49,359 research outputs found

    Alternative Datasets for Identification of Earth Science Events and Data

    Get PDF
    Alternative, or non-traditional, data sources can be used to generate datasets which can in turn be analyzed for temporal, spatial and climatological patterns. Events and case studies inferred from the analysis of these patterns can be used by the remote sensing community to more effectively search for Earth observation data. In this paper, we present a new alternative Earth science dataset created from the National Weather Services Area Forecast Discussion (AFD) documents. We then present an exploratory methodology for identifying interesting climatological patterns within the AFD data and a corresponding motivating example as to how these data and patterns can be used to search for relevant events or case studies

    Mesoscale mapping of sediment source hotspots for dam sediment management in data-sparse semi-arid catchments

    Get PDF
    Land degradation and water availability in semi-arid regions are interdependent challenges for management that are influenced by climatic and anthropogenic changes. Erosion and high sediment loads in rivers cause reservoir siltation and decrease storage capacity, which pose risk on water security for citizens, agriculture, and industry. In regions where resources for management are limited, identifying spatial-temporal variability of sediment sources is crucial to decrease siltation. Despite widespread availability of rigorous methods, approaches simplifying spatial and temporal variability of erosion are often inappropriately applied to very data sparse semi-arid regions. In this work, we review existing approaches for mapping erosional hotspots, and provide an example of spatial-temporal mapping approach in two case study regions. The barriers limiting data availability and their effects on erosion mapping methods, their validation, and resulting prioritization of leverage management areas are discussed.BMBF, 02WGR1421A-I, GROW - Verbundprojekt SaWaM: Saisonales Wasserressourcen-Management in Trockenregionen: Praxistransfer regionalisierter globaler Informationen, Teilprojekt 1DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Augmented Reality in Astrophysics

    Full text link
    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss possible future trends for Augmented Reality applications in astrophysics, and explore the current limitations associated with the technology. This Augmented Article, the first of its kind, is designed to allow the reader to directly experiment with this technology.Comment: 15 pages, 11 figures. Accepted for publication in Ap&SS. The final publication will be available at link.springer.co

    Data-driven detection of multi-messenger transients

    Full text link
    The primary challenge in the study of explosive astrophysical transients is their detection and characterisation using multiple messengers. For this purpose, we have developed a new data-driven discovery framework, based on deep learning. We demonstrate its use for searches involving neutrinos, optical supernovae, and gamma rays. We show that we can match or substantially improve upon the performance of state-of-the-art techniques, while significantly minimising the dependence on modelling and on instrument characterisation. Particularly, our approach is intended for near- and real-time analyses, which are essential for effective follow-up of detections. Our algorithm is designed to combine a range of instruments and types of input data, representing different messengers, physical regimes, and temporal scales. The methodology is optimised for agnostic searches of unexpected phenomena, and has the potential to substantially enhance their discovery prospects.Comment: 16 page

    Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification

    Get PDF
    Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3’ untranslated regions is associated with decreased relative transcript abundance and defective RNA 30 end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode
    • …
    corecore