this region and subsequent generation of simple sequence repeats. Mining the databases for putative retroposition-competent elements that share 100% nucleotide identity to the previously reported de novo Alu insertions linked to human diseases resulted in the retrieval of 13 exact matches to the NF1 Alu repeat, three to the Alu element in BRCA2, and one to the Alu element in FGFR2 (Apert syndrome). Transient transfections of the potential source gene for the Apert\u27s Alu with its endogenous flanking genomic sequences demonstrated the transcriptional and presumptive transpositional competency of the element

    SINEs, evolution and genome structure in the opossum

    Get PDF
    Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, usually between 100 and 500 base pairs (bp) in length, which are ubiquitous components of eukaryotic genomes. Their activity, distribution, and evolution can be highly informative on genomic structure and evolutionary processes. To determine recent activity, we amplified more than one hundred SINE1 loci in a panel of 43 M. domestica individuals derived from five diverse geographic locations. The SINE1 family has expanded recently enough that many loci were polymorphic, and the SINE1 insertion-based genetic distances among populations reflected geographic distance. Genome-wide comparisons of SINE1 densities and GC content revealed that high SINE1 density is associated with high GC content in a few long and many short spans. Young SINE1s, whether fixed or polymorphic, showed an unbiased GC content preference for insertion, indicating that the GC preference accumulates over long time periods, possibly in periodic bursts. SINE1 evolution is thus broadly similar to human Alu evolution, although it has an independent origin. High GC content adjacent to SINE1s is strongly correlated with bias towards higher AT to GC substitutions and lower GC to AT substitutions. This is consistent with biased gene conversion, and also indicates that like chickens, but unlike eutherian mammals, GC content heterogeneity (isochore structure) is reinforced by substitution processes in the M. domestica genome. Nevertheless, both high and low GC content regions are apparently headed towards lower GC content equilibria, possibly due to a relative shift to lower recombination rates in the recent Monodelphis ancestral lineage. Like eutherians, metatherian (marsupial) mammals have evolved high CpG substitution rates, but this is apparently a convergence in process rather than a shared ancestral state. © 2007 Elsevier B.V. All rights reserved

    Inserciones Alu y heterogeneidad genética de la población gitana del País Vasco

    Get PDF
    [ES] En este trabajo se ha analizado un grupo de 6 inserciones Alu autosómicas (ACE, APO, PV92, TPA25, FXIIIB y D1) en una muestra de 56 individuos de etnia gitana residentes en el País Vasco, con el objetivo de estimar la intensidad de los procesos de microdiferenciación experimentados por esta población y su parentesco genético con otras poblaciones europeas y asiáticas. Las inserciones Alu polimórficas son unos marcadores muy útiles en los estudios de evolución humana, entre otras razones porque se conoce su estado ancestral, que es la ausencia de inserción y porque se producen por un único evento mutacional. Son por ello particularmente interesantes para analizar la heterogeneidad genética de poblaciones originarias de diferentes continentes.[EN] In this paper, a group of 6 autosomal Alu insertions has been analyzed in 56 gypsies living in the Basque Country, in order to estimate the intensity of the microdifferentiation processes experienced by this population and its genetic relationship to other european and asian populations. Polymorphic Alu insertions are robust markers for human evolutionary studies because of the knowledge of its ancient state and the fact that they have an unique mutational mechanism. Therefore they are partyculary interesting for analyze the genetic diversity of populations originated in different continents

    A comprehensive analysis of recently integrated human LINE-1 mobile elements

    Get PDF
    Long INterspersed Elements (LINE or L1) have had an enormous influence on human genomic structure, comprising about 20% of the mass of the human genome. In this analysis the most recent L1 insertions in the human genome belonging to L1Hs Ta and preTa subfamilies were examined to further understand the impact L1 elements have had on human genomic structure and diversity. Collectively, over 800 human specific L1 elements from the draft sequence of the human genome were characterized. Estimates suggest that human specific L1 mobilization alone is responsible for increasing the size of the human genome by roughly 1.4 million bases, and that over 70 human specific L1 elements may still possess the ability to retrotranspose within human cells. Interestingly, over 35 L1 insertions were found adjacent to exons, though the majority of insertions showed general preference for gene poor regions of the genomes with low GC content. Analysis of over 500 L1 insertions by PCR on a diverse panel of humans representing geographically distinct human populations revealed that 115 (45%) of the Ta and 33 (14%) of the preTa human specific L1 insertions were variable in the human population with respect to insertion presence or absence. Sequence analysis of L1Hs Ta and preTa subfamily members yielded estimated average ages of 1.99 and 2.34 million years respectively. The 148 newly identified L1 insertion polymorphisms will serve as useful genetic markers for the study of human population genetics
    corecore