161,976 research outputs found

    Molecular cloning and sequence analysis of the cDNA encoding the human acrosin-trypsin inhibitor (HUSI-II)

    Get PDF
    A complete cDNA clone encoding the human acrosin-trypsin inhibitor HUSI-II has been isolated from a cDNA library of human testis and completely sequenced. The cDNA of 594 bp contained an open reading frame of 252 base pairs, The deduced amino acid sequence comprised the complete amino acid sequence of HUSI-II[1] and a putative signal peptide. Northern blotting analysis revealed that HUSI-II is synthesized in testis, epididymis and seminal vesicle, but not in the prostate gland

    A FAMILY OF CATION ATPASE-LIKE MOLECULES FROM PLASMODIUM-FALCIPARUM

    Get PDF
    Abstract. We report the nucleotide and derived amino acid sequence of the ATPase 1 gene from Plasmodium falciparum. The amino acid sequence shares homology with the family of "P-type cation transloeating ATPases in conserved regions important for nucleotide binding, conformational change, or phosphorylation. The gene, which is present on chromosome 5, has a product longer than any other reported for a P-type ATPase. Interstrain analysis from 12 parasite isolates by the polymerase chain reaction reveals that a 330-bp nucleotide sequence encoding three cytoplasmic regions conserved in cation ATPases (regions a-c) is of constant length. By contrast, another 360-bp sequence which is one of four regions we refer to as

    Sequence homology between RNAs encoding rat α-fetoprotein and rat serum albumin

    Get PDF
    We have determined the sequences of the recombinant DNA inserts of three bacterial plasmid cDNA clones containing most of the rat α-fetoprotein mRNA. The resultant nucleotide sequence of α-fetoprotein was exhaustively compared to the nucleotide sequence of the mRNA encoding rat serum albumin. These two mRNAs have extensive homology (50%) throughout and the same intron locations. The amino acid sequence of rat α-fetoprotein has been deduced from the nucleotide sequence, and its comparison to rat serum albumin's amino acid sequence reveals a 34% homology. The regularly spaced positions of the cysteines found in serum albumin are conserved in rat α-fetoprotein, indicating that these two proteins may have a similar secondary folding structure. These homologies indicate that α-fetoprotein and serum albumin were derived by duplication of a common ancestral gene and constitute a gene family

    Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce' gene, the structural gene for cAMP phosphodiesterase

    Get PDF
    We have isolated and sequenced cDNA clones representing portions of the polyadenylylated transcripts of the dunce+ gene. These define an open reading frame of 1086 bases and some of the 5'- and 3'-untranslated regions of the transcripts. The deduced amino acid sequence is strikingly homologous to the amino acid sequence of a Ca^2+/calmodulin-dependent cyclic nucleotide phosphodiesterase isolated from bovine brain and more weakly related to the predicted amino acid sequence of a yeast cAMP phosphodiesterase. These homologies, together with prior genetic and biochemical studies, provide unambiguous evidence that dunce^+ codes for a phosphodiesterase. In addition, the dunce^+ gene product shares a seven-amino acid sequence with a regulatory subunit of cAMP-dependent protein kinase that is predicted to be part of the cAMP binding site. We also identify a weak homology between a region of the dunce+ gene product and the egg-laying hormone precursor of Aplysia californica. The open reading frame is divided in the genome by four introns

    Folding and Misfolding of Designed Heteropolymer Chains with Mutations

    Full text link
    We study the impact of mutations (changes in amino acid sequence) on the thermodynamics of simple protein-like heteropolymers consisting of N monomers, representing the amino acid sequence. The sequence is designed to fold into its native conformation on a cubic lattice. It is found that quite a large fraction, between one half and one third of the substitutions, which we call 'cold errors', make important contributions to the dynamics of the folding process, increasing folding times typically by a factor of two, the altered chain still folding into the native structure. Few mutations ('hot errors'), have quite dramatic effects, leading to protein misfolding. Our analysis reveals that mutations affect primarily the energetics of the native conformation and to a much lesser extent the ensemble of unfolded conformations, corroborating the utility of the ``energy gap'' concept for the analysis of folding properties of protein-like heteropolymers.Comment: 12 pages, Latex (Revtex

    Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung

    Get PDF
    The complete amino acid sequence of the receptor for organic calcium channel blockers (CaCB) from rabbit lung has been deduced by cloning and sequence analysis of the cDNA. Synthetic RNA derived from this cDNA induces the formation of a functional CaCB-sensitive high voltage activated calcium channel in Xenopus oocytes

    Caldolysin, a highly active protease from an extremely Thermophilic Bacterium

    Get PDF
    Proteases comprise a significant proportion of those proteins which have been subject to detailed characterisation (amino acid sequence and high resolution crystallographic analysis). The extent of research interest in proteolytic enzymes reflects both their historical status, and the practical advantages of proteases as research subjects (available in quantity, extracellular etc.) widely occurring

    Structural organization, expression, and functional characterization of the murine cytomegalovirus immediate-early gene 3.

    Get PDF
    We have previously defined ie3 as a coding region located downstream of the ie1 gene which gives rise to a 2.75-kb immediate-early (IE) transcript. Here we describe the structural organization of the ie3 gene, the amino acid sequence of the gene product, and some of the functional properties of the protein. The 2.75-kb ie3 mRNA is generated by splicing and is composed of four exons. The first three exons, of 300, 111, and 191 nucleotides (nt), are shared with the ie1 mRNA and are spliced to exon 5, which is located downstream of the fourth exon used by the ie1 mRNA. Exon 5 starts 28 nt downstream of the 3' end of the ie1 mRNA and has a length of 1,701 nt. The IE3 protein contains 611 amino acids, the first 99 of which are shared with the ie1 product pp89. The IE3 protein expressed at IE times has a relative mobility of 88 kDa in gels, and a mobility shift to 90 kDa during the early phase is indicative of posttranslational modification. Sequence comparison reveals significant homology of the exon 5-encoded amino acid sequence with the respective sequence of UL 122, a component of the IE1-IE2 complex of human cytomegalovirus (HCMV). This homology is also apparent at the functional level. The IE3 protein is a strong transcriptional activator of the murine cytomegalovirus (MCMV) e1 promoter and shows an autoregulatory function by repression of the MCMV ie1/ie3 promoter. The high degree of conservation between the MCMV ie3 and HCMV IE2 genes and their products with regard to gene structure, amino acid sequence, and protein functions suggests that these genes play a comparable role in the transcriptional control of the two cytomegaloviruses
    corecore