48 research outputs found

    Enhancing Alzheimer's Detection Using a Multi-Modal Approach Hybrid Features Extraction Technique from MRI Images

    Get PDF
    The neurodegenerative illness Alzheimer's, which affects millions of people worldwide, poses significant obstacles to early detection and efficient treatment. The non-invasive technique of magnetic resonance imaging (MRI) has shown promise in identifying structural abnormalities in the brain linked to Alzheimer's disease. To address the complexity of Alzheimer's detection and enhance accuracy, this study proposes a novel hybrid feature extraction method that combines Convolutional Neural Networks (CNN), Local Binary Patterns (LBP), and Scale-Invariant Feature Transform (SIFT). After the feature extraction, PSO (Particle Swarm Optimization) and ABC (Ant Bee Colony) were applied for optimization. In this research, a dataset comprising MRI brain images from healthy individuals and Alzheimer's patients was curated. Preprocessing techniques were applied to enhance image quality and remove noise. The hybrid feature extraction method was then employed to extract distinctive and complementary features from the MRI images

    Automated medical diagnosis of alzheimer´s disease using an Efficient Net convolutional neural network

    Get PDF
    Producción CientíficaAlzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach—"fusion of end-to-end and transfer learning"—to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    A novel cascade machine learning pipeline for Alzheimer’s disease identification and prediction

    Get PDF
    IntroductionAlzheimer’s disease (AD) is a progressive and irreversible brain degenerative disorder early. Among all diagnostic strategies, hippocampal atrophy is considered a promising diagnostic method. In order to proactively detect patients with early Alzheimer’s disease, we built an Alzheimer’s segmentation and classification (AL-SCF) pipeline based on machine learning.MethodsIn our study, we collected coronal T1 weighted images that include 187 patients with AD and 230 normal controls (NCs). Our pipeline began with the segmentation of the hippocampus by using a modified U2-net. Subsequently, we extracted 851 radiomics features and selected 37 features most relevant to AD by the Hierarchical clustering method and Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. At last, four classifiers were implemented to distinguish AD from NCs, and the performance of the models was evaluated by accuracy, specificity, sensitivity, and area under the curve.ResultsOur proposed pipeline showed excellent discriminative performance of classification with AD vs NC in the training set (AUC=0.97, 95% CI: (0.96-0.98)). The model was also verified in the validation set with Dice=0.93 for segmentation and accuracy=0.95 for classification.DiscussionThe AL-SCF pipeline can automate the process from segmentation to classification, which may assist doctors with AD diagnosis and develop individualized medical plans for AD in clinical practice

    Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease

    Get PDF
    This work validates the generalizability of MRI-based classification of Alzheimer’s disease (AD) patients and controls (CN) to an external data set and to the task of prediction of conversion to AD in individuals with mild cognitive impairment (MCI).We used a conventional support vector machine (SVM) and a deep convolutional neural network (CNN) approach based on structural MRI scans that underwent either minimal pre-processing or more extensive pre-processing into modulated gray matter (GM) maps. Classifiers were optimized and evaluated using cross-validation in the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 334 AD, 520 CN). Trained classifiers were subsequently applied to predict conversion to AD in ADNI MCI patients (231 converters, 628 non-converters) and in the independent Health-RI Parelsnoer Neurodegenerative Diseases Biobank data set. From this multi-center study representing a tertiary memory clinic population, we included 199 AD patients, 139 participants with subjective cognitive decline, 48 MCI patients converting to dementia, and 91 MCI patients who did not convert to dementia.AD-CN classification based on modulated GM maps resulted in a similar area-under-the-curve (AUC) for SVM (0.940; 95%CI: 0.924–0.955) and CNN (0.933; 95%CI: 0.918–0.948). Application to conversion prediction in MCI yielded significantly higher performance for SVM (AUC = 0.756; 95%CI: 0.720-0.788) than for CNN (AUC = 0.742; 95%CI: 0.709-0.776) (p<0.01 for McNemar’s test). In external validation, performance was slightly decreased. For AD-CN, it again gave similar AUCs for SVM (0.896; 95%CI: 0.855–0.932) and CNN (0.876; 95%CI: 0.836–0.913). For prediction in MCI, performances decreased for both SVM (AUC = 0.665; 95%CI: 0.576-0.760) and CNN (AUC = 0.702; 95%CI: 0.624-0.786). Both with SVM and CNN, classification based on modulated GM maps significantly outperformed classification based on minimally processed images (p=0.01).Deep and conventional classifiers performed equally well for AD classification and their performance decreased only slightly when applied to the external cohort. We expect that this work on external validation contributes towards translation of machine learning to clinical practice
    corecore