220 research outputs found

    A flexible space-variant anisotropic regularisation for image restoration with automated parameter selection

    Get PDF
    We propose a new space-variant anisotropic regularisation term for variational image restoration, based on the statistical assumption that the gradients of the target image distribute locally according to a bivariate generalised Gaussian distribution. The highly flexible variational structure of the corresponding regulariser encodes several free parameters which hold the potential for faithfully modelling the local geometry in the image and describing local orientation preferences. For an automatic estimation of such parameters, we design a robust maximum likelihood approach and report results on its reliability on synthetic data and natural images. For the numerical solution of the corresponding image restoration model, we use an iterative algorithm based on the Alternating Direction Method of Multipliers (ADMM). A suitable preliminary variable splitting together with a novel result in multivariate non-convex proximal calculus yield a very efficient minimisation algorithm. Several numerical results showing significant quality-improvement of the proposed model with respect to some related state-of-the-art competitors are reported, in particular in terms of texture and detail preservation

    VARIATIONAL METHODS FOR IMAGE DEBLURRING AND DISCRETIZED PICARD\u27S METHOD

    Get PDF
    In this digital age, it is more important than ever to have good methods for processing images. We focus on the removal of blur from a captured image, which is called the image deblurring problem. In particular, we make no assumptions about the blur itself, which is called a blind deconvolution. We approach the problem by miniming an energy functional that utilizes total variation norm and a fidelity constraint. In particular, we extend the work of Chan and Wong to use a reference image in the computation. Using the shock filter as a reference image, we produce a superior result compared to existing methods. We are able to produce good results on non-black background images and images where the blurring function is not centro-symmetric. We consider using a general Lp norm for the fidelity term and compare different values for p. Using an analysis similar to Strong and Chan, we derive an adaptive scale method for the recovery of the blurring function. We also consider two numerical methods in this disseration. The first method is an extension of Picards method for PDEs in the discrete case. We compare the results to the analytical Picard method, showing the only difference is the use of the approximation versus exact derivatives. We relate the method to existing finite difference schemes, including the Lax-Wendroff method. We derive the stability constraints for several linear problems and illustrate the stability region is increasing. We conclude by showing several examples of the method and how the computational savings is substantial. The second method we consider is a black-box implementation of a method for solving the generalized eigenvalue problem. By utilizing the work of Golub and Ye, we implement a routine which is robust against existing methods. We compare this routine against JDQZ and LOBPCG and show this method performs well in numerical testing

    ADMM in Krylov Subspace and Its Application to Total Variation Restoration of Spatially Variant Blur

    Get PDF
    In this paper we propose an efficient method for a convex optimization problem which involves a large nonsymmetric and non-Toeplitz matrix. The proposed method is an instantiation of the alternating direction method of multipliers applied in Krylov subspace. Our method offers significant advantages in computational speed for the convex optimization problems involved with general matrices of large size. We apply the proposed method to the restoration of spatially variant blur. The matrix representing spatially variant blur is not block circulant with circulant blocks (BCCB). Efficient implementation based on diagonalization of BCCB matrices by the discrete Fourier transform is not applicable for spatially variant blur. Since the proposed method can efficiently work with general matrices, the restoration of spatially variant blur is a good application of our method. Experimental results for total variation restoration of spatially variant blur show that the proposed method provides meaningful solutions in a short time.clos

    Fast Diffusion Sampler for Inverse Problems by Geometric Decomposition

    Full text link
    Diffusion models have shown exceptional performance in solving inverse problems. However, one major limitation is the slow inference time. While faster diffusion samplers have been developed for unconditional sampling, there has been limited research on conditional sampling in the context of inverse problems. In this study, we propose a novel and efficient diffusion sampling strategy that employs the geometric decomposition of diffusion sampling. Specifically, we discover that the samples generated from diffusion models can be decomposed into two orthogonal components: a ``denoised" component obtained by projecting the sample onto the clean data manifold, and a ``noise" component that induces a transition to the next lower-level noisy manifold with the addition of stochastic noise. Furthermore, we prove that, under some conditions on the clean data manifold, the conjugate gradient update for imposing conditioning from the denoised signal belongs to the clean manifold, resulting in a much faster and more accurate diffusion sampling. Our method is applicable regardless of the parameterization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.Comment: 21 page
    corecore