2,661 research outputs found

    Alternating weak automata from universal trees

    Get PDF
    An improved translation from alternating parity automata on infinite words to alternating weak automata is given. The blow-up of the number of states is related to the size of the smallest universal ordered trees and hence it is quasi-polynomial, and it is polynomial if the asymptotic number of priorities is at most logarithmic in the number of states. This is an exponential improvement on the translation of Kupferman and Vardi (2001) and a quasi-polynomial improvement on the translation of Boker and Lehtinen (2018). Any slightly better such translation would (if - like all presently known such translations - it is efficiently constructive) lead to algorithms for solving parity games that are asymptotically faster in the worst case than the current state of the art (Calude, Jain, Khoussainov, Li, and Stephan, 2017; Jurdzinski and Lazic, 2017; and Fearnley, Jain, Schewe, Stephan, and Wojtczak, 2017), and hence it would yield a significant breakthrough

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models

    Distributed Graph Automata and Verification of Distributed Algorithms

    Full text link
    Combining ideas from distributed algorithms and alternating automata, we introduce a new class of finite graph automata that recognize precisely the languages of finite graphs definable in monadic second-order logic. By restricting transitions to be nondeterministic or deterministic, we also obtain two strictly weaker variants of our automata for which the emptiness problem is decidable. As an application, we suggest how suitable graph automata might be useful in formal verification of distributed algorithms, using Floyd-Hoare logic.Comment: 26 pages, 6 figures, includes a condensed version of the author's Master's thesis arXiv:1404.6503. (This version of the article (v2) is identical to the previous one (v1), except for minor changes in phrasing.

    Index problems for game automata

    Full text link
    For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognize this language with a non-deterministic, alternating, or weak alternating parity automaton. These questions are known as, respectively, the non-deterministic, alternating, and weak Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognizable by deterministic automata (the alternating variant trivializes). We investigate a wider class of regular languages, recognizable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is, the alternating index problem does not trivialize any more. Our main contribution is that all three index problems are decidable for languages recognizable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognized by a game automaton

    On the Borel Inseparability of Game Tree Languages

    Get PDF
    The game tree languages can be viewed as an automata-theoretic counterpart of parity games on graphs. They witness the strictness of the index hierarchy of alternating tree automata, as well as the fixed-point hierarchy over binary trees. We consider a game tree language of the first non-trivial level, where Eve can force that 0 repeats from some moment on, and its dual, where Adam can force that 1 repeats from some moment on. Both these sets (which amount to one up to an obvious renaming) are complete in the class of co-analytic sets. We show that they cannot be separated by any Borel set, hence {\em a fortiori} by any weakly definable set of trees. This settles a case left open by L.Santocanale and A.Arnold, who have thoroughly investigated the separation property within the μ\mu -calculus and the automata index hierarchies. They showed that separability fails in general for non-deterministic automata of type Σnμ\Sigma^{\mu}_{n} , starting from level n=3n=3, while our result settles the missing case n=2n=2

    On the Complexity of ATL and ATL* Module Checking

    Full text link
    Module checking has been introduced in late 1990s to verify open systems, i.e., systems whose behavior depends on the continuous interaction with the environment. Classically, module checking has been investigated with respect to specifications given as CTL and CTL* formulas. Recently, it has been shown that CTL (resp., CTL*) module checking offers a distinctly different perspective from the better-known problem of ATL (resp., ATL*) model checking. In particular, ATL (resp., ATL*) module checking strictly enhances the expressiveness of both CTL (resp., CTL*) module checking and ATL (resp. ATL*) model checking. In this paper, we provide asymptotically optimal bounds on the computational cost of module checking against ATL and ATL*, whose upper bounds are based on an automata-theoretic approach. We show that module-checking for ATL is EXPTIME-complete, which is the same complexity of module checking against CTL. On the other hand, ATL* module checking turns out to be 3EXPTIME-complete, hence exponentially harder than CTL* module checking.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    On Pebble Automata for Data Languages with Decidable Emptiness Problem

    Get PDF
    In this paper we study a subclass of pebble automata (PA) for data languages for which the emptiness problem is decidable. Namely, we introduce the so-called top view weak PA. Roughly speaking, top view weak PA are weak PA where the equality test is performed only between the data values seen by the two most recently placed pebbles. The emptiness problem for this model is decidable. We also show that it is robust: alternating, nondeterministic and deterministic top view weak PA have the same recognition power. Moreover, this model is strong enough to accept all data languages expressible in Linear Temporal Logic with the future-time operators, augmented with one register freeze quantifier.Comment: An extended abstract of this work has been published in the proceedings of the 34th International Symposium on Mathematical Foundations of Computer Science (MFCS) 2009}, Springer, Lecture Notes in Computer Science 5734, pages 712-72
    corecore