
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2006

VARIATIONAL METHODS FOR IMAGE DEBLURRING AND VARIATIONAL METHODS FOR IMAGE DEBLURRING AND

DISCRETIZED PICARD'S METHOD DISCRETIZED PICARD'S METHOD

James H. Money
University of Kentucky, jmoney@ms.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Money, James H., "VARIATIONAL METHODS FOR IMAGE DEBLURRING AND DISCRETIZED PICARD'S
METHOD" (2006). University of Kentucky Doctoral Dissertations. 381.
https://uknowledge.uky.edu/gradschool_diss/381

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

James H. Money

The Graduate School

University of Kentucky

2006

VARIATIONAL METHODS FOR IMAGE DEBLURRING
AND DISCRETIZED PICARD’S METHOD

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Arts and Sciences
at the University of Kentucky

By

James H. Money

Lexington, Kentucky

Director: Dr. Sung Ha Kang, Department of Mathematics

Lexington, Kentucky

2006

Copyright c© James H. Money 2006

ABSTRACT OF DISSERTATION

VARIATIONAL METHODS FOR IMAGE DEBLURRING

AND DISCRETIZED PICARD’S METHOD

In this digital age, it is more important than ever to have good methods for processing

images. We focus on the removal of blur from a captured image, which is called the image

deblurring problem. In particular, we make no assumptions about the blur itself, which is

called a blind deconvolution. We approach the problem by miniming an energy functional

that utilizes total variation norm and a fidelity constraint.

In particular, we extend the work of Chan and Wong to use a reference image in the

computation. Using the shock filter as a reference image, we produce a superior result

compared to existing methods. We are able to produce good results on non-black background

images and images where the blurring function is not centro-symmetric. We consider using

a general Lp norm for the fidelity term and compare different values for p. Using an analysis

similar to Strong and Chan, we derive an adaptive scale method for the recovery of the

blurring function.

We also consider two numerical methods in this disseration. The first method is an

extension of Picard’s method for PDEs in the discrete case. We compare the results to the

analytical Picard method, showing the only difference is the use of the approximation versus

exact derivatives. We relate the method to existing finite difference schemes, including the

Lax-Wendroff method. We derive the stability constraints for several linear problems and

illustrate the stability region is increasing. We conclude by showing several examples of the

method and how the computational savings is substantial.

The second method we consider is a black-box implementation of a method for solving

the generalized eigenvalue problem. By utilizing the work of Golub and Ye, we implement

a routine which is robust against existing methods. We compare this routine against JDQZ

and LOBPCG and show this method performs well in numerical testing.

KEYWORDS: Total Variation Image Deblurring, Semi-Blind Image Deconvolution,

Lp-norm Fidelity term, Picard’s Method, symmetric generalized eigen-

value problem

James H. Money

3 May, 2006

VARIATIONAL METHODS FOR IMAGE DEBLURRING
AND DISCRETIZED PICARD’S METHOD

By

James H. Money

Dr. Sung Ha Kang
Director of Dissertation

Dr. Serge Ochanine
Director of Graduate Studies

3 May, 2006

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University
of Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but quotations
or summaries of parts may be published only with the permission of the author, and with
the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part requires also the
consent of the Dean of the Graduate School of the University of Kentucky.

DISSERTATION

James H. Money

The Graduate School

University of Kentucky

2006

VARIATIONAL METHODS FOR IMAGE DEBLURRING
AND DISCRETIZED PICARD’S METHOD

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Doctor of Philosophy

at the University of Kentucky

By

James H. Money

Lexington, Kentucky

Director: Dr. Sung Ha Kang, Department of Mathematics

Lexington, Kentucky

2006

Copyright c© James H. Money 2006

To my loving wife, Patti

ACKNOWLEDGMENTS

I would like to thank the members of my comittee for their patience with me. They include

Russell Brown, Qiang Ye, and Grzegorz Wasilkowski. Most importantly, I would like to

thank my advisor Sung Ha Kang for her time and support throughout the years.

I would also like to thank all my professors at University of Kentucky, especially Ed

Enochs, Ronald Gariepy, Tom Hayden, Peter Hislop, and Ren-cang Li. Their classes shaped

my time here and I will carry these experiences with me the rest of my life.

I would like to thank all my friends and family, who are too many to mention. Their

encouragement through the years has helped me reach this goal.

Finally, I would like to thank my wife, Patti. Her patience over the years and her encour-

agement allowed me to finish the task I started. Without her help, I could not have done

this.

I would like to thank the ACM for reprint permission for portions of Chapter 1 and 5,

which originally appears in the ACM Transactions on Mathematical Software [51].

iii

TABLE OF CONTENTS

Acknowledgments iii

List of Tables vi

List of Figures vii

List of Algorithms x

1 Preliminaries 1
1.1 Image Processing and Image Model . 2

1.1.1 Total Variation Minimizing Schemes 3
1.1.2 Image Deblurring . 5

1.2 Numerical Methods . 6
1.2.1 Picard’s Method . 7
1.2.2 Generalized Eigenvalue Problems and EIGIFP 10

1.3 Organization . 12

2 Semi-Blind Total Variation Deconvolution 14
2.1 TV Minimizing Blind Deconvolution . 14
2.2 Reference Image and Shock Filter . 16
2.3 Numerical Implementation . 20

2.3.1 Kernel Refinements . 21
2.3.2 Examples . 23

3 Lp Norm Fidelity in Semi-Blind Total Variation Deconvolution 30
3.1 Lp Fidelity Term Functionals . 30
3.2 Adaptive Scale Selection for L2 . 31
3.3 Adaptive Scale Recognition for L1 . 46
3.4 Numerical Comparisons and Experiments . 49

3.4.1 Numerical Implementation . 50
3.4.2 Scale Dependence in the L1 Fidelity Term 50
3.4.3 Fitting Term Comparisons . 52
3.4.4 Examples . 53

iv

4 Discretized Picard’s Method 60
4.1 Modified Picard Method for PDEs . 60
4.2 Discretized Picard’s Method . 61

4.2.1 Computation of Li . 62
4.2.2 Boundary Conditions . 64

4.3 Comparison of MPM with DPM and Finite Differences 64
4.4 Stability . 69
4.5 Numerical Implementation and Examples . 75

5 EIGIFP 79
5.1 Inverse Free Krylov Subspace Method . 79

5.1.1 Basic Method . 79
5.1.2 LOBPCG Type Subspaces Enhancement 81
5.1.3 Deflation . 82
5.1.4 Black-box Implementations . 82
5.1.5 Relation to Total Variation Image Deblurring 84

5.2 Numerical Comparisons . 84

6 Conclusion 89

References 90

Vita 97

v

LIST OF TABLES

2.1 Computational time for Chan and Wong [23] method. 26
2.2 Computational time for Semi-Blind method with refinements. 27

5.1 Harwell-Boing Test Matrices Used . 85
5.2 Res - normalized residual; MV - number of multiplications by A; Prec - number

of multiplications by preconditioner; CPU - CPU time (in seconds); λ1 - eigenvalue
obtained. 87

5.3 Res - normalized residual; MV - number of multiplications by A; CPU - CPU time
(in seconds), err - error encountered. 88

vi

LIST OF FIGURES

2.1 Comparison of initial value for u in Algorithm 2.1. In (a) we used u = u0, the
blurry image. In (b), u was the true image. Note that the improved results,
as expected, when using the true image. 15

2.2 Illustration of the Semi-Blind method in Algorithm 2.2. (a) True image (b)
Blurry given original image u0 (c) Reference image ur using shock filter (d)
Semi-Blind method output . 17

2.3 Illustration of the Shock Filter.Image (a) is the process of smoothing a sharp
edge. Image (b) is the process of reversing the smooth via the shock filter. . 18

2.4 Pre-applying diffusion before using the shock filter. (a) The blurry and noisy
image. (b) Shock filter result with no diffusion. (c) Shock filter result with
diffusion pre-applied to the blurry and noisy image. Note the edges are well
defined and noise has been removed in (c) but not in (b). 18

2.5 Comparison of unrefined and refined kernels. (a) is the output from (2.7).
Note the smoothness and noise at the base. (b) is the output after applying
the shock filter. (b) is the output after adaptive denoising. Note that this is
similar to the true kernel. 22

2.6 Comparison between AM method [23], Semi-Blind methods with or without
kernel refinement. (a) The given blurry original image u0. (b) Chan and
Wong’s AM method [23] (c) Semi-Blind result without kernel refinements.
(d) Semi-Blind result with kernel refinements. Image (d) shows dramatic
improvement in the reconstructed image u. 24

2.7 Non-black background image with L2 fitting term. (a) The true image. (b)
The given blurry original image. (c) Reference Image u4 (d) Semi-Blind result
(with kernel refinement). Image (d) recovers the sharp edges with details. . . 25

2.8 Non-black background image with L2 fitting term. (a) The true image. (b)
The given blurry original image. (c) Chan and Wong [23] result. (d) Semi-
Blind result (with kernel refinement). Image (d) recovers the sharp edges with
details such as the reflections on the cup. 26

2.9 (a) The true image. (b) The given blurry and noisy image u0. (c) Shock
filtered image ur. (d) Semi-Blind result shows reconstruction u. 27

2.10 Figure (a) is the non-centrosymmetric kernel. Image (b) is the corresponding
blurry image. Image (c) is the reference image. Image (d) is the computed
image. Note that the output image is accurate despite the nonsymmetry in
the kernel. 28

2.11 Figure (a) is the true image. Image (b) is the corresponding blurry image.
Image (c) is the reference image. Image (d) is the computed image. 29

vii

3.1 (a) The input kernel k (solid) and the output kernel k̃ (dotted) after applying
equation (2.4) with a sufficiently large λ1. (b) The true image u. (c) The
given blurred image u0 = k ? u (solid) and the reconstructed image u1 = k̃ ? u
(dotted) with k̃. We compute the error between u0 and u1 31

3.2 Adaptive scale parameter selection versus manual selection of λ1. In image
(a) and (b), λ1 is manually chosen, while in image (c) and (d), λ1 is chosen
adaptively. Notice that the results for the adaptive λ1 are as accurate as
manual selection of λ1. 46

3.3 (a) Image result after solving via equation (3.12). (b) Image result after a
direct solve for u. Note that the direct solution of u has cleaner output. . . 51

3.4 Comparison of image recovery using various values of λ1. (a) λ1 = 3.2× 10−5:
Image before first jump (b) λ1 = 5.6 × 10−5: After first jump, edges on
the small boxes are lost (c) λ1 = 9.0 × 10−5: Show before the next jump
(d)λ1 = 2.6 × 10−4: Shows after the second jump, where large boxes loose
edge detail. 53

3.5 (a) The graph of λ1 versus L1 norm for the affect image in figure 3.4. (b) The
graph of λ1 versus the L1 residual norm (c) The graph of λ1 versus the L2

residual norm. Note that the L2 graph is smoother than the L1 graph. . . . 54
3.6 Comparison on using different p1 and p2 in AM method (3.1) setting. Note

that we exaggerated the results by choosing λ1 to emphasize the details in the
image while sacrificing smoothness of the final image. (a) L1 fitting for both
kernel and image functional (p1 = p2 = 1). (b) L1 fitting for kernel and L2

fitting for image (p1 = 1,p2 = 2). (c) L2 fitting for kernel and L1 fitting for
image (p1 = 2,p2 = 1). (d) The original AM method [23] with p1 = p2 = 2.
The first column images with p2 = 1 have more details recovered, and the
second row images with p1 = 2 has clearer results. 55

3.7 Comparison on using different p1 and p2 for Semi-Blind method. (a) L1 fitting
for both kernel and image functional (p1 = p2 = 1). (b) L1 fitting for kernel
and L2 fitting for image (p1 = 1,p2 = 2). (c) L2 fitting for kernel and L1 fitting
for image (p1 = 2,p2 = 1). (d) L2 fitting for both kernel and image functional
(p1 = p2 = 2). The first column images with p2 = 1 have less “ringing” effects,
and the second row images with p1 = 2 has clearer results. 56

3.8 Results from the L1 recovery of the noisy image. Note the extra smoothing
that had to be applied. 56

3.9 Figure (a) is the non-centrosymmetric kernel. Image (b) is the corresponding
blurry image. Image (c) is the reference image. Image (d) is the computed
image. Note that the output image is accurate and improved over Figure 2.10(d). 57

3.10 Figure (a) is the true image. Image (b) is the corresponding blurry image.
Image (c) is the reference image. Image (d) is the computed image. 58

3.11 Image (a) is the L2 norm image using the correct kernel. Image (b) is the
same output using the L1 norm. We can see the L1 norm is clearly better for
natural images since there is less ”ringing” effects. 59

viii

4.1 Boundary Conditions The similarly shaded regions are lost if one sided deriva-
tives are not enforced as the degree of the iterates increase. 64

4.2 Degree 4 iterate for solving ut = ux using a centered difference scheme. . . . 76
4.3 Degree 4 iterate for solving ut = uxx using a centered difference scheme. . . . 77
4.4 Degree 3 iterate for solving ut = −uux in the present of a shock. (a) is

computed via DPM. (b) is the same result using Lax-Wendroff 78
4.5 Degree 3 iterate for solving ut = ∆u in 2D using a centered difference scheme.

Image (a) is the initial noisy image. Image (b) is the result after 5 iterations.
Image (c) is the result after 10 iterations. 78

ix

LIST OF ALGORITHMS

2.1 Alternating Minimization Method . 14
2.2 Semi-Blind Method . 16
2.3 Semi-Blind Method with Kernel Refinements 23
3.4 Adaptive Scale Kernel Reconstruction . 45
3.5 Adaptive Scale Kernel Reconstruction for L1 49
3.6 L1 Semi-Blind Method with Kernel Refinements 52
4.7 Modified Picard Method for PDEs . 60
4.8 Discretized Picard Method . 62

x

1 Preliminaries

The area of applied mathematics has grown tremendously over the past century. With

the availability of low cost computing equipment in recent years, applied mathematics has

expanded into many related fields. Among these are scientific computations, computational

biology and physics, materials science, and computational geometry. In addition, other

related subject areas, including robotics, engineering, and finance have influenced the recent

trends in applied mathematics.

In the area of numerical analysis, work continues to grow, driven by problems being con-

sidered outside the discipline of mathematics. Numerical analysis includes many interesting

topics. Problems include curve fitting techniques, numerical integration and differentiation,

and solutions to differential equations. There are also routines for solving linear systems and

eigenvalue problem, as well as optimization methods and combinatorial algorithms.

One of the related areas that has seen a recent surge of interest is the area of image

processing. With the rise of digital cameras, scanners, and digital imagery, it is more im-

portant than ever to have good methods for processing this imagery. The digital images

could be distorted or have noise which needs to be removed. Some researchers are interested

in recovering important features contained in the image. For example, they may want to

recover the location of buildings in satellite imagery or identify objects that are blocking a

path for a mobile robot. Given that many images require massive amounts of storage space,

we need to consider methods by which to compress the imagery in order to save on storage

costs.

A good example of the problems encountered with digital imagery is given by NASA’s

Deep Impact mission spacecraft. This satellite was sent to study the innards of a comet,

but one of the instrument cameras was not properly calibrated before it was sent into space.

The result was all the imagery returned to earth was blurry and all the images would have

to be corrected after the data was returned.

In this dissertation, we consider aspects of image processing and numerical methods.

With respect to image processing, there are many approaches to solving the problem, in-

cluding wavelet, stochastic, and partial differential equations(PDE) based approaches. We

consider using the PDE based approach in this research. The PDE based methods have

several advantages over some other methods. These methods regard images as continuous

functions and use gradients, diffusion, and curvature in a natural way to model the images.

1

This approach also has some advantages when recovering sharp edges in images. For numer-

ical schemes, we consider two methods. The first is a discrete version of Picard’s Method,

which we have adapted for PDE based problems. This method uses a simple recurrence

relation to solve the PDE to any degree of accuracy. This recurrence relation automatically

generates the power series expansion of the solution. The second method we consider is

an eigenvalue solver that is implemented in a black-box routine. This method uses an in-

verse free procedure to avoid inverting the matrix in the calculation. With this inverse free

formulation, we can solve some ill-conditioned problems to high accuracy.

1.1 Image Processing and Image Model

The field of image processing is broad and contains many interesting applications. Some of

the common image processing areas are image restoration, compression, and segmentation.

Many times, the size of the raw data for the images can require gigabytes of data storage.

Researchers have developed routines to compress an image into a reversible form to save

storage space [26, 27, 11]. In this area, there are methods for the compression via wavelets,

using general compression schemes that are applicable to any type of file, and methods which

allow some loss of data.

The area of segmentation distinguishes objects from the background in an image [53, 49,

67, 22]. This is particular useful for satellite imagery from an intelligence standpoint. It is

also useful for identification purpose by using facial imagery in a database. Segmentation is

used in robotics, where it is important to locate the correct objects to move or manipulate.

Another area of image processing is image restoration. In image restoration, a distorted

image is restored to its’ original form. This distortion is typically caused by noise in trans-

mission, lens calibration, motion of the camera, or age of the original source of the image.

We focus on image restoration in this dissertation.

Within image restoration, there are many tasks that researchers consider. There has been

significant work on denoising, where noise is removed from the image [57, 28, 11, 17, 25, 42].

This noise could be from transmission problems or due to some atmospheric problem at the

time the image was captured. There is image inpainting, which recovers missing areas from

an image [8, 18, 16, 15, 20]. These missing regions may occur because of age of the original

object that was photographed, or physical defects in the object. Another area in restoration

is image deblurring [48, 32, 23, 75, 12, 42]. In this area, the objective is to recover the true

image given a blurry image. We will focus on image deblurring in this dissertation.

There are many models for images. For example, there are wavelet based approaches [29,

2

11, 12, 25]. There are also stochastic based methods for processing images [64, 48, 36, 32].

A more detailed discussion of these and other areas can be found in [19, 21]. We focus on a

PDE based image model, which is

u0 = k ? u+ η (1.1)

where u0 is the observed image, u is the true image, k is the blurring function or kernel, and

η is the additive noise term. The domain of the image is called Ω and typically is a square or

rectangle. The images we consider are greyscale images and thus the range of the functions

are the reals. In equation (1.1), ? indicates the convolution operator which is defined to be

(k ? u)(x, y) =

∫
Ω

k(x− s, y − t)u(s, t) ds dt

We assume that u ≥ 0, k ≥ 0 and
∫

Ω
k(x, y) dx dy = 1.

Using this PDE based model, we consider minimizing an energy functional. In particular,

we minimize the number of oscillations in the image u by using the total variation norm. We

enforce several constraints in order to obtain a solution close to the observed image, while

recovering sharp edges in the true image. We also enforce several conditions so that our

computed image results in a physically based solution.

1.1.1 Total Variation Minimizing Schemes

Prior to 1990, there were many attempts to model image processing using energy functionals

with the L2 norm on the gradient[34, 59, 74, 41]. In all these cases, the resulting linear

system is easy to solve, but does not give the quality results one would desire. In addition,

Rudin, et.al, in [57], noted that if one compared minimizing using |∇u| versus |∇u|2, with

the same set of constraints, the |∇u| based method generated superior results. Morel, et.al,

in [10] also used the Euler-Lagrange form of total variation of the gradient and derived a

motion by mean curvature PDE for denoising.

Thus, we consider using the total variation(TV) norm, which is defined to be

‖u‖TV (Ω) =

∫
Ω

|∇u(x, y)| dx dy. (1.2)

Then, we minimize (1.2), but subject to some constraints particular to the problem in order

that the output image is not the constant valued image. In [57], Rudin, Osher and Fatemi

3

considered the denoising case, where the constraints are maintaining the mean value of the

image or the noise having mean value zero, i.e.,∫
Ω

u(x, y) dx dy =

∫
Ω

u0(x, y) dxdy (1.3)

and the standard deviation of the noise is σ or

1

2

∫
Ω

(u− u0)
2 dx dy = σ2, σ > 0. (1.4)

Hence, the energy functional they wished to minimize for the denoising case was

min
u
‖u‖TV (Ω) +

λ1

2

∫
Ω

(u(x, y)− u0(x, y))
2 dx dy + λ2

∫
Ω

(u(x, y)− u0(x, y)) dxdy (1.5)

where λ1 and λ2 are Lagrange multipliers to be chosen. If we apply the Euler-Lagrange

equations to (1.5), we obtain

∇ ·
(
∇u
|∇u|

)
− λ1(u− u0)− λ2 = 0 (1.6)

We note here that we eliminate the constraint λ2 since we manually enforce the mean value

of the output image u. Hence, we solve the PDE

∇ ·
(
∇u
|∇u|

)
− λ(u− u0) = 0 (1.7)

Thus, we reduce (1.7) to solving the PDE
ut = ∇ ·

(
∇u
|∇u|

)
− λ1(u− u0)

u(x, y, 0) = u0(x, y)

∂u
∂ν

= 0 on the boundary of Ω = ∂Ω

(1.8)

by utilizing Time Marching on (1.6) until the PDE reaches steady state. We note that since

the denominator of ∇ ·
(

∇u
|∇u|

)
can be zero, we implement this term with a parameter β ≈ 0,

added to eliminate the singularity. That is, we implement this term as

∇ ·

(
∇u√

u2
x + u2

y + β2

)
.

4

To summarize, when considering a TV minimizing scheme, we consider the constrained TV

minimizing functional and apply the Euler-Lagrange equations and solve the corresponding

Euler-Lagrange form for the minimizing functional.

1.1.2 Image Deblurring

One problem we consider is recovering the true image from a blurry and noisy observed

image. It is also known as the image deblurring problem and has been studied for known

and unknown blur kernels. We focus on the blind deconvolution dealing with unknown

kernels.

The blind deconvolution problem has been studied by various researchers using different

approaches. There are approaches using functional settings with different types of alternating

minimization schemes. You and Kaveh [80] considered using an alternating scheme involving

the H1 norm for the kernel. Building on You and Kaveh’s work, Chan and Wong [23]

extended their idea to the TV norm for both the image and the kernel, noting that in

many cases the kernel function has sharp edges (such as motion blur and out of focus blur).

The authors used the Alternating-Minimization [23] method for image and kernel recovery.

In [47], Lin, et. al., extended the TV functional [23] to include additional constraints on the

kernel in the problem and used Bregman iteration to improve the result. More recent works

deal with spatially variant blurs [54, 78] and non-local functional as in [42].

Another approach for deblurring is to apply various filtering techniques. In [32], Fish

et. al. considered using the Richardson-Lucy algorithm to implement an alternating mini-

mization scheme using Bayes’s Theorem, and got improved results from Weiner filter blind

deconvolution. Using partial differential equations is proposed by Osher and Rudin [56] via

shock filter. This method reconstructs the edges by creating shock at inflection points and

finds accurate edge locations. Alvarez and Mazorra [1] considered a similar approach but

pre-conditioning the image with diffusion in order that it can handle denoising and deblur-

ring simultaneously. Gilboa, et. al [38, 39] extended this idea by using a complex diffusion

process to be robust against noise.

There is considerable work on combining several functionals in various image processing

tasks. Chan, et. al, in [24] considered using blind deblurring with inpainting, and calculated

the solution as a single method. Bar, et. al., in [5], considered coupling with an edge detection

for Gaussian type kernels. In [6], the authors used the L1 fidelity term to remove salt and

pepper noise in a deblurring problem. In [4], the authors considered deblurring and impulse

noise removal via a combination of the Mumford-Shah model and total variation models in

5

a multichannel setting, and in [7], the authors combined semi-blind image restoration with

segmentation for parametric blur kernels.

Given the quantity of research in the area, Chan and Shen [19, 21] present an overview

of image deblurring methods developed over the past two decades, which includes stochastic

methods, Tikhonov regularizations including TV regularization, and wavelet based algo-

rithms.

We focus on the model of You and Kaveh [80] and Chan and Wong [23] which is to

consider minimizing the functional

min
k,u

‖k ? u− u0‖2
L2(Ω) + λ1‖k‖+ λ2‖u‖ (1.9)

where the norms ‖k‖ and ‖u‖ in (1.9) are either the Sobolev norm for You and Kaveh or

the TV norm for Chan and Wong. Here, we note that the kernel may have sharp edges as

the image does, such as the case with motion or out of focus blurs. We focus on Chan and

Wong’s work in [23] by considering the minimizing functional

min
k,u

‖k ? u− u0‖2
L2(Ω) + λ1‖k‖TV (Ω) + λ2‖u‖TV (Ω) (1.10)

Chan and Wong implement the method by considering the solution for k and u separately

via the Euler-Lagrange forms

u(−x,−y) ? (u(x, y) ? k − u0)− λ1∇ ·
(
∇k
|∇k|

)
= 0 (1.11)

for kernel k and for image u, they solve

k(−x,−y) ? (k(x, y) ? u− u0)− λ2∇ ·
(
∇u
|∇u|

)
. = 0 (1.12)

The solution is computed by alternately solving for k and then u, for several iterations until

the solution converges, typically after three iterations. Initial values for the computation is u0

for u and δ(x, y), which is the Dirac-delta distribution, for the initial kernel approximation.

1.2 Numerical Methods

Within numerical analysis, there are many different types of methods. For example, there

are methods for locating roots, interpolating data points, solving differential equations, and

6

finding eigenvalues. We focus on two of these methods in this dissertation. The first method

we consider is used for numerical solutions of PDEs. Within this area, there are a number

of methods for solving PDEs. There are classical finite difference schemes [52] where each

derivative is approximated using nearby points derived via Taylor’s Theorem. There are

also finite element methods [81] which handles more complex domains and uses the basis

functions to approximate the solution. In this dissertation, we apply Picard’s method [70]

to the PDE to construct the power series approximation.

There are many methods for solving eigenvalue problems. In general, these can be divided

into two types of methods. The first are direct solvers, such as the Power Method or the

QR algorithm(see [37]). These methods work by directly computing the eigenvalues and

eigenvectors for the matrix. These methods are designed for matrices that are dense and

have relatively small dimension. The other class of methods are iterative schemes. These

are generally used for large sparse matrices and only return a few of the eigenvalues. We

focus on this class of methods in section 1.2.2. In particular, we focus on Krylov subspace

methods, where we form a basis for the subspace and choose the best approximate to solve

the larger problem.

1.2.1 Picard’s Method

One way to find the solution of an ordinary differential equation is to apply Picard’s Method.

Picard’s Method is a method that has been widely studied since its’ introduction by Emile Pi-

card in [60]. The method was designed to prove existence of solutions of ordinary differential

equations(ODEs) of the form y′(t) = f(t, y)

y(t0) = y0

by defining the recurrence relation based on the fact

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds.

The only assumptions that are made are f and ∂f
∂y

are continuous in some rectangle sur-

rounding the point (t0, y0). In particular, the recurrence relation is given byφ(0)(t) = y0

φ(n)(t) = y0 +
∫ t

t0
f(s, φ(n−1)(s)) ds, n = 1, 2, . . .

. (1.13)

7

While the recurrence relation results in a straight-forward algorithm to implement on the

computer, the iterates become hard to compute after a few steps. For example, consider the

ODE y′(t) = 1/y(t)

y(1) = 1

which has the solution y(t) =
√

2t− 1. However, the Picard iterates are

φ(0)(t) = 1

φ(1)(t) = 1 +
∫ t

1
1 ds = 1 + (t− 1) = t

φ(2)(t) = 1 +
∫ t

1
1/s ds = 1 + ln t

φ(3)(t) = 1 +
∫ t

1
1/(1 + ln s) ds

and we note the last integral is difficult to calculate. Continuing beyond he fourth iterate

only results in the increasing problems with calculating the integral. As a result, Picard’s

Method is generally not used in this form.

Parker and Sochacki, in [69], considered the same problem, but restricted the problem

to an autonomous ODE with t0 = 0 and f restricted to polynomial form. In this setting,

the iterates result in integration consisting of polynomials. They also showed that the n-th

Picard iterate is the MacLaurin polynomial of degree n for y(t) if φ(n)(t) is truncated to degree

n at each step. This form of Picard’s method is called the Modified Picard Method(MPM).

In [69], Parker and Sochacki showed that a large class of ODEs could be converted to

polynomial form using substitutions and using a system of equations. While this class of

ODEs is dense in the analytic functions, it does not include all analytic functions. They also

showed one can approximate the solution by a polynomial system and the resulting error

bound when using these approximations. Parker and Sochacki also showed that if t0 6= 0,

one computes the iterates as if t0 = 0 and then the approximated solution to the ODE is

φ(n)(t+ t0).

In [70], Parker and Sochacki showed that the ODE based method can be applied to partial

differential equations(PDEs) when the PDE is converted to an initial value problem form

for PDEs. The resulting solution from MPM is the truncated power series solution from the

Cauchy-Kovelsky theorem[31].

Both the ODE and PDE versions of MPM are now used to solve a number of problems

including some stiff ODEs. Rudmin[65] describes how to use the MPM to solve the N-Body

problem for the solar system accurately. Pruett, et. al [61], analyzed how to adaptively

8

choose the timestep size and the proper number of iterates for a smaller N-Body simulation

and when a singularity was present.

Carothers, et. al, in [9], have proved some remarkable properties of these polynomial

systems. They constructed a method by which an ODE could be analytic but could not be

converted to polynomial form. They provide a method to convert any polynomial system to

a quadratic polynomial system and how to decouple an system of ODEs into a single ODE.

Extending the work of Rudmin, they derive an algebraic method to compute the coefficients

of the MacLaurin expansion using Cauchy products.

Warne, et. al. [77], computed an error bound when using the MPM that does not

involve using the n-derivative of the function. This explicit a-priori bound was then used

to adaptively choose the timestep size for several problems. They showed a way to generate

the Pade approximation using the MacLaurin expansion from MPM.

Researchers extended the MPM to use parallel computations and adaptively choose the

timesteps as the algorithm executes. In [50], the method is modified to include a generic form

for ODEs and PDEs and allowed the computation in parallel for any system of equations

using a generic text based input file. This method was later modified using the error bound

result in [77] to choose adaptive timesteps while performing the parallel computations.

To illustrate the MPM, consider solving the ODEy′(t) = y2(t)

y(0) = 1
(1.14)

where the solution to (1.14) is given by y(t) = −1/(t− 1). The Modified Picard iterates are

φ(0)(t) = 1

φ(1)(t) = 1 +

∫ t

0

12 ds = 1 + t

φ(2)(t) = 1 +

∫ t

0

(1 + s)2 ds = 1 + t+ t2 + t3/3

We truncate to degree two since this is the second iterate and proceed as before, calculating

φ(3)(t) = 1 +

∫ t

0

(1 + s+ s2)2 ds = 1 + t+ t2 + t3 + . . .

9

φ(4)(t) = 1 +

∫ t

0

(1 + s+ s2)2 ds = 1 + t+ t2 + t3 + t4 + . . .

To compare this to the MacLaurin expansion, we get, in fact, that

y(t) = −1/(t− 1) = 1 + t+ t2 + t3 + t4 + . . .

which matches precisely at each degree to the modified Picard iterates.

To highlight the implementation of MPM for PDEs, consider the Sine-Gordon equation
utt = uxx + sinu

u(x, 0) = cos x

ut(x, 0) = 0

The right hand side of this PDE is not in polynomial form. In particular, sinu is not

polynomial. Let z = ut, v = cosu, and w = sinu. Then, the corresponding system after

substituting is

ut = z u(x, 0) = cos x

zt = uxx + w z(x, 0) = 0

vt = −wz v(x, 0) = cos (cosx)

wt = vz w(x, 0) = sin (cos x)

Since the right hand side is polynomial and equivalent to the Sine-Gordon equation, we

call the Sine-Gordon equation projectively polynomial. The MPM is applied on the

polynomial system.

1.2.2 Generalized Eigenvalue Problems and EIGIFP

We consider computing a few algebraically smallest or largest eigenvalues and their corre-

sponding eigenvectors of the generalized eigenvalue problem

Ax = λBx (1.15)

where A and B are large (and typically sparse) symmetric matrices and B is positive definite.

This eigenvalue problem, sometimes referred to as a pencil eigenvalue problem for (A,B),

arises in a large variety of scientific and engineering applications, see [37, 58, 66] for general

discussions. The efficient solution of large scale eigenvalue problems is of great importance.

10

These large scale eigenvalue problems appear in structural analysis where it is important to

know resonance frequencies. They are also important to analyzing linear circuits in electrical

engineering. A prior version of this work appears in [51].1

Over the years, many numerical methods and software have been developed to solve

large scale eigenvalue problems. These include publicly distributed programs; we refer to

Bai et al. [3] for a comprehensive list of references and codes. Links to most of the publicly

distributed programs can also be found in Bai et al.[3]. A large majority of the programs

are based on the Lanczos algorithm, including ARPACK (implemented in the MATLAB

built-in function eigs) [46] and irbleigs [2]. Methods of this type require inverting B and,

when eigenvalues are badly separated, they typically need to use a shift-and-invert trans-

formation which is not always feasible or efficient. Other programs such as JDQZ [33, 68],

JDCG [55], and LOPBCG [45] do not require inverting B or a shift-and-invert transforma-

tion, but they appear to require more user inputs, such as an initial approximate eigenvalue

or preconditioners.

The method we implement is called eigifp . The underlying algorithm of eigifp is

an inverse free preconditioned Krylov subspace projection method developed by Golub and

Ye [40]. In this method, we iteratively improve an approximate eigenvector xk through the

Rayleigh-Ritz projection on the Krylov subspace of dimension m generated by A− ρkB and

xk, where ρk = xT
kAxk/x

T
kBxk. The projection is carried out by constructing a basis for the

Krylov subspace through an inner iteration, where the matrices A and B are only used to

form matrix-vector products and O(m) vector memory is required. The method is proved to

converge at least linearly and a congruence transformation can be implicitly applied to pre-

condition the original eigenvalue problem so as to accelerate convergence. eigifp implements

this preconditioned algorithm and has also incorporated several algorithmic enhancements

and implementation details to arrive at an efficient black-box implementation.

Comparing with existing programs, eigifp possesses some important features that allow

it to solve some difficult problems without any input from users. First, for the generalized

eigenvalue problem (with B 6= I), eigifp does not require the inversion of B as most other

methods do. Second, it includes the congruent transformation based preconditioning and

this is done with no required user inputs such as a user supplied preconditioner or a shift (as

in a shift-and-invert transformation). The program uses an incomplete LDLT factorization

of a shifted matrix A−σB to generate a preconditioner, where the shift σ is an approximate

eigenvalue determined also by the program. With the use of the incomplete factorization,

1 c© 2005 ACM, Inc. Included here by permission.

11

the computational and memory cost of preconditioning can be controlled and the precon-

ditioning is implemented in the code in a black-box fashion. Thus, eigifp will be most

useful for problems where preconditioning by the standard shift-and-invert transformation is

not feasible; but it can be competitive in other circumstances. Finally, eigifp is relatively

simple in implementation with only one performance tuning parameter (i.e. the dimension

of the Krylov subspace). This parameter can be either set by users or adaptively chosen by

the program.

1.3 Organization

The dissertation is organized as follows. In Chapter 2, we derive the Semi-Blind method by

separating the Euler-Lagrange equations into two functionals and using a reference image to

approximate the true image. We utilize the shock filter for a reference image and analyze

the error in computing the kernel when using the reference image. We briefly discuss the nu-

merical implementation, and show how to refine the kernel output to improve the computed

image. We show several examples of Semi-Blind method including images with non-black

backgrounds and kernels that are non-centrosymmetric. We also compare the Semi-Blind

method to the Chan and Wong model, showing the Semi-Blind method generates superior

results.

Chapter 3 considers utilizing different fidelity terms. In particular, we use a general Lp

fidelity term in the functional. We derive a one dimensional analysis for the relation of λ1

with the size of the kernel and object in the image. From this analysis, we formulate an

adaptive scale method for kernel recovery. We discuss the scale dependence when using

the L1 fidelity term for image recovery and compare it to L2 image recovery. A detailed

comparison of using the various Lp norms for the kernel and image recovery in discussed for

the blind and Semi-Blind method. We present several examples when using the L1 norm for

the fidelity term, including an example with non-centrosymmetric kernel.

We develop the Discretized Picard’s Method in Chapter 4 by using the discrete data

directly in computations. This method is implemented by using linear operators to approx-

imate the derivatives. We discuss how the Discretized Picard’s Method approximates the

derivatives of each term for the Modified Picard Method. We show that the first and second

iterates are the standard forward time difference and Lax-Wendroff schemes, respectively.

We provide a method to generate the stability constraints for several examples in one and

two dimensions. We illustrate those examples and show that the method is accurate and

computationally competitive.

12

Chapter 5 covers the black-box implementation of eigifp . We review the basic method

of Golub and Ye and show how to implement the preconditioning scheme for the method.

We discuss the LOBPCG type enhancements to the subspace and how to deflate for finding

interior eigenvalues. The implementation specific issues for the black-box routine are covered

and some numerical details are provided. A detailed numerical comparison with LOBPCG

and JDQZ is completed and shows the method is competitive against those routines.

Copyright c© James H. Money 2006

13

2 Semi-Blind Total Variation Deconvolution

2.1 TV Minimizing Blind Deconvolution

In this chapter, we extend the Chan and Wong[23] minimizing functional with an reference

image to improve image results and the computational cost for the blind deconvolution.

In [23], Chan and Wong consider the minimizing functional

min
k,u

‖k ? u− u0‖2
L2(Ω) + λ1‖k‖TV (Ω) + λ2‖u‖TV (Ω) (2.1)

and solve the corresponding Euler-Lagrange forms for (2.1). For the kernel k, they solve

u(−x,−y) ? (u(x, y) ? k − u0)− λ1∇ ·
(
∇k
|∇k|

)
= 0 (2.2)

and for the image u, they solve

k(−x,−y) ? (k(x, y) ? u− u0)− λ2∇ ·
(
∇u
|∇u|

)
= 0. (2.3)

In order to solve this minimization problem, Chan and Wong iteratively solve for equation

(2.2) and (2.3) by starting with the initial conditions u = u0 and k = δ(x, y). Their method is

summarized below in Algorithm 2.1 and is called the Alternating Minimization(AM) method.

Algorithm 2.1 Alternating Minimization Method

Require: u0, the input image
Set u(0) = u0, k

(0) = δ(x, y).
for n from 1 to nmax do

Solve u(n−1)(−x,−y) ? (u(n−1)(x, y) ? k(n) − u0)− λ1∇ ·
(

∇k(n)

|∇k(n)|

)
= 0 for k(n).

Solve k(n)(−x,−y) ? (k(n)(x, y) ? u(n) − u0)− λ2∇ ·
(

∇u(n)

|∇u(n)|

)
= 0 for u(n).

end for

We consider the functional (2.1) and separate it into two functionals that are equivalent

when solved via the Euler-Lagrange forms (2.2) and (2.3). The first functional corresponding

to equation (2.2) is

min
k

1

2
‖k ? u− u0‖2

L2(Ω) + λ1

∫
Ω

|∇k| dx dy (2.4)

14

and the corresponding functional for (2.3) is

min
u

1

2
‖k ? u− u0‖2

L2(Ω) + λ2

∫
Ω

|∇u| dx dy. (2.5)

We note that in Figure 2.1, in image (a) is the output of the AM method for one iteration

using u0 for the input image. In image (b), we see the same output using the true image u,

which results in a substantially better result and close to the true answer. In light of this fact,

we consider using a reference image between u and u0 that approximates the true image but

is not computationally difficult to compute. Instead of functional (2.4), we consider using a

(a) (b)

Figure 2.1: Comparison of initial value for u in Algorithm 2.1. In (a) we used u = u0, the
blurry image. In (b), u was the true image. Note that the improved results, as expected,
when using the true image.

reference image ur instead of u and get the functional

min
k

1

2
‖k ? ur − u0‖2

L2(Ω) + λ1

∫
Ω

|∇k| dx dy (2.6)

and then solve the Euler-Lagrange form

ur(−x,−y) ? (ur(x, y) ? k − u0)− λ1∇ ·
(
∇k
|∇k|

)
= 0. (2.7)

Then, we solve equation (2.3) for u and no iteration is required. Since we utilize a reference

image for kernel reconstruction in (2.6), we refer to this method as the Semi-Blind decon-

15

volution. However, we are solving a blind deblurring problem where we do not assume any

particular properties about the kernel nor the image except for the fact we want them to be

BV functions. The Semi-Blind method is summarized in Algorithm 2.2.

Algorithm 2.2 Semi-Blind Method

Require: u0, the input image
Compute reference image ur.

Solve ur(−x,−y) ? (ur(x, y) ? k − u0)− λ1∇ ·
(

∇k
|∇k|

)
= 0 for k.

Solve k(−x,−y) ? (k(x, y) ? u− u0)− λ2∇ ·
(

∇u
|∇u|

)
= 0 for u.

Output image u.

The method is illustrated in Figure 2.2. The reference image ur in (c) need not be

a perfect deblurred result. However, combined with the k and u minimization functionals

(2.6) and (2.5), the result of the Semi-Blind method in in (d) recovers sharp edges. Note that

reference image does provide good information on the location of edges in the image. With

this correct information in ur, the minimization scheme results in a good reconstruction of

the kernel k, which results in turn with a good reconstructed image.

2.2 Reference Image and Shock Filter

Many different types of reference images may be used for ur in (2.7). In this dissertation,

we consider using Rudin and Osher’s shock filter [56]. The idea behind the shock filter in

one dimension is to reverse the effects of applying the Gaussian operator to a curve with a

jump. Figure 2.3 illustrates the idea. In (a), we see the effect of smoothing the sharp edges

curve. In (b), we see the opposite effect, which is result of the shock filter.

In one dimension, the shock filter takes the PDE form

ut = −|ux|F (uxx)

where F (x) satisfies
F (x) > 0 if x > 0

F (x) = 0 if x = 0

F (x) < 0 if x < 0

(2.8)

Clearly, sign(x) satisfies (2.8) and is chosen to be the operator in [56]. We note here that

when uxx is zero, we have reached the point of inflection of the Figure 2.3(a) or the edge in

16

(a) (b)

(c) (d)

Figure 2.2: Illustration of the Semi-Blind method in Algorithm 2.2. (a) True image (b)
Blurry given original image u0 (c) Reference image ur using shock filter (d) Semi-Blind
method output

Figure 2.3(b). The extension to two dimensions is to consider the PDE

ut = −|∇u|F (L(u)) (2.9)

where F is chosen the same as before, but L(u) is chosen to be a second order differential

operator that detects the edges in the image. An easy choice for L is

L(u) = ∆u,

but this does not detect edges along the nontangental directions. A better choice for L is

L(u) = ∇u ·

[
uxx uxy

uyx uyy

]
∇u = u2

xuxx + 2uxuyuxy + uyuyy (2.10)

which is a second order term in the direction of the gradient and the L that Osher and Rudin

employ in [56].

17

(a) (b)

Figure 2.3: Illustration of the Shock Filter.Image (a) is the process of smoothing a sharp
edge. Image (b) is the process of reversing the smooth via the shock filter.

Alvarez and Mazorra [1] considered a similar approach but pre-conditioned the image

with diffusion in order that it can handle denoising and deblurring simultaneously. Gilboa,

et. al.[39, 38] extended this idea by using a complex diffusion process to be robust against

noise. Figure 2.4 illustrates the differences when using the diffusion process with a blurry

and noisy image. The blurry and noisy image is in (a). In image (b) is the shock filter result

with no diffusion applied. We see that the shock filter enhances the noise. In image (c),

we see the same result, but with diffusion applied to the image before the shock filter was

applied. The noise is not present in image (c) and the edges remain well defined despite the

smoothing applied to the image. As a result, we use diffusion as needed in our calculations

when either noise is present or the kernels are non-Gaussian.

(a) (b) (c)

Figure 2.4: Pre-applying diffusion before using the shock filter. (a) The blurry and noisy
image. (b) Shock filter result with no diffusion. (c) Shock filter result with diffusion pre-
applied to the blurry and noisy image. Note the edges are well defined and noise has been
removed in (c) but not in (b).

The shock filtered image ur gives good clues for the edge information and the position

of objects in the image as well as the shape of the kernel k. The convolution k ? u is only

affected when the value of u changes such as at the edges. Therefore, it is important that the

18

edge information is correct. The location of the edges in ur determines the relative position

of the kernel k as well.

We utilized the Lagged Diffusivity Fixed Point Method (see [75, 76]) for solving Euler-

Lagrange equations (2.7) and (2.3). This is a scheme where the denominator for the TV

term is lagged by one step and iterated until convergence. We denote the lagged TV term

by L such that

Lkn = −∇ ·
(

∇kn

|∇kn−1|

)
.

The following theorem further illustrates the importance of having a good reference image

ur.

Theorem 2.2.1 Assume the reference image is a perturbation of the true image, i.e., ur =

u+ δu, then the error in the computed kernel using one step of the Lagged Diffusivity Fixed

Point method is

E = δUTU + δUT δU

where U and δU are the convolution matrix operators for u and δu = ur − u, respectively.

Hence the error bound is

‖δk‖2

‖k‖2

≤ ‖
(
UTU − λ1L

)−1 ‖2

(
‖δU‖2

2 + ‖U‖2‖δU‖2

)
(2.11)

where ‖ · ‖2 denotes the vector two norm.

Proof. The Lagged Diffusivity Fixed Point Method solves

UT (Uk − u0)− λ1Lk = 0

which is (
UTU − λ1L

)
k = UTu0.

If A = UTU − λ1L and b = UTu0, we get Ak = b. In fact, we solve the perturbed system

(
(U + δU)T (U + δU)− λ1L

)
k = (U + δU)Tu0

or (
UTU − λ1L+ δUT (U + δU)

)
k = UTu0 + δUTu0

Thus, δA = δUT (U + δU) and δb = δUTu0, where (A + δA)k = b + δb. By rearranging the

19

terms, we get A(k + δk) = b+ δb where Aδk = δAk, hence δk = A−1δAk. Therefore,

‖δk‖2 ≤ ‖A−1‖2‖δA‖2‖k‖2

= ‖
(
UTU − λ1L

)−1 ‖2‖δUT (U + δU) ‖2‖k‖2

Thus, the relative error is bounded by equation (2.11). �

Note that the error of the kernel is proportional to the error in approximating the true

image u by ur. If the approximation error for ur is large, the kernel might contain large

amounts of error. In addition, the condition number of ‖
(
UTU − λ1L

)−1 ‖2 can also affect

the error; therefore, λ1 should be chosen properly. A badly chosen λ1 will ill-condition the

matrix UTU − λ1L resulting in poor results for the kernel. Since ur is calculated via the

shock filter, the edge information and position is close to the true image, resulting in a small

δU term throughout the image. As a result, the Semi-Blind method results in a small error

in the computation of the kernel function.

2.3 Numerical Implementation

There are a wide range of models and algorithms for numerical computation for image

deblurring problems [14, 75, 76]. In [75], various methods for recovery of a blurry image are

discussed, including a chapter dedicated to the TV based recovery of the image using fixed

point methods. Vogel and Oman [76] present a more detailed analysis for the denoising case

for the methods comparing the various fixed point schemes. In [14], the authors present a

comparison of the fixed point, time marching, and primal-dual based methods.

In computation of the reference image ur, we first use heat equation to smooth the image

(implemented by centered differences). We then applied the shock filter, as implemented

in [56],

un+1
ij = un

ij −
∆t

h

√
((∆x

+u
n
ij)

+)2 + ((∆x
−u

n
ij)

−)2 + ((∆y
+u

n
ij)

+)2 + ((∆y
−u

n
ij)

−)2sign+(L(un))

−∆t

h

√
((∆x

+u
n
ij)

−)2 + ((∆x
−u

n
ij)

+)2 + ((∆y
+u

n
ij)

−)2 + ((∆y
−u

n
ij)

+)2sign−(L(un))

where ∆x
+uij = ui+1,j − uij and ∆x

−uij = uij − ui−1,j and similarly for ∆y
±. The superscripts

means F+ = max(0, F) and F− = min(0, F). For L(un) = uxxu
2
x + 2uxyuxuy + uyyu

2
y, the

centered difference schemes are used for the second order derivatives and the minmod scheme

for the first order derivatives, minmod(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|).

20

For the computation of equations (2.7) and (2.3), we utilized the Lagged Diffusivity Fixed

Point method [75, 76], which is to iterate on n for

ur(−x,−y) ?
(
ur ? k

n+1 − u0

)
− λ1∇ ·

(
∇kn+1

|∇kn|

)
= 0

for (2.7) and similarly for (2.3). We utilized the FFT to compute the convolutions and used

the conjugate gradient method to solve the corresponding linear systems at each step. We

compute 10 iterates using the fixed point scheme, and stop if the desired residual is attained.

For further details on implementing the fixed point scheme, see [23].

2.3.1 Kernel Refinements

When calculating the blur kernel k from (2.7), there is often noise in the solution as well

as some Gaussian decay at the edge of the kernel support region. Figure 2.5(a) illustrates

the typical output when using an out of focus blur. We wish to first eliminate the Gaussian

characteristics of the kernel by enforcing the sharp edges in the kernel k. In order to enforce

the piecewise nature of the blur kernel, we first apply the shock filter via equation (2.9) using

the kernel k for the input function. The result is shown in Figure 2.5(b). If we do not have

a Gaussian kernel, we may omit this step.

However, in Figure 2.5(b) we see that there is some noise at the base of the kernel where

the blur kernel k should be zero. In order to eliminate this effect from the shock filter, we

can adaptively denoise the output from the shock filter for k. In order to do this without

adding an extra parameters to the algorithm, we use the adaptive TV denoising method of

Strong and Chan in [73]. In order to estimate the scale of the kernel, we threshold the kernel

for the size calculations only, and use the cutoff value to be

cutoff =
min(k) +max(k)

2

and use this to estimate D, which is the size of the support of the kernel. Then to estimate

the boundary of D, ∂D, we find the locations of large gradient changes and add up the

length. Then, the scale of the kernel is given by

scale =
|D|
|∂D|

Using this information, we can apply the adaptive scale method for denoising, which involves

21

Figure 2.5: Comparison of unrefined and refined kernels. (a) is the output from (2.7). Note
the smoothness and noise at the base. (b) is the output after applying the shock filter. (b)
is the output after adaptive denoising. Note that this is similar to the true kernel.

running TV denoising via equation (1.6) using a small λ. Then, we can form the shifts in

the output kernel by writing

δij = kij − TV (k)ij

where TV is the output from the TV based denoising routine in section 1.1.1. Next, we

compute λ via

λ = δij
|D|
|∂D|

.

Lastly, we run the denoising algorithm with a pixel based λ on k. We note here that one can

also use the D to be Ω − supp(k), and get similar results. The final output for the kernel

after denoising is shown in Figure 2.5(c). We see the kernel takes on the shape of the out of

focus blur as we wanted and the noise has been removed from the kernel that existed outside

the support of k.

This adaption of the Semi-Blind Method is call Semi-Blind with Kernel Refinements and

is detailed in Algorithm 2.3.

In Figure 2.6, we present a comparison between reconstructed images using Semi-Blind

method with or without kernel refinements. Image (c) is the result without kernel refinement,

22

Algorithm 2.3 Semi-Blind Method with Kernel Refinements

Require: u0, the input image

Compute reference image ur via

{
ut = −|∇u|sign(L(u))

u(x, y, 0) = u0

.

Solve ur(−x,−y) ? (ur(x, y) ? k
(1) − u0)− λ1∇ ·

(
∇k(1)

|∇k(1)|

)
= 0 for k.

Apply the shock filter on k(1) to get k(2).
Compute |D| and |∂D|.
Denoise k(2) with small λ to get k(3).
Compute δij = k(2) − k(3).

Set λij = δij ∗ |D|
|∂D| .

Denoise with λij to get k(4).

Solve k(4)(−x,−y) ? (k(4)(x, y) ? u− u0)− λ2∇ ·
(

∇u
|∇u|

)
= 0 for u.

Output image u.

and image (d) shows the reconstruction with kernel refinement. These results are compared

to Chan and Wong’s TV blind deconvolution using AM method, which is shown in image

(b). It shows a compatible results between [23] and Semi-Blind method without refinement

on k in image (c), while there is an improvement in Semi-Blind method, since more of the

antenna is visible in image (c). Since the two functionals (2.4) and (2.5) are separated, image

(c) can be further refined to image (d). Image (d) shows dramatic improvement in the result,

and it is very close to true image.

2.3.2 Examples

For all of the following experiments, we used out of focus blurs for the kernel unless otherwise

noted. All the images are grey scale, and sized 127 x 127. The computations were performed

on a 2.0 Ghz Pentium 4 machine using Matlab.

Our first example is presented in Figure 2.7. It shows the deblurring result with a black

background and exhibits good results with the kernel improvements when using the L2 norm

for both u and k.

Figure 2.8 shows an experiment with non-black background. Since the background is

not black, when computing the kernel, errors in the approximation compounds instead of

disappearing. This is shown in Figure 2.8(c) where many wrinkles are presented in the result

from using [23]. Image (d) shows Semi-Blind results with refinements, and it suffers much

less from this effect. The recovered image (d) is close to the true image, and even recovers

the reflection on the cup. The light shadows of the cup in the true image are emphasized in

23

(a) (b)

(c) (d)

Figure 2.6: Comparison between AM method [23], Semi-Blind methods with or without
kernel refinement. (a) The given blurry original image u0. (b) Chan and Wong’s AM
method [23] (c) Semi-Blind result without kernel refinements. (d) Semi-Blind result with
kernel refinements. Image (d) shows dramatic improvement in the reconstructed image u.

the result (d), and there is a contrast shift. Nevertheless, it recovers the sharp edges with

details from given original image (b).

This Semi-Blind model can be applied to blurry image with noise. Figure 2.9 shows an

example when the noise is added after blurring the image. In the result image (d), some

details are lost due to denoising effect of choosing large λ2 in (2.5). However, recovers

reasonable image from image (b).

Since we added one step of computing the reference image ur, we compare the compu-

tational time of the Semi-Blind method with AM method in [23]. In Tables 2.1 and 2.2, it

shows the savings in computational time by only performing one iterations of kernel and im-

age functional separately. The computational cost of the shock filter is negligible compared

to TV functional iterations, and kernel refinements take only a fraction of the computational

time. The overall cost of computing the Semi-Blind method with the kernel refinements is

roughly less than one-third that of AM method [23] with three loop iterations.

24

(a) (b)

(c) (d)

Figure 2.7: Non-black background image with L2 fitting term. (a) The true image. (b)
The given blurry original image. (c) Reference Image u4 (d) Semi-Blind result (with kernel
refinement). Image (d) recovers the sharp edges with details.

The next example shows the use of a non-centrosymmetric kernel in Figure 2.10. We can

see with the addition of the non-symmetric kernel, the result is not as impressive as with the

symmetric example, but there result is superior to existing blind methods. However, edges

and fine details are still recovered in the image.

For our final example, let us consider a natural image. Figure 2.11 illustrates the use of

the Semi-Blind Method on the natural image with an out of focus blur. We see that even

in a more natural setting, the method computes an accurate result. We note here that even

the shadow and fine details are recovered in the computed image.

Copyright c© James H. Money 2006

25

(a) (b)

(c) (d)

Figure 2.8: Non-black background image with L2 fitting term. (a) The true image. (b) The
given blurry original image. (c) Chan and Wong [23] result. (d) Semi-Blind result (with
kernel refinement). Image (d) recovers the sharp edges with details such as the reflections
on the cup.

Blind Deconvolution Step Time(secs)
Loop 1 Find kernel 299.71

Find image 306.72
Loop 2 Find kernel 301.88

Find image 303.63
Loop 3 Find kernel 312.71

Find image 306.14
Total: 1830.79

Table 2.1: Computational time for Chan and Wong [23] method.

26

(a) (b)

(d) (d)

Figure 2.9: (a) The true image. (b) The given blurry and noisy image u0. (c) Shock filtered
image ur. (d) Semi-Blind result shows reconstruction u.

Semi-Blind Method Time(secs.)
Initial Shock filter 0.9
Find kernel 300.19

shock kernel 2.19
adaptively denoise kernel 10.57

Find image 181.76
Total: 495.61

Table 2.2: Computational time for Semi-Blind method with refinements.

27

(a) (b)

(c) (d)

Figure 2.10: Figure (a) is the non-centrosymmetric kernel. Image (b) is the corresponding
blurry image. Image (c) is the reference image. Image (d) is the computed image. Note that
the output image is accurate despite the nonsymmetry in the kernel.

28

(a) (b)

(c) (d)

Figure 2.11: Figure (a) is the true image. Image (b) is the corresponding blurry image.
Image (c) is the reference image. Image (d) is the computed image.

29

3 Lp Norm Fidelity in Semi-Blind Total Variation Deconvolution

3.1 Lp Fidelity Term Functionals

In this chapter, we extend the functional (2.1) from using the L2 norm for the fidelity term

to the Lp norm for p ≥ 1. We consider the minimizing functional,

min
k,u

1

p
‖k ? u− u0‖p

Lp(Ω) + λ1‖k‖TV (Ω) + λ2‖u‖TV (Ω). (3.1)

When applying the Euler-Lagrange equations to (3.1), this is equivalent, as in the L2 case,

to considering the functionals

min
k

1

p

∫
Ω

|k ? u− u0|p dx dy + λ1

∫
Ω

|∇k| dx dy (3.2)

and

min
u

1

p

∫
Ω

|k ? u− u0|p dx dy + λ2

∫
Ω

|∇u| dx dy. (3.3)

As before in functional (2.6) we consider computing a reference image ur instead of u in (3.2)

and obtain

min
k

1

p

∫
Ω

|k ? ur − u0|p dx dy + λ1

∫
Ω

|∇k| dx dy. (3.4)

Now, applying the Euler-Lagrange equations to (3.4) and (3.3) we obtain

ur(−x,−y) ?
(
|ur(x, y) ? k − u0|p−1 ur(x, y) ? k − u0

|ur(x, y) ? k − u0|

)
− λ1∇ ·

(
∇k
|∇k|

)
= 0

and

k(−x,−y) ?
(
|k(x, y) ? u− u0|p−1 k(x, y) ? u− u0

|k(x, y) ? u− u0|

)
− λ2∇ ·

(
∇u
|∇u|

)
= 0.

In particular, we wish to consider p = 1 in this chapter, which is equivalent to solving the

equations

ur(−x,−y) ?
(
ur(x, y) ? k − u0

|ur(x, y) ? k − u0|

)
− λ1∇ ·

(
∇k
|∇k|

)
= 0 (3.5)

and

k(−x,−y) ?
(
k(x, y) ? u− u0

|k(x, y) ? u− u0|

)
− λ2∇ ·

(
∇u
|∇u|

)
= 0. (3.6)

30

(a) (b) (c)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

u
0

u
1

Figure 3.1: (a) The input kernel k (solid) and the output kernel k̃ (dotted) after applying
equation (2.4) with a sufficiently large λ1. (b) The true image u. (c) The given blurred image
u0 = k ? u (solid) and the reconstructed image u1 = k̃ ? u (dotted) with k̃. We compute the
error between u0 and u1

3.2 Adaptive Scale Selection for L2

In this section, we consider computing the optimal value for λ1 for the kernel functional

(2.4) given information on the scale of the kernel and object in the image. Strong and Chan

completed a similar analysis for the denoising case in [73, 72].

We consider the one dimension case where a symmetric kernel k centered at the origin

has radius r over the interval (0, 1) with norm one. We also assume there is one object in

the image u which has radius x̃ ∈ (0, 1). We can define u and normalized k by

u(x) =

1 −x̃ ≤ x ≤ x̃

0 x < −x̃ or x > x̃
and k(x) =

0 x > r or x < −r
1
2r

−r ≤ x ≤ r

We assume natural boundary conditions, i.e. the boundary value γ is extended as far as

needed for the convolution operator. Between the kernel radius r and the image radius x̃,

we assume that x̃ ≥ r and x̃ − 1 ≤ −x̃ − r. If these conditions are not satisfied, we extend

the size of the image and rescale to [−1, 1]. Figure 3.1 illustrates the details of u, k, and

u0 = k ? u.

Assuming there is no noise, the given blurry image u0 is defined as u0(x) = k ∗ u(x) =∫ 1

−1
k(y)u(x− y) dy. By minimizing the TV functional (2.4) for the kernel, the height of the

kernel reduces while raising the base of the kernel to preserve the normality of the kernel

(see [73, 72] for details on denoising case). In Figure 3.1 (a), we denote the shifts in the

height of the kernel function as δ1, δ2, and δ3, from left to right. We define the kernel k̃ to

31

be the result of applying (2.4) as

k̃(x) =

δ1, x < −r
1
2r
− δ2, −r ≤ x ≤ r

δ3, x > r

. (3.7)

We assume that these δis are chosen to normalize k̃. We denote the original image u0 = k ?u

and define u1 = k̃ ? u and need to compute the L2 error in approximating k by k̃.

In order to derive results similar to [73], we first need to verify the graph in Figure 3.1 does

indeed represent piecewise linear equations and compute each lines’ equation in preparation

for computing the L2 error estimate.

If we examine Figure 3.1(c) we see that the convolved function has constant slope and in

fact this slope depends on the constant pieces of the kernel. We can see this by considering

the derivative of the convolution operation of a general kernel K in the following lemma.

Lemma 3.2.1 For any kernel K we have that

d

dx
(K ? u)(x) =

K(x+ x̃) x < x̃− 1

K(x+ x̃)−K(x− x̃) x̃− 1 ≤ x ≤ 1− x̃

−K(x− x̃) x > 1− x̃

Proof. We start by writing

d
dx

(K ? u(x)) = d
dx

(∫ 1

−1
K(y)u(x− y) dy

)
=
∫ 1

−1
K(y) d

dx
(u(x− y)) dy

We note that we will in general have two jumps in u, at −x̃ and x̃. But, if x < −1 + x̃, we

only see the left jump, since the radius of the kernel region is 1. Similarly, we only see the

32

right jump if x > 1− x̃. This results in the derivative:

=
∫ 1

−1
K(y)

δ(x− y + x̃) x < x̃− 1

δ(x− y + x̃)− δ(x− y − x̃) x̃− 1 ≤ x ≤ 1− x̃

−δ(x− y − x̃) x > 1− x̃

 dy

=

K(x+ x̃) x < x̃− 1

K(x+ x̃)−K(x− x̃) x̃− 1 ≤ x ≤ 1− x̃

−K(x− x̃) x > 1− x̃

From this lemma, we can easily generalize to K = k or K = k̃ and simplify the convolutions

into the form we need for piecewise constant slopes in the following corollary.

Corollary 3.2.1 We have that

d

dx
u0(x) =

0 x < −x̃− r

1
2r

−x̃− r ≤ x ≤ −x̃+ r

0 −x̃+ r < x < x̃− r

− 1
2r

x̃− r ≤ x ≤ x̃+ r

0 x > x̃+ r

and

d

dx
u1(x) =

δ1 x < −1 + x̃

0 −1 + x̃ ≤ x ≤ −x̃− r

1
2r
− δ1 − δ2 −x̃− r ≤ x ≤ −x̃+ r

δ3 − δ1 −x̃+ r < x < x̃− r

− 1
2r

+ δ2 + δ3 x̃− r ≤ x ≤ x̃+ r

0 x̃+ r < x < 1− x̃

−δ3 x ≥ 1− x̃

33

Proof. We see that from the above lemma we get that

d
dx
u0(x) =

k(x+ x̃) x < x̃− 1

k(x+ x̃)− k(x− x̃) x̃− 1 ≤ x ≤ 1− x̃

−k(x− x̃) x > 1− x̃

Now, we need to consider the boundary cases first. On the left hand side, we consider

k(x+ x̃) =

0 x < −x̃− r

1
2r

−x̃− r ≤ x ≤ −x̃+ r

0 x >= −x̃+ r

Noting that x̃− 1 ≤ −x̃− r, we see that this is always 0. For the right end term we have

k(x− x̃) =

0 x < x̃− r

1
2r

x̃− r ≤ x ≤ x̃+ r

0 x >= x̃+ r

Again we note that x̃ − 1 ≤ −x̃ − r or 1 − x̃ ≥ x̃ + r, so this term is always zero as well.

Hence we have

d
dx
u0(x) =

0 x+ x̃ < −r
1
2r

−r ≤ x+ x̃ ≤ r

0 x+ x̃ > r

−

0 x− x̃ < −r
1
2r

−r ≤ x− x̃ ≤ r

0 x− x̃ > r

=

0 x < −x̃− r

1
2r

−x̃− r ≤ x ≤ −x̃+ r

0 −x̃+ r < x < x̃− r

− 1
2r

x̃− r ≤ x ≤ x̃+ r

0 x > x̃+ r

34

Similarly we have

d
dx
u1(x) =

k̃(x+ x̃) x < x̃− 1

k̃(x+ x̃)− k̃(x− x̃) x̃− 1 ≤ x ≤ 1− x̃

−k̃(x− x̃) x > 1− x̃

For the left hand and right hand sides we get that

k̃(x+ x̃) = δ1 (3.8)

k̃(x− x̃) = −δ3 (3.9)

since x̃− 1 ≤ −x̃− r again. Now we must compute

k̃(x+ x̃)− k̃(x− x̃) =

δ1 x+ x̃ < −r
1
2r
− δ2 −r ≤ x+ x̃ ≤ r

δ3 x+ x̃ > r

−

δ1 x− x̃ < −r
1
2r
− −r ≤ x− x̃ ≤ r

δ3 x− x̃ > r

=

δ1 x < −x̃− r

1
2r
− δ2 −x̃− r ≤ x̃ ≤ −x̃+ r

δ3 x > −x̃+ r

−

δ1 x < x̃− r

1
2r
− δ2 x̃− r ≤ x ≤ x̃+ r

δ3 x > x̃+ r

=

0 x < −x̃− r

1
2r
− δ2 − δ1 −x̃− r ≤ x ≤ −x̃+ r

δ3 − δ1 −x̃+ r < x < x̃− r

δ3 + δ2 − 1
2r

x̃− r ≤ x ≤ x̃+ r

0 x > x̃+ r

Combining with (3.8) and (3.9) we get the desired result.

We would now like to estimate ‖k̃ ? u − u0‖2
L2((−1,1)), the L2 error term in the function

(2.4).In order to do this, we need to determine the equations for each of the parts of k̃?u = u1

and u0.

35

Lemma 3.2.2 We have that

u1(x) =

δ1(x+ x̃+ 1) x < −1 + x̃

2δ1x̃ −1 + x̃ ≤ x ≤ −x̃− r(
1
2r
− δ1 − δ2

)
(x+ x̃+ r) + 2δ1x̃ −x̃− r < x < −x̃+ r

2δ2x̃+ 1− 2δ1r − 2δ2r + (δ3 − δ1)(x+ x̃− r) −x̃+ r ≤ x ≤ x̃− r

1− 2δ2r + 2δ3x̃− 2δ3r +
(
δ2 + δ3− 1

2∗r

)
(x− x̃+ r) x̃− r < x < x̃+ r

2δ3x̃ x̃+ r ≤ x ≤ 1− x̃

−δ3(x− 1 + x̃) + 2δ3x̃ x > 1− x̃

and

u0(x) =

0 x ≤ −x̃− r

1
2r

(x+ x̃+ r) −x̃− r < x < −x̃+ r

1 −x̃+ r ≤ x ≤ x̃− r

− 1
2r

(x− x̃− r) x̃− r < x < x̃+ r

0 x ≥ x̃+ r

Proof. We have the slopes from above, we just need to compute the points where the slope

changes and simplify the results. Also, we denote the first equation y1(x), the second y2(x),

and so on. First, we need u1(−1) to start the computations,

u1(−1) =
∫ 1

−1
k̃(y)u(−1− y) dy

=
∫ 1

−1

δ1 y < −r
1
2r
− δ2 −r ≤ y ≤ r

δ3 y > r

u(1 + y) dy

36

utilizing that u is an even function. Expanding out u we have

=
∫ 1

−1

δ1 y < −r
1
2r
− δ2 −r ≤ y ≤ r

δ3 y > r

0 y < −1− x̃

1 −1− x̃ ≤ y ≤ −1 + x̃

0 y > −1 + x̃

 dy

=
∫ −1+x̃

−1

δ1 y < −r
1
2r
− δ2 −r ≤ y ≤ r

δ3 y > r

 dy

= δ1(−1 + x̃+ 1) = δ1x̃

since we have −1 + x̃ ≤ −x̃− r < −r. Now, we have from above

y1(x) = u1(−1) + δ1(x− (−x̃− 1)

= δ1x̃+ x̃(x+ 1)

= δ1(x+ x̃+ 1)

We need a point for y2(x), hence, we plug in y1(−1 + x̃):

y1(−1 + x̃) = δ1(−1 + x̃+ x̃+ 1)

= 2δ1x̃

Thus we have
y2(x) = y1(−1 + x̃) + 0 · (x− (−1 + x̃))

= 2δ1x̃

Since this constant, we already have the next starting point and get

y3(x) = y2(−x̃− r) +
(

1
2r
− δ1 − δ2

)
(x− (−x̃− r))

= 2δ1x̃+
(

1
2r
− δ1 − δ2

)
(x+ x̃+ r))

Next, we compute

y3(−x̃+ r) = 2δ1x̃+
(

1
2r
− δ1 − δ2

)
(−x̃+ r + x̃+ r))

= 2δ1x̃+ 2r
(

1
2r
− δ1 − δ2

)
= 2δ1x̃+ 1− 2δ1r − 2δ2r

37

So now we get

y4(x) = y3(−x̃+ r) + (δ3 − δ1) (x− (−x̃+ r))

= 2δ1x̃+ 1− 2δ1r − 2δ2r + (δ3 − δ1) (x+ x̃− r)

Now we compute for our next point,

y4(x̃− r) = 2δ1x̃+ 1− 2δ1r − 2δ2r + (δ3 − δ1) (x̃− r + x̃− r)

= 2δ1x̃+ 1− 2δ1r − 2δ2r + 2 (δ3 − δ1) (x̃− r)

= 1− 2δ2r + 2δ3x̃− 2δ3r

Hence we have

y5(x) = y4(x̃− r) +
(
δ2 + δ3 − 1

2r

)
(x− (x̃− r))

= 1− 2δ2r + 2δ3x̃− 2δ3r +
(
δ2 + δ3 − 1

2r

)
(x− x̃+ r)

Next we compute

y5(x̃+ r) = 1− 2δ2r + 2δ3x̃− 2δ3r +
(
δ2 + δ3 − 1

2r

)
(x̃+ r − x̃+ r)

= 1− 2δ2r + 2δ3x̃− 2δ3r + 2
(
δ2 + δ3 − 1

2r

)
r

= 2δ3x̃

Which gives us

y6(x) = y5(x̃+ r) + 0 · (x− (x̃+ r)

= 2δ3x̃

And finally we compute

y6(1− x̃) = 2δ3x̃

to get

y7(x) = y6(1− x̃) +−δ3(x− (1− x̃))

= 2δ3x̃− δ3(x+ x̃− 1)

Putting these into piecewise notation appropriately completes the proof. A similar analysis

results in u0.

Now we can compute the term k̃ ? u− u0 for use in our final calculation for the L2 error

term.

38

Lemma 3.2.3 We have that

k̃ ? u− u0 =

δ1(x+ x̃+ 1) x < −1 + x̃

2δ1x̃ −1 + x̃ ≤ x ≤ −x̃− r

−δ2(x+ x̃+ r)− δ1(x+ r) + δ1x̃ −x̃− r < x < −x̃+ r

2δ1x̃− 2δ1r − 2δ2r + (δ3 − δ1)(x+ x̃− r) −x̃+ r ≤ x ≤ x̃− r

(δ2 + δ3)(x− r) + (δ3 − δ2)x̃ x̃− r < x < x̃+ r

2δ3x̃ x̃+ r ≤ x ≤ 1− x̃

−δ3(x− 1− x̃) x > 1− x̃

Proof. We note that

k̃ ? u− u0 = u1(x)− u0(x)

=

δ1(x+ x̃+ 1) x < −1 + x̃

2δ1x̃ −1 + x̃ ≤ x ≤ −x̃− r(
1
2r
− δ1 − δ2

)
(x+ x̃+ r) + 2δ1x̃ −x̃− r < x < −x̃+ r

2δ2x̃+ 1− 2δ1r − 2δ2r −x̃+ r ≤ x ≤ x̃− r

+(δ3 − δ1)(x+ x̃− r)

1− 2δ2r + 2δ3x̃− 2δ3r x̃− r < x < x̃+ r

+
(
δ2 + δ3− 1

2∗r

)
(x− x̃+ r)

2δ3x̃ x̃+ r ≤ x ≤ 1− x̃

−δ3(x− 1 + x̃) + 2δ3x̃ x > 1− x̃

−

0 x ≤ −x̃− r

1
2r

(x+ x̃+ r) −x̃− r < x < −x̃+ r

1 −x̃+ r ≤ x ≤ x̃− r

− 1
2r

(x− x̃− r) x̃− r < x < x̃+ r

0 x ≥ x̃+ r

39

=

δ1(x+ x̃+ 1) x < −1 + x̃

2δ1x̃ −1 + x̃ ≤ x ≤ −x̃− r

− (δ1 + δ2) (x+ x̃+ r) + 2δ1x̃ −x̃− r < x < −x̃+ r

2δ1x̃− 2δ1r − 2δ2r + (δ3 − δ1)(x+ x̃− r) −x̃+ r ≤ x ≤ x̃− r

1− 2δ2r + 2δ3x̃− 2δ3r x̃− r < x < x̃+ r

+
(
δ2 + δ3− 1

2∗r

)
(x− x̃+ r) + 1

2r
(x− x̃− r)

2δ3x̃ x̃+ r ≤ x ≤ 1− x̃

−δ3(x− 1 + x̃) + 2δ3x̃ x > 1− x̃

=

δ1(x+ x̃+ 1) x < −1 + x̃

2δ1x̃ −1 + x̃ ≤ x ≤ −x̃− r

−δ2(x+ x̃+ r)− δ1(x+ r) + δ1x̃ −x̃− r < x < −x̃+ r

2δ1x̃− 2δ1r − 2δ2r + (δ3 − δ1)(x+ x̃− r) −x̃+ r ≤ x ≤ x̃− r

(δ2 + δ3)(x− r) + (δ3 − δ2)x̃ x̃− r < x < x̃+ r (∗)

2δ3x̃ x̃+ r ≤ x ≤ 1− x̃

−δ3(x− 1− x̃) x > 1− x̃

To see the fifth component in (*), we compute

1− 2δ2r + 2δ3 x̃− 2δ3r +
(
δ2 + δ3− 1

2∗r

)
(x− x̃+ r) + 1

2r
(x− x̃− r)

= −2δ + 2r + 2δ3x̃− 2δ3r + (δ2 + δ3)(x− x̃+ r)

= (δ2 + δ3)x+ δ3x̃− δ2x̃− δ3r − δ2r

= (δ2 + δ3)x+ (δ3 − δ2)x̃− (δ2 + δ3)r

= (δ2 + δ3)(x− r) + (δ3 − δ2)x̃

We are finally at a point we can compute the exact answer for the fitting term, which is

given below.

40

Theorem 3.2.1 We have that

1
2
‖k̃ ? u− u0‖2

L2(−1,1) = 7
6
(δ2

1 + δ2
3) x̃

3 + 2(δ2
1 + δ2

3)x̃
2(1− 2x̃− r)

+4r
3

[(δ2 + δ3)
2r2 + 3δ2

3x̃
2 − 3δ3(δ2 + δ3)x̃r]

+4r
3

[3δ2
1x̃

2 − 3δ2
1x̃r + δ2

1r
2 + δ2

2r
2 − 3δ1δ2x̃r + 2δ1δ2r

2]

+2(x̃−r)
3

[2(δ2
1 + δ2

3)(x̃− r)2 + 6δ2
2r

2 − 6δ2(δ1 + δ3)r(x̃− r)

−δ1δ3(x̃− r)2 − 6δ1δ3x̃r + 3δ1δ3(x̃
2 + r2)]

Proof. Let’s separate the integrals into their respective regions:

1
2

∫ 1

−1
(k̃ ? u− u0)

2 dx = 1
2

∫ −x̃−r

−1+x̃
(k̃ ? u− u0)

2 dx+ 1
2

∫ −x̃+r

−x̃−r
(k̃ ? u− u0)

2 dx

+1
2

∫ x̃−r

−x̃+r
(k̃ ? u− u0)

2 dx+ 1
2

∫ x̃+r

x̃−r
(k̃ ? u− u0)

2 dx

+1
2

∫ 1−x̃

x̃+r
(k̃ ? u− u0)

2 dx+ 1
2

∫ 1

1−x̃
(k̃ ? u− u0)

2 dx

= A+B + C +D + E + F +G

Then, we can evaluate each part and simplify the result. Starting with A we have

A = 1
2

∫ −1+x̃

−1
(k̃ ? u− u0)

2 dx

= 1
2

∫ −1+x̃

−1
(δ1(x+ x̃+ 1))2 dx

=
δ2
1

2

∫ −1+x̃

−1
(x+ x̃+ 1)2 dx

=
δ2
1

6
(x+ x̃+ 1)2

∣∣∣−1+x̃

x=−1

=
δ2
1

6
[8x̃2 − x̃2]

=
7δ2

1 x̃3

6

For B we get

B = 1
2

∫ −x̃−r

−1+x̃
(k̃ ? u− u0)

2 dx

= 1
2

∫ −x̃−r

−1+x̃
[2δ2x̃]

2 dx

= 2δ2
1x̃

2 x|−x̃−r
x̃−1

= 2δ2
1x̃

2 (x̃− 1 + x̃+ r)

= −4δ2
1x̃

3 − 2rδ2
1x̃

2 + 2δ2
1x̃

2

41

For C we have

C = 1
2

∫ −x̃+r

−x̃−r
[−δ2(x+ x̃+ r)− δ1(x− x̃+ r)] dx

=
∫ −x̃+r

−x̃−r

δ2
2

2
(x+ x̃+ r)2 +

δ2
1

2
(x− x̃+ r)2 + δ1δ2(x+ x̃+ r)(x− x̃+ r) dx

=
∫ −x̃+r

−x̃−r

δ2
2

2
(x+ x̃+ r)2 +

δ2
1

2
(x− x̃+ r)2 + δ1δ2 [x2 + 2rx+ (−x̃2 + r2)] dx

=
δ2
2

6
(x+ x̃+ r)3|−x̃+r

−x̃−r +
δ2
1

6
(x− x̃+ r)3|−x̃+r

−x̃−r + δ1δ2

(
x3

3
+ rx2 + (−x̃2 + r2)x

)
|−x̃+r
−x̃−r

=
4δ2

2r3

3
+

4δ2
1

3
[3x̃3r − 3x̃r2 + r3]

+δ1δ2
[

1
3
((−x̃+ r)3 − (−x̃− r)3)

+r ((−x̃+ r)2 − (−x̃− r)2) + (−x̃2 + r2) (−x̃+ r + x̃+ r)]

= 4
3
δ2
2r

3 + 4
3
δ2
1 [3x̃2r − 3x̃r2 + r3] + δ1δ2

[
2x̃2r + 2

3
r3 − 4x̃r2 − 2x̃2r + 2r3

]
= 4

3
δ2
2r

3 + 4
3
δ2
1 [3x̃2r − 3x̃r2 + r3] + δ1δ2

[
−4x̃r2 + 8

3
r3
]

= 4r
3

[3δ2
1x̃

2 − 3δ2
1x̃r + δ2

1r
2 + δ2

2r
2 − 3δ1δ2x̃r + 2δ1δ2r

2]

For D, let’s first simplify the integrand. Let’s denote the integrand by 1
2
D′2. Then we

have
D′ = 2δ1x̃− 2δ1r − 2δ2r + (δ3 − δ1)(x+ x̃− r)

= 2δ1x̃− 2δ1r − 2δ2r + δ3(x+ x̃− r)− δ1x− δ1x̃− δ1r

= δ1x̃− δ1r − 2δ2r + δ3(x+ x̃− r)− δ1x

= δ1(x− x̃+ r)− 2δ2r + δ3(x+ x̃− r)

Thus we have that

D′2 = δ2
1(x− x̃+ r)2 + [−2δ2r + δ3(x+ x̃− r)]2 − 2δ1(x− x̃+ r) [−2δ2r + δ3(x+ x̃− r)]

= δ2
1(x− x̃+ r)2 + 4δ2

2r
2 + δ2

3(x+ x̃− r)2 − 4δ2δ3r(x+ x̃− r)

−2δ1(x− x̃+ r) [−2δ2r + δ3(x+ x̃− r)]

= δ2
1(x− x̃+ r)2 + 4δ2

2r
2 + δ2

3(x+ x̃− r)2 − 4δ2δ3r(x+ x̃− r) + 4δ1δ2r(x− x̃+ r)

−2δ1δ3(x− x̃+ r)(x+ x̃− r)

Hence we have that

1
2
D′2 =

δ2
1

2
(x− x̃+ r)2 + 2δ2

2r
2 +

δ2
3

2
(x+ x̃− r)2 − 2δ2δ3r(x+ x̃− r) + 2δ1δ2r(x− x̃+ r)

−δ1δ3(x− x̃+ r)(x+ x̃− r)

=
δ2
1

2
(x− x̃+ r)2 + 2δ2

2r
2 +

δ2
3

2
(x+ x̃− r)2 − 2δ2δ3r(x+ x̃− r) + 2δ1δ2r(x− x̃+ r)

−δ1δ3(x2 + 2rx̃− (x̃2 + r2))

42

Thus, we have for the integral D,

D =
∫ x̃−r

−x̃+r

[
δ2
1

2
(x− x̃+ r)2 + 2δ2

2r
2 +

δ2
3

2
(x+ x̃− r)2 − 2δ2δ3r(x+ x̃− r)

+2δ1δ2r(x− x̃+ r)− δ1δ3(x
2 + 2rx̃− (x̃2 + r2))] dx

=
{

δ2
1

6
(x− x̃+ r)3 + 2δ2

2r
2x+

δ2
3

6
(x+ x̃− r)3 − δ2δ3r(x+ x̃− r)2 + δ1δ2r(x− x̃+ r)2

−δ1δ3
[

x3

3
+ 2rx̃x− (x̃2 + r2)x

]}x̃−r

x=−x̃+r

=
−4δ2

1

3
(r − x̃)3 + 3δ2

2r
2(x̃− r) +

4δ2
3

3
(x̃− r)2 − 4δ2δ3r(x̃− r)2 − 4δ1δ2r(r − x̃)2

−δ1δ3
{

(x̃−r)3−(r−x̃)2

3
+ 4x̃r(x̃− r)− 2(x̃2 + r2)(x̃− r)

}
= 4

3
(δ2

1 + δ2
3) (x̃− r)3 + 4δ2

2r
2(x̃− r)− 4δ2r(δ1 + δ3)(x̃− r)2 − δ1δ3

{
2(x̃−r)3

3

+4x̃r(x̃− r)− 2(x̃− r)2(x̃+ r)}
= 4

3
(δ2

1 + δ2
3) (x̃− r)3 + 4δ2

2r
2(x̃− r)− 4δ2r(δ1 + δ3)(x̃− r)2 − 2

3
δ1δ3(x̃− r)3

−4δ1δ3x̃r(x̃− r)− 2δ1δ3(x̃− r)2(x̃+ r)

= 2(x̃−r)
3

[2(δ2
1 + δ2

3)(x̃− r)2 + 6δ2
2r

2 − 6δ2(δ1 + δ3)r(x̃− r)

−δ1δ3(x̃− r)2 − 6δ1δ3x̃r + 3δ1δ3(x̃
2 + r2)]

For E we have that

E =
∫ x̃+r

x̃−r
1
2
[(δ1 + δ3) (x− x̃− r) + 2δ3x̃]

2 dx

=
∫ x̃+r

x̃−r

[
(δ2+δ3)2

2
(x− x̃− r)2 + 2δ2

3x̃
2 + 2δ3x̃(δ2 + δ3)(x− x̃− r)

]
dx

=
{

(δ2+δ3)2

6
(x− x̃− r)3 + 2δ2

3x̃
2x+ δ3x̃(δ2 + δ3)(x− x̃− r)2

}x̃+r

x=x̃−r

= 4(δ2+δ3)2

3
r3 + 4δ2

3x̃
2r − 4δ3x̃(δ2 + δ3)r

2

= 4r
3

[(δ2 + δ3)
2r2 + 3δ2

3x̃
2 − 3δ3(δ2 + δ3)x̃r]

Then for F we have
F = 1

2

∫ 1−x̃

x̃+r
[2δ3x̃]

2 dx

= 2δ2
3x̃

2 {x}1−x̃
x=x̃+r

= 2δ2
3x̃

2(1− 2x̃− r)

And finally, for the last part of the integral we have

G = 1
2

∫ 1

1−x̃
[−δ3(x− 1− x̃)]2 dx

=
δ2
3

6
{(x− 1− x̃)3}1

x=1−x̃

= 7
6
δ2
3x̃

3

To complete the proof, combine A−G and reduce.

43

We need the derivatives with respect to the δis for computing the minimum in the func-

tional (2.4). The following corollary summarizes this result.

Corollary 3.2.2 Define

f(δ1, δ2, δ3) = 7
6
(δ2

1 + δ2
3) x̃

3 + 2(δ2
1 + δ2

3)x̃
2(1− 2x̃− r)

+4r
3

[(δ2 + δ3)
2r2 + 3δ2

3x̃
2 − 3δ3(δ2 + δ3)x̃r]

+4r
3

[3δ2
1x̃

2 − 3δ2
1x̃r + δ2

1r
2 + δ2

2r
2 − 3δ1δ2x̃r + 2δ1δ2r

2]

+2(x̃−r)
3

[2(δ2
1 + δ2

3)(x̃− r)2 + 6δ2
2r

2

−6δ2(δ1 + δ3)r(x̃− r)− δ1δ3(x̃− r)2 − 6δ1δ3x̃r + 3δ1δ3(x̃
2 + r2)]

Then we have that

df
dδ1

= δ1 [−3x̃3 − 4x̃2r + 4x̃2] + δ2
[
−4x̃2r + 4x̃r2 − 4

3
r3
]
+ δ3

[
4
3
x̃3 − 4x̃2r + 4x̃r2 − 4

3
r3
]

df
dδ2

= δ1
[
−4x̃2r + 4x̃r2 − 4

3
r3
]
+ δ2

[
−8

3
r3 + 8x̃r2

]
+ δ3

[
−4x̃2r + 4x̃r2 − 4

3
r3
]

df
dδ3

= δ1
[

4
3
x̃3 − 4x̃2r + 4x̃r2 − 4

3
r3
]
+ δ2

[
−4x̃2r + 4x̃r2 − 4

3
r3
]
+ δ3 [−3x̃3 − 4x̃2r + 4x̃2]

At this point, we can state the main result for the case p = 2 in the following theorem.

Theorem 3.2.2 The (one-dimensional) solution k̃ to

min
k
{1

2
‖k ? u− u0‖2

L2(−1,1) + λ1

∫ 1

−1

|∇k| dx}

is given by

δ1 = δ3 =
9λ1

rp(x̃, r)
, δ2 =

3q(x̃, r)λ1

4r2p(x̃, r)
(3.10)

where

p(x, r) = −12r − 51x2 + 36x+ 5xr, q(x, r) = 12r + 5x− 12

and k̃ is given from (3.7). The parameter λ1 is assumed to be chosen sufficiently large enough

so that there is no shift in the kernel boundary regions.

Proof. The solution k̃ is a minimizer. Therefore, we find δis which minimizes this func-

tional by considering the derivative of the functional in terms of each δis. The second term,

λ1

∫
Ω
|∇k̃| dx of the functional, can be represented as

λ1

[(
1

2r
− δ1 − δ2

)
H(x+ r) +

(
1

2r
− δ2 − δ3

)
H(x− r)

]

44

where H is the Heaviside function. The first term f = ‖k ? u − u0‖L2(−1,1)is given from

Theorem 3.2.1. Then, we solve

df

dδ1
(δ1, δ2, δ3)− λ1 = 0

df

dδ2
(δ1, δ2, δ3)− 2λ1 = 0

df

dδ3
(δ1, δ2, δ3)− λ1 = 0

to get the equation for each δi. �

From this equation, notice that there is a dependence on the square of the radius of the

kernel and the radius of the object in the image. This result reinforces the logic of λ1 being

proportional to the size of the kernel support as was deduced in [23]. In addition, since both

image and kernel are symmetrical, the result is also symmetrical.

Note, to utilize this information to compute the kernel adaptively, we first take any k(0)

and apply functional (2.1) with a large value for λ1 and get the output kernel k(1). Then,

we compute

δij = k(0) − k(1).

Then, given x̃, the size of the object in the image, and r, the radius of the kernel support,

we compute

λ1ij
= δij

4r2p(x̃, r)

3q(x̃, r)

using p and q from equation (3.10). The algorithm is summarized below in Algorithm 3.4.

Algorithm 3.4 Adaptive Scale Kernel Reconstruction

Require: u0, the input image
Compute reference image ur via the shock filter (2.9).
Set k(0) = δ(x, y).

Compute k(1) by solving ur(−x,−y) ? (ur(x, y) ? k
(1) − u0) − λ1∇ ·

(
∇k(1)

|∇k(1)|

)
= 0 using a

large value for λ1.
Set δij = k(0) − k(1).

Set λ1ij
= δij

4r2p(x̃,r)
3q(x̃,r)

.

Compute k(2) by solving ur(−x,−y) ? (ur(x, y) ? k
(2) − u0)− λ1∇ ·

(
∇k(2)

|∇k(2)|

)
= 0 by using

λ1ij
.

Output k(2).

The following example illustrates using the adaptive scale selection for λ1 in equation

45

(2.4) for the kernel. Figure 3.2 shows that adaptive scale selection gives the same result

as manually choosing the optimal parameter. We applied the one dimensional analysis and

used the known radius of (the out of focus) blur and used x̃ to be the average radius of the

object (which is the size of the cup in the picture). We see that one dimensional analysis

can be accurately extended to two dimensional images. Note here we do not pursue p = 1

analysis because in general this does not lead to improved results for the calculated image.

(a) (b)

(c) (d)

Figure 3.2: Adaptive scale parameter selection versus manual selection of λ1. In image (a)
and (b), λ1 is manually chosen, while in image (c) and (d), λ1 is chosen adaptively. Notice
that the results for the adaptive λ1 are as accurate as manual selection of λ1.

3.3 Adaptive Scale Recognition for L1

In this section, we derive the equivalent L1 analysis for an adaptive scale method we derived

in section 3.2. We note that all the calculations through Lemma 3.2.3 do not require any

recomputation. First, we derive a new calculation for the fidelity term ‖k̃ ? u − u0‖L1(−1,1)

in the following theorem.

46

Theorem 3.3.1 We have that

‖k̃ ? u− u0‖L1(−1,1) = −1
2
x̃ 1

(δ1+δ2)(δ2+δ3)
(δ2

1x̃δ2 − 4δ2
3δ2 − 4δ3δ

2
2

−4δ2
3δ1 + δ2

3x̃δ2 + 9δ3x̃δ
2
2 + δ2

3x̃δ1−
8δ3

2r − 4δ1δ
2
2 − 4δ2

1δ3 − 4δ2
1δ2 + 9δ1x̃δ

2
2 + δ2

1x̃δ3+

4δ2
1rδ2 + 4δ2

1rδ3 − 4δ1δ
2
2r + 4δ2

3rδ1 + 4δ2
3rδ2 − 4δ2

2rδ3+

18δ1x̃δ2δ3 − 8δ1δ2δ3)

Proof. As in Theorem 3.2.2, we split the integral into seven parts:∫ 1

−1
|k̃ ? u− u0| dx =

∫ −x̃−r

−1+x̃
|k̃ ? u− u0| dx+

∫ −x̃+r

−x̃−r
|k̃ ? u− u0| dx+

∫ x̃−r

−x̃+r
|k̃ ? u− u0| dx

+
∫ x̃+r

x̃−r
|k̃ ? u− u0| dx+

∫ 1−x̃

x̃+r
|k̃ ? u− u0| dx+

∫ 1

1−x̃
(k̃ ? u− u0| dx

= A+B + C +D + E + F +G

With the exceptions of C and E, the integration proceeds as before and by choosing the

correct sign for the absolute value we get

A = 3
2
δ1x̃

2

B = −2δ1x̃(−1 + 2 ∗ x1 + r)

D = −2δ1x̃
2 + 4δ1x̃r − 2δ1r

2 + 4δ2rx̃− 4δ2r
2 − 2δ3x̃

2 + 4δ3x̃r − 2δ3r
2

F = −2δ3x̃(−1 + 2x̃+ r)

G = 3
2
δ3x̃

2

For C, we note that the lines u1 and u0 cross in the interval [x̃− r,−x̃+ r], so we must solve

the equation

2δ1x̃+

(
1

2r
− δ1 − δ2

)
(x+ x̃+ r) =

1

2r
(x− (−x̃− r))

which is

x̂ = −−δ1x̃+ δ1r + δ2x̃+ δ2r

δ1 + δ2

Thus, for C we have

C =
∫ x̂

−x̃+r
k̃ ? u− u0 dx+

∫ −x̃+r

x̂
u0 − k̃ ? u dx

=
2δ2

1 x̃2

δ1+δ2
+ 2(−δ1x̃+δ1r+δ2r)2

δ1+δ2

= 2
δ1+δ2)

(2x̃2 ∗ δ2
1 − 2x̃rδ2

1 − 2x̃rδ1δ2 + r2δ2
1 + 2r2δ1δ2 + r2δ2

2)

47

Similarly, for E, we find the point of intersection in [x̃− r, x̃+ r] by solving

1− 2δ2r + 2δ3x̃− 2δ3r +

(
δ2 + δ3 −

1

2r

)
(x− x̃+ r) = − 1

2r
(x− (x̃− r)) + 1

and get the point

x =
δ2r − δ3x̃+ δ3r + δ2x̃

δ2 + δ3

Hence, for E we get

E =
∫ x

x̃−r
u0 − k̃ ? u dx+

∫ x̃+r

x
k̃ ? u− u0 dx

= 2(−δ3x̃+δ2r+δ3r)2

δ2+δ3
+

2δ2
3 x̃2

δ2+δ3

= 2
δ2+δ3

(2δ2
3x̃

2 − 2δ2rδ3x̃− 2δ2
3x̃r + r2δ2

2 + 2δ2r
2δ3 + δ2

3r
2)

Now by computing A+B + C +D + E + F +G, we get the desired result.

We can define the function f again and computing the derivatives in preparation for our

minimization via the following corollary.

Corollary 3.3.1 Define

f(δ1, δ2, δ3) = −1
2
x̃ 1

(δ1+δ2)(δ2+δ3)
(δ2

1x̃δ2 − 4δ2
3δ2 − 4δ3δ

2
2

−4δ2
3δ1 + δ2

3x̃δ2 + 9δ3x̃δ
2
2 + δ2

3x̃δ1−
8δ3

2r − 4δ1δ
2
2 − 4δ2

1δ3 − 4δ2
1δ2 + 9δ1x̃δ

2
2 + δ2

1x̃δ3+

4δ2
1rδ2 + 4δ2

1rδ3 − 4δ1δ
2
2r + 4δ2

3rδ1 + 4δ2
3rδ2 − 4δ2

2rδ3+

18δ1x̃δ2δ3 − 8δ1δ2δ3)

Then we have that

df

dδ1
= −1

2

(2δ1x̃δ2 + δ2
1x̃+ 9δ2

2x̃− 4δ2
1 − 4δ2

2 − 8δ2δ1 + 4δ2
1r + 4δ2

2r + 8δ1rδ2)x̃

(δ1 + δ2)2

df

dδ2
=

4x̃

(δ1 + δ2)2(δ2 + δ3)2

[
(−δ2

1x̃δ
2
2 + δ4

2r − 2δ1x̃δ2δ
2
3 − 2δ2

1x̃δ2δ3 + 2δ2
1rδ2δ3 + 4δ1δ

2
2rδ3

+2δ2
3rδ1δ2 − 2δ2

1x̃δ
2
3 − δ2

3x̃δ
2
2 + δ2

1rδ
2
2 + 2δ1δ

3
2r + δ22rδ2

3 + 2δ23rδ3 + δ2
1rδ

2
3

]
df

dδ3
= −1

2

(2δ2x̃δ3 + 9δ2
2x̃+ δ2

3x̃− 4δ2
2 − 4δ2

3 − 8δ2δ3 + 4δ2
2r + 4δ2

3r + 8δ2rδ3)x̃1

(δ2 + δ3)2

Analysis for the λ1 in the L1 case can be completed as in the L2 case (3.10). We use the

same setting as in Figure 3.1 in subsection 3.2. By using similar proof as in Theorem 3.2.2,

we get the following result for λ1 for L1 fitting term.

48

Theorem 3.3.2 The solution k̃ to

min
k
{1

2
‖k ? u− u0‖L1(−1,1) + λ1

∫ 1

−1

|∇k|dx}

is given by

δ1 = δ3, δ2 = −δ3(8r − 7x̃− 4)

(8r + 9x̃− 4)

where k̃ is defined from equation (3.7). In addition, λ1 is given by

λ1 = −1

4
− 81

64
x̃2 +

9

8
x̃− r2 − 1

4
rx̃+ r. (3.11)

The parameter λ1 is assumed to be chosen sufficiently large enough so there is no shift in the

kernel boundary regions.

The symmetry is preserved for δ1 and δ3 as before in L2 case. However, there is no

dependence on the shift of the intensity value nor on the size of kernel, except for δ2. In

addition, the parameter λ1 depends solely on the size of the kernel and the size of the object

in the image. As a result, we can directly determine λ1 with the knowledge of the image

object size and the support size of the kernel. Hence, the extra step of computation to

find the δi’s are saved and we can get an adaptive form for determining the kernel as in

subsection 3.2. The method is detailed in Algorithm 3.5.

Algorithm 3.5 Adaptive Scale Kernel Reconstruction for L1

Require: u0, the input image

Compute reference image ur via

{
ut = −|∇u|sign(L(u))

u(x, y, 0) = u0

.

Set λ1 = −1
4
− 81

64
x̃2 + 9

8
x̃− r2 − 1

4
rx̃+ r.

Compute k by solving ur(−x,−y) ? (ur(x, y) ? k − u0)− λ1∇ ·
(

∇k
|∇k|

)
= 0 by using λ1.

Output k.

We note here while there is no pixel by pixel values, we can change the value of x̃ based

on the position and emphasis larger and smaller objects in the image as needed.

3.4 Numerical Comparisons and Experiments

In this section, we consider various experiments using L1 or L2 fitting terms for functionals

(3.4) and (3.3).

49

3.4.1 Numerical Implementation

For the numerical implementation of the L1 fidelity term in Euler-Lagrange form for equa-

tions (3.5) and (3.6), we utilize an adaptive form of the Lagged Diffusivity Fixed Point

method. We lagged both denominator terms in (3.5) to get an iteration on i of the form

ur(−x,−y) ?
(

ur(x, y) ? k
(i) − u0

|ur(x, y) ? k(i−1) − u0|

)
− λ1∇ ·

(
∇ki

|∇k(i−1)|

)
= 0

for i = 1, 2, The method converges similarly the Lagged Diffusivity Fixed Point method

and only requires ten iterations to converge. Similarly, for equation (3.6), we iterate on i for

k(−x,−y) ?
(

k(x, y) ? u(i) − u0

|k(x, y) ? u(i−1) − u0|

)
− λ2∇ ·

(
∇ui

|∇u(i−1)|

)
= 0

for i = 1, 2, . . . and the method has similar convergence properties.

Additionally, one can consider solving iterate u(n+1) into terms of ∆u(n+1) = u(n+1) −
u(n)by solving (

KTK − λ2L
)
∆u = −KT (Ku− u0) + λ2Lu (3.12)

for K being the lagged convolution matrix for kernel k and operator L being the lagged

diffusivity term. In Figure 3.3 we see the comparison. In image (a), the solution was

computed using ∆u, which in image (b), the result was computed directly for u. We can

see it is advantageous to solve directly in this case. As a result, we directly solve for the

equation (3.6) in our calculations.

The Semi-Blind method with kernel refinements is a straightforward implementation with

the new equations. The L1 version of the method is summarized below in Algorithm 3.6.

3.4.2 Scale Dependence in the L1 Fidelity Term

In this subsection, we consider the scale dependence we derived in section 3.3. Using equation

(3.11), we can see there is a clear dependence on the size of the kernel support region as well

as the size of the object in the image. A similar analysis works for image reconstruction and

deblurring and the results are similar. Hence, we should be able to see some dependence on

the change in λ2 with respect to the clarity achieved in the output image.

Using L1, there is a property of scale, as was seen in the work by [13] for the denoising

case and this can be also observed for deblurring cases. In Figure 3.4, we see a set of different

scaled boxes in the image. In (a) all the boxes have sharp edges still, (b) shows the next

50

(a) (b)

Figure 3.3: (a) Image result after solving via equation (3.12). (b) Image result after a direct
solve for u. Note that the direct solution of u has cleaner output.

jump in the residual and only the smaller boxes loosing clarity at edges. In (c) we see a

similar result, but with a choice of λ2 larger. Finally, in (d) we see after the next increase in

λ2, the large boxes are losing distinct edge features and become blurry. In Figure 3.5(a) we

see the region where the λ2 values are changing in Figure 3.4(a)-(d).

In Figure 3.5(c), we see the plot of the value for λ1 versus the residual norm ‖k?u−u0‖L1

showing where these jumps in the residual have occurred.

As with the denoising case[13], we see the L2 version of the graphs, do not have the same

sharp jumps. In figure 3.5 we see in (b) the L1 graph and in (c) the corresponding region in

the L2 recovery of the image. You can see the L2 version of the solution results in a smooth

graph with no sharp jumps in (c).

51

Algorithm 3.6 L1 Semi-Blind Method with Kernel Refinements

Require: u0, the input image

Compute reference image ur via

{
ut = −|∇u|sign(L(u))

u(x, y, 0) = u0

.

Solve ur(−x,−y) ? ur(x,y)?k(1)−u0

|ur(x,y)?k(1)−u0|
− λ1∇ ·

(
∇k(1)

|∇k(1)|

)
= 0 for k.

Apply the shock filter on k(1) to get k(2).
Compute |D| and |∂D|.
Denoise k(2) with small λ to get k(3).
Compute δij = k(2) − k(3).

Set λij = δij ∗ |D|
|∂D| .

Denoise with λij to get k(4).

Solve k(4)(−x,−y) ? k(4)(x,y)?u−u0

|k(4)(x,y)?u−u0|
− λ2∇ ·

(
∇u
|∇u|

)
= 0 for u.

Output image u.

3.4.3 Fitting Term Comparisons

We experiment with the original AM method [23] with different combinations of p for two

coupled equations.

min
k

1

p1

∫
Ω

|k ? u− u0|p1 dx dy + λ1

∫
Ω

|∇k| dx dy

min
u

1

p2

∫
Ω

|k ? u− u0|p2 dx dy + λ2

∫
Ω

|∇u| dx dy
. (3.13)

Figure 3.6 shows results of using different combinations of pi values, either 1 or 2. Note

that for this experiment, we choose λi to emphasize the effect of details while sacrificing

smoothness of the final image to better illustrate the effects of using different pis. Comparing

p2 values, which is the fitting terms for the image functional in equation (3.13), the first

column images with L1 fitting (p2 = 1) gives better details with less noisy artifacts compared

to the second column images with L2 fitting. This result is consistent with the fact that in

general L1 fitting is better for recovering details of images. Comparing different p1 values

for the kernel functional, the second row using p1 = 2 gives better results in the final image.

This choice will depend on the kind of true kernel used in generating u0. Here we used out

of focus blur for the experiments, and L2 fitting seems to recover kernel much closer to true

kernel function. In this case, we conclude that the best choice is image (c), using p1 = 2 and

p2 = 1 for AM method: L2 fitting for kernel functional and L1 fitting for image functional.

We apply the same comparison for Semi-Blind method in Figure 3.7. When we compare

52

(a) (b)

(c) (d)

Figure 3.4: Comparison of image recovery using various values of λ1. (a) λ1 = 3.2 × 10−5:
Image before first jump (b) λ1 = 5.6× 10−5: After first jump, edges on the small boxes are
lost (c) λ1 = 9.0 × 10−5: Show before the next jump (d)λ1 = 2.6 × 10−4: Shows after the
second jump, where large boxes loose edge detail.

the columns, we see that p2 = 1 (L1 fitting for image functional (3.3)), the first column,

produces better results. By comparing the rows, we see that the second row (L2 fitting

term for kernel functional, p1 = 2) results in better images. This is similar to analysis in

AM method settings. In [35], the authors presented a similar analysis using a known kernel

function, which is assumed to be Gaussian. Their results show that the L1 norm fitting is

particularly well suited for images and is not affected by outlying data. This is consistent

with our results for both the blind deconvolution AM method [23]) as well as Semi-Blind

methods for the image functional (3.3).

3.4.4 Examples

Our first example in Figure 3.8 uses the L2 kernel result with the L1 image result(p1 =

2, p2 = 1) with a noisy and blurry image from Figure 2.9(b). The result you see is similar.

53

10−5 10−4 10−3
5

10

15

20

25

30

35
(a)

10−7 10−6 10−5 10−4 10−3
0

5

10

15

20

25

30

35
(b)

10−4 10−3 10−2 10−1 100
0

2

4

6

8

10

12
(c)

Figure 3.5: (a) The graph of λ1 versus L1 norm for the affect image in figure 3.4. (b) The
graph of λ1 versus the L1 residual norm (c) The graph of λ1 versus the L2 residual norm.
Note that the L2 graph is smoother than the L1 graph.

However, extra smoothing had to be applied as in the L2 case in Figure 2.9 so the result is

not as visually pleasing as we would desire.

The next example is using a direction kernel function, the same one that is used in

Figure 2.10. However in Figure 3.9, we see that the results are superior, due to using the

L1 norm for the kernel and image recovery. The reason the L1 norm is used for the kernel,

is since the kernel has such a small region, the computations results in a closer approximate

than using the L2 norm. In addition, we have already shown that the L1 calculations for

image results in cleaner output and this is justifies this further for p = 2.

The final example is a natural image, using the L1 norm for images but L2 for the kernel

and is shown in Figure 3.10. We can see the result appears to be slightly better for this L1

approximation. If we compare them side-by-side, we can see this is in fact true in Figure 3.11.

We see in Figure 3.11(a), the output image from using the L2 norm, while image (b) is from

the using the L1 norm. We note that we can see less ”ringing” effects in the L1 version of

the image which further reinforces that the L1 image reconstruction is superior to the L2

reconstructed image.

Copyright c© James H. Money 2006

54

(a) (b)

(c) (d)

Figure 3.6: Comparison on using different p1 and p2 in AM method (3.1) setting. Note
that we exaggerated the results by choosing λ1 to emphasize the details in the image while
sacrificing smoothness of the final image. (a) L1 fitting for both kernel and image functional
(p1 = p2 = 1). (b) L1 fitting for kernel and L2 fitting for image (p1 = 1,p2 = 2). (c) L2

fitting for kernel and L1 fitting for image (p1 = 2,p2 = 1). (d) The original AM method [23]
with p1 = p2 = 2. The first column images with p2 = 1 have more details recovered, and the
second row images with p1 = 2 has clearer results.

55

(a) (b)

(c) (d)

Figure 3.7: Comparison on using different p1 and p2 for Semi-Blind method. (a) L1 fitting
for both kernel and image functional (p1 = p2 = 1). (b) L1 fitting for kernel and L2 fitting
for image (p1 = 1,p2 = 2). (c) L2 fitting for kernel and L1 fitting for image (p1 = 2,p2 = 1).
(d) L2 fitting for both kernel and image functional (p1 = p2 = 2). The first column images
with p2 = 1 have less “ringing” effects, and the second row images with p1 = 2 has clearer
results.

Figure 3.8: Results from the L1 recovery of the noisy image. Note the extra smoothing that
had to be applied.

56

(a) (b)

(c) (d)

Figure 3.9: Figure (a) is the non-centrosymmetric kernel. Image (b) is the corresponding
blurry image. Image (c) is the reference image. Image (d) is the computed image. Note that
the output image is accurate and improved over Figure 2.10(d).

57

(a) (b)

(c) (d)

Figure 3.10: Figure (a) is the true image. Image (b) is the corresponding blurry image.
Image (c) is the reference image. Image (d) is the computed image.

58

(a) (b)

Figure 3.11: Image (a) is the L2 norm image using the correct kernel. Image (b) is the same
output using the L1 norm. We can see the L1 norm is clearly better for natural images since
there is less ”ringing” effects.

59

4 Discretized Picard’s Method

4.1 Modified Picard Method for PDEs

In the PDE version of Picard’s Method[70], one considersut = P (u, ∂u
∂x
, ∂u

∂y
, . . . , ∂2u

∂x2 ,
∂2u
∂x∂y

, . . .)

u(·, 0) = q(·)

where P and q are n variable polynomials. Parker and Sochacki’s method is to compute the

iterates φ0(t) = q(·)

φn+1(·, t) = q(·) +
∫ t

0
P (φn(·, s)) ds, n = 0, 1, 2, . . .

We truncate the terms with t-degree higher than n at each step since these terms do not

contribute to the coefficient for the tn+1 term in the next iteration. We denote the degree of

the Picard iterate as j for φ(j)(t), given this truncation that is performed. This method is

summarized below in Algorithm 4.7.

Algorithm 4.7 Modified Picard Method for PDEs

Require: q, the initial condition, and P the polynomial system
Require: ∆t and numtimesteps
Require: degree the degree of the Picard approximation

for i from 1 to numtimesteps do
φ0(·, t) = q(·)
for j from 1 to degree do
φj(· · · , t) = q(·) +

∫ t

0
P (φj−1(·, s)) ds

Truncate φj(·, t) to degree j in t.
end for
q(·) = φdegree(·,∆t)

end for

This algorithm is called the Modified Picard Method(MPM). While the MPM algorithm

easily computes the approximates since it only depends on calculating derivatives and in-

tegrals of the underlying polynomials, it has some limitations. In [70], the authors showed

how to handle the PDE including the initial conditions. However, the method requires the

initial conditions in polynomial form. While in some PDEs this is the case, many times one

computes a Taylor polynomial that approximates the initial condition to high degree. This

60

results in a substantial increase in computational time. For some problems, the initial con-

dition is not explicitly known, but only a digitized form of the data. For example, in image

processing, most of the data has already been digitized and we have to interpolate the data

using polynomials in order to apply the MPM. If this is done, the resulting polynomial may

not effectively approximate the derivatives of the original function. The polynomial approx-

imation might contain large amounts of oscillations that does not represent the underlying

data accurately. Finally, we would also like to be able to handle boundary conditions in a

simple manner, but keep the extensibility of the MPM, which does not allow for a boundary

condition.

4.2 Discretized Picard’s Method

To overcome the deficiencies listed in section 4.1, we consider the underlying discrete data

directly. We consider the initial condition u0 = u0i1i2...im
where u0 ∈ <n1×n2×···×nm is a

matrix of m dimensions. Instead of applying the derivatives directly, we consider a set of

linear operators Li where i = 1, 2, . . . k that approximate the derivatives. Then, instead of

solving the PDE ut = P (u, ∂u
∂x
, ∂u

∂y
, . . . , ∂2u

∂x2 ,
∂2u
∂x∂y

, . . .)

u(·, 0) = q(·)

we consider using the Li to approximate the various derivatives and solving this PDE by

approximation by ut = P (u, L1u, L2u, . . . , Lku)

u(·, 0) = u0i1i2...im

We define multiplication of two elements u and v component-wise, instead of the using

standard matrix multiplication. Then, we compute the iteratesφ0(t) = u0

φn+1(t) = u0 +
∫ t

0
P (φn(s), L1φn(s), L2φn(s), . . . , Lkφn(s)) ds, n = 0, 1, 2, . . .

The resulting method computes the discretized solution of the PDE, but is continuous in

the time variable. In section 4.3, we illustrate the importance of requiring the operators

Li to be linear in order to get a similar result to the MPM. Given we are utilizing the

underlying discrete data in the space variables, we call this new method the Discretized

Picard Method(DPM). The new method is listed in Algorithm 4.8.

61

Algorithm 4.8 Discretized Picard Method

Require: u0, the initial condition, and P the polynomial system
Require: L1, L2, . . . , Lk, the linear approximations to the derivatives
Require: ∆t and numtimesteps
Require: degree the degree of the Picard approximation

for i from 1 to numtimesteps do
φ0(·, t) = u0

for j from 1 to degree do
φj(t) = u0 +

∫ t

0
P (φj−1(s), L1(φj−1(s), . . . , Lk(φj−1(s)) ds

end for
u0 = φdegree(∆t)
Enforce boundary conditions on u0.

end for

4.2.1 Computation of Li

For the linear operator, there are many discrete operators available for Li[see [62, 52]]. For

example, one could use finite differences, finite elements, or Galerkin methods. In this

chapter, the operator chosen is the finite difference(FD) operator. For example, if ut = uxx,

we can choose the operator L to satisfy central difference scheme

Luj =
uj+1 − 2uj + uj−1

∆x
.

The operator L is extended easily to the two and three dimension case. In section 4.4, we

show how the choice of the operator determines the stability condition for the maximum

timestep size. In addition, the first and last terms in the one dimension case, and all the

boundary terms in the two and three dimension cases will have to be handled separately.

We discuss this further in section 4.2.2.

Recall, from section 1.2.1, that a PDE ut = f(u, ∂u
∂x
, . . .), is considered projectively

polynomial if it can be rewritten as a system of equations in n-variables so that Y ′ =

P (Y, ∂Y1

∂x
, . . .) where Y = [Y1, . . . , YN] and P is polynomial.

For a general class of linear operators based on a linear finite difference(FD) scheme, we

deduce that the system remains projectively polynomial, which is summarized by the lemma

and theorem below.

62

Lemma 4.2.1 Consider solving via the DPM the PDEut = Mu

u(·, 0) = u0

for some linear differential operator M and initial matrix u0. Assume that L ≈ M is

corresponding linear finite difference operator. Assume L is defined by

Lui1i2...im =
∑

j1,j2,...,jm

αj1,j2,...,jmui1+j1,i2+j2,...,im+jm

Then the PDE is projectively polynomial.

Proof. This follows directly from the definition since Lu is the sum of degree one terms. �

Since the linear operator L is projectively polynomial, we see by extension, the general

problem is also projectively polynomial.

Theorem 4.2.1 Consider solving the PDEut = P (u, ∂u
∂x
, ∂u

∂y
, . . . , ∂2u

x2 , . . .)

u(·, 0) = u0(· · ·)

by using the DPM method ofut = P (u, L1u, L2u, . . . , Lmu)

u(·, 0) = u0i1i2...im

where each Li, i = 1, . . .m are linear as in Lemma 4.2.1. Then the system is projectively

polynomial.

Proof. From Lemma 4.2.1, we know that each Li is polynomial and in fact linear. The re-

sulting system is the composition of polynomial terms and has to be projectively polynomial.

�

As a result, the results of the MPM method with regards to truncating terms can be

extended to DPM. Thus, after each iterate is computed, we truncate the terms to degree n,

assuming we have computed the n-th iterate.

63

4.2.2 Boundary Conditions

The boundary conditions need to be handled carefully in DPM due to the use of higher

degree iterates. When the degree of the iterate is one, normal boundary conditions are

applied, similar to a FD scheme. However, since the degree one iterate is used to compute

the second degree iterate, and similarly for degree three and higher, we must calculate the

values at the boundary. The approach we take is to compute one side derivatives for the

FD scheme at the boundaries. Figure 4.1, illustrates the problem with boundary conditions.

When using a degree one iterate, the terms at point x1 and xJ need to be calculated, where

J is the number of discrete data points and the linear operator has a 3 point stencil. If we

do not enforce the one sided derivatives at this stage, the data at x1 and xJ is invalid for

the degree two iterate, and then, x2 and xJ−1 is invalid after the second iterate is computed.

This continues, reducing the available data as the degree of the Picard iterate increases,

unless we enforce one sided derivatives at each step.

Figure 4.1: Boundary Conditions The similarly shaded regions are lost if one sided derivatives
are not enforced as the degree of the iterates increase.

As a result, we enforce the linear operator to compute one sided derivatives at the edges

of the domain. For example, in the one dimension example of ut = uxx with L being the

centered difference scheme, we use the end condition in one dimension to be

LuJ =
uJ − 2uJ−1 + uJ−2

∆x2

and a similar term for Lu1. Now, we have all the values, and there is no ambiguity in the

values at the boundary for any of the degrees of the iterates.

4.3 Comparison of MPM with DPM and Finite Differences

In this section, we compare the MPM to the DPM. While the MPM computes the power series

form for the function u, the DPM computes the exact same result, but with an approximation

64

to the derivatives at each step. For example, we consider solving the following PDEut = ux

u(x, 0) = u0(x)

compared to the DPM method of ut = Lu

u(x, 0) = u0(x)
(4.1)

where L is the operator for central difference scheme. If we compute the iterates for MPM

we get,

p(0)(t) = u0

p(1)(t) = u0 + u0xt

p(2)(t) = u0 + u0xt+ u0xxt
2/2

p(3)(t) = u0 + u0xt+ u0xxt
2/2 + u0xxxt

3/6

.

while the DPM computes

φ(0)(t) = u0

φ(1)(t) = u0 + L(u0)t

φ(2)(t) = u0 + L(u0)t+ L2(u0)t
2/2

φ(3)(t) = u0 + L(u0)t+ L2(u0)t
2/2 + L3(u0)t

3/6

.

and we note that L2 would be a 5 point approximation to uxx and L3 would be a 7 point

approximation to uxxx. By choosing L to be the centered difference scheme, (4.1) corresponds

to the approximated derivatives.

If we consider a nonlinear example, the correspondence between derivatives and the linear

operator is still true. If we consider Burger’s equationut + (u2

2
)x = 0

u(x, 0) = α(x)
,

we can first project to a simpler polynomial system to ease our calculations. Let w = u2

2
to

65

get the equivalent systemut + wx = 0 u(x, 0) = α(x)

wt + uwx = 0 w(x, 0) = α2(x)
2

= β(x)
.

Consider the following integral form of this system

u(x, t) = α(x)−
∫ t

0

wx(x, τ)dτ

w(x, t) = β(x)−
∫ t

0

u(x, τ)wx(x, τ)dτ

and the Picard iteration for this system

u(k+1)(x, t) = α(x)−
∫ t

0

w(k)
x (x, τ)dτ

w(k+1)(x, t) = β(x)−
∫ t

0

u(k+1)(x, τ)w(k+1)
x (x, τ)dτ.

Now let L be a linear approximation for ∂
∂x

. This leads to the following discrete in space

approximation

u
(k+1)
j (t) = αj −

∫ t

0

L[w
(k)
j (τ)]dτ

and

w
(k+1)
j (t) = βj −

∫ t

0

u
(k+1)
j (τ)L[w

(k+1)
j (τ)]dτ

to this iteration where j indicates xj = j∆x. We let

u
(0)
j = αj and w

(0)
j = βj.

The Picard iterates are for k = 0 are

u
(1)
j (t) = αj −

∫ t

0

L[w
(0)
j (τ)]dτ = αj − L[w

(0)
j]t

w
(1)
j (t) = βj −

∫ t

0

u
(0)
j (τ)L[w

(0)
j (τ)]dτ = βj − u

(0)
j L[w

(0)
j]t

66

Similarly for k = 1, we get

u
(2)
j (t) = αj −

∫ t

0
L[w

(1)
j (τ)]dτ = αj −

∫ t

0
L[βj − u

(0)
j L[w

(0)
j]τ]dτ

= αj − L[w
(0)
j]t+ L[u

(0)
j L[w

(0)
j]] t2

2

and

w
(2)
j (t) = βj −

∫ t

0
u

(1)
j (τ)L[w

(1)
j (τ)]dτ = βj −

∫ t

0
(αj − L[w

(0)
j]τ)L[βj − u

(0)
j L[w

(0)
j]τ)]dτ

= βj − u
(0)
j L[w

(0)
j]t+ (u

(0)
j L[u

(0)
j L[w

(0)
j]] + L[w

(0)
j]2) t2

2

Then for k = 2 we have

u
(3)
j (t) = αj −

∫ t

0
L[w

(2)
j (τ)]dτ

= αj −
∫ t

0
L[βj − u

(0)
j L[w

(0)
j]τ + (u

(0)
j L[u

(0)
j L[w

(0)
j]] + L[w

(0)
j]2) τ2

2
dτ

= αj − L[w
(0)
j]t+ L[u

(0)
j L[w

(0)
j]] t2

2
− L[u

(0)
j L[u

(0)
j L[w

(0)
j]] + (L[wj

0])
2)] t3

3!

and

w
(3)
j (t) = βj −

∫ t

0
u

(2)
j (τ)L[w

(2)
j (τ)]dτ = βj −

∫ t

0
(αj − L[w

(0)
j]τ + L[u

(0)
j L[w

(0)
j]] τ2

2
)∗

L[βj − u
(0)
j L[w

(0)
j]τ + (u

(0)
j L[u

(0)
j L[w

(0)
j]] + L[w

(0)
j]2) τ2

2
]dτ

= βj − u
(0)
j L[w

(0)
j]t+ (u

(0)
j L[u

(0)
j L[w

(0)
j]] + L[w

(0)
j]2) t2

2

−(u0
jL[u

(0)
j L[u

(0)
j L[w

(0)
j]] + L[w

(0)
j]2]+

3L[w0
j]L[u0

jL[w0
j] + L[w0

j]L[u
(0)
j L[w

(0)
j]]) t3

3!

And we can continue for higher values of k. However, we can now replace w0
j with (u0

j)
2/2

and have

u
(1)
j (t) = αj − L[

(u0
j)2

2
]t

u
(2)
j (t) = αj − L[

(u0
j)2

2
]t+ L[u

(0)
j L[

(u0
j)2

2
]] t2

2

u
(3)
j (t) = αj − L[

(u0
j)2

2
]t+ L[u

(0)
j L[

(u0
j)2

2
]] t2

2
− L[u

(0)
j L[u

(0)
j L[

(u
(0)
j)2

2
]] + (L[

(u
(0)
j)2

2
])2] t3

3!

We note that these iterates are the same as the MPM iterates, except with the linear approx-

imation L applied instead of differentiating at each step. The pattern can now be extended

as well for other nonlinear problems. This process also works on generating a space dis-

cretization with time Picard iteration on any equation of the formut + (f(u))x = 0

u(x, 0) = α

67

where f is polynomial.

The DPM method iterates of degree one and two are related to standard FD schemes.

The forward time FD scheme is related to the degree one iterate of DPM. When the degree

of DPM is two, we get the DPM method is equivalent to the Lax-Wendroff scheme when the

appropriate operator is choosen. The following theorem illustrates the relations between the

forward time difference scheme and the Lax-Wendroff scheme.

Theorem 4.3.1 Consider applying the Discretized Picard Method to the equationut = Mu

u(·, 0) = u0

for some linear differential operator M and initial matrix u0. Assume that L ≈ M is

corresponding linear finite difference operator. Then, the degree one Picard iterate is the

same as the finite difference scheme using the operator L and the degree two Picard iterate

is the Lax-Wendroff scheme, if the operator L is chosen to use a stencil with half steps.

Proof. For the degree one iterate, we compute the iterate

φ(1)(t) = u0 +

∫ t

0

Lu0 ds

Evaluating, we get

φ(1)(t) = u0 + Lu0t

and by rearranging we get

φ(1)(t) = u0 + Lu0t

φ(1)(t)− u0

t
= Lu0

φ(1)(t)− φ(0)(t)

t
= L[φ(0)(t)]

Letting un+1 = φ(1)(t) and un = φ(1)(t) we get

un+1 − un

t
= Lun

Now letting t = ∆t, we get the desired result.

68

For the second degree iterate, we compute

φ(2)(t) = u0 +

∫ t

0

L(φ(1)(t)(s)) ds

By expanding and rearranging, we obtain:

φ(2)(t) = u0 +
∫ t

0
L(u0 + Lu0s) ds

= u0 +
∫ t

0
Lu0 + L2u0s ds

= u0 + Lu0t+ L2u0t
2/2

But, we note that the Lax Wendroff method computes

u0 + utt+ uttt
2/2

and using that utt = L(Lu) = L2u, and choosing the correct operator L with half step points

for the stencil, the proof is complete. �

4.4 Stability

In this section, we consider the stability of the DPM as the degree of the Picard iterates

increase. In general, we cannot determine a condition for any degree m, but we show that

the stability region is increasing for all our examples. For the first example, we consider

solving the transport equation ut = ux

u(·, 0) = u0

using the central difference scheme

Luj =
uj+1 − uj−1

2∆x

with one sided difference at the boundary and in one dimension. The first assertion we

make is about the term Lnu, since this is needed to compute the Von-Neumann analysis for

stability.

69

Lemma 4.4.1 For the linear operator Luj =
uj+1−uj−1

2∆x
, we have that

Lnuj =

∑n
i=0 (−1)i (n

i

)
uj−2i+n

(2∆x)n

Proof. We illustrate a method that is less algebraic and relies on functionology and combi-

natorics for a proof. For further reference, please see [71, 79]. We define a sequence (Un) in

R[[x]] by U0(x) =
∑

j ujx
j and Un(x) =

∑
j L

n(uj)x
j. Since L is linear, we have the relation

Ln(uj) =
Ln−1(uj+1)− Ln−1(uj−1)

2∆x

for n > 0. Multiplying by xj and summing over all j ∈ Z+ we get that

Un(x) =
∑

j

[
Ln−1(uj+1)−Ln−1(uj−1)

2∆x

]
xj

= 1
2∆x

[
Un−1(x)

x
− xUn−1(x)

]
= 1

2∆x
1−x2

x
Un−1(x)

Hence, we have Un(x) =
(

1
2∆x

1−x2

x

)n

U0(x). Thus, we have

Ln(uj) = [xj]
(

1
2∆x

1−x2

x

)n

U0(x)

=
(

1
2∆x

)n
[xj+n](1− x2)nU0(x)

where [xj] denotes the j-th coefficient of the expansion immediately to the right. If we apply

the binomial theorem to the right hand side we see that

Ln(uj) =
(

1
2∆x

)n∑n
i=0

(
n
i

)
(−1)iu(j+n)−(2i)

=
(

1
2∆x

)n∑n
i=0

(
n
i

)
(−1)iuj−2i+n

which completes the proof. �

Now, given we have each term explicitly, we can now compute the stability polynomial

for any degree of our Picard iterate.

Theorem 4.4.1 The Picard iterates of degree m forut = ux

u(·, 0) = u0

70

using the central scheme result in the stability polynomial

λ = 1 +
m∑

n=1

[
νn

n!

n∑
l=1

(−1)l

(
n

l

)
ei(n−2l)

]

where ν = ∆t
2∆x

.

Proof. From the Picard iterates, we compute the degree m iterate to be

φ(m)(t) = u0 + Lu0t+ L2u0t
2/2! + . . . Lmu0t

m/m!

Let um = φ(m)(t). Then, applying the formula above, we get

um
j = u0j

+ Lu0j
t+ · · ·+ Lmu0j

tm/m!

Then, settings t = ∆t and ν = ∆t
2∆x

, we obtain

um
j = u0j

+ νLu0j
+ ν2/2!Lu0j

+ · · ·+ νm/m!Lmu0j

or

um
j = u0j

+
m∑

n=1

Lmu0j
νn/n!

By applying theorem 4.4.1, we obtain

um
j = u0j

+
m∑

n=1

νn

n!

[
n∑

l=0

(−1)l

(
n

l

)
uj−2l+n

]

Then, letting uj = λneijδx we get

λ = 1 +
m∑

n=1

νn

n!

[
n∑

l=0

(−1)l

(
n

l

)
ei(n−2l)

]

and this completes the proof. �

Now, let us consider the case of the first four iterates to illustrate the change in the

stability condition as the degree increases:

71

Theorem 4.4.2 The stability condition for the first four iterates ofut = ux

u(·, 0) = u0

using the central difference scheme are

Degree Stability Condition

1 unstable

2 unstable

3 ν ≤
√

3
2

4 ν ≤
√

2

for ν = ∆t
2∆x

.

Proof. While the result for m = 1 case can be obtained by the usual means for FD scheme,

we wish to illustrate an alternate method that makes the computation slightly easier and

more straightforward. We consider the stability polynomial

λ = 1 + ν
[
eij∆x − e−ij∆x

]
for degree one or

λ = 1 + 2iν sin θ

where θ = j∆x. We have

|λ| = λλ = 1 + 4ν2 sin2 θ

showing the scheme is unstable. To complete our formal analysis, define

f(ν, θ) := 1 + 4ν2 sin2 θ

Then, we fix ν and find the minimum of θ by calculus:

fθ = 8ν2 sin θ cos θ = 0

Hence, we have θ = 0, π, π/2,−π/2. Filling in those values, we obtain the set of polynomials

f(ν, 0) = f(ν, π) = 1

72

f(ν, π/2) = f(ν,−π/2) = 1 + 4ν2

and we want both these to to be less than one for ν ≥ 0, ie:1 ≤ 1

1 + 4ν2 ≤ 1

However, no choice of ν satisfies all these requirements and we conclude that the degree one

polynomial is unstable.

Now, we complete a similar analysis on degree two and get the same result. But for

degree m = 3, we have

λ = 1 + 2iν sin θ + ν2(cos 2θ − 1) +
ν3

3
i [sin (3θ)− 3 sin θ]

We define

f(ν, θ) := |λ|2

and compute ∂f
∂θ

(ν, θ) = 0 and get the real solutions are

θ = 0,−π
2
,
π

2
.

Thus, we have the polynomial conditionsf(ν, 0) = f(ν, π) = 1 ≤ 1

f(ν,−π/2) = f(ν, π/2) = 1− 4/3ν4 + 16/9ν6 ≤ 1

which is satisfied when ν ≤
√

3
2

. The bound for DPM iterate of degree four is similar to

derive and the calculations result in ν ≤
√

2. �

In the case of the degree three and four iterates, the CFL condition is violated. Thus,

we need not choose any higher degree iterate than three for the DPM. As a result, we use a

degree three iterate with ν ≤ 1.

For the heat equation in one dimension, a similar analysis can be completed and is listed

below.

73

Theorem 4.4.3 The stability condition for the first four iterates ofut = uxx

u(·, 0) = u0

using the central difference scheme are

Degree Stability Condition

1 ν ≤ 1
2

2 ν ≤ 1
2

3 ν ≤
3
√

4+
√

17

4
− 1

4
3
√

4+
√

17
+ 1

4

4 ν ≤ 1
12

3
√

172 + 36
√

29− 5

3
3
√

172+36
√

29
+ 1

3

for ν = ∆t
(∆x)2

.

A similar analysis work for the two dimension datasets. We consider the process of

applying the heat equation in two dimensions and we get a corresponding analysis for stability

from the theorem below.

Theorem 4.4.4 The stability condition for the first four iterates for solvingut = uxx + uyy

u(·, 0) = u0

via DPM using the central difference scheme is

Degree Stability Condition

1 1
4

2 1
4

3 ν ≤ 1
2

[
3
√

4+
√

17

4
− 1

4
3
√

4+
√

17
+ 1

4

]
≈ 0.3140931658

4 ν ≤ 1
2

[
3
√

172+36
√

29

12
− 5

3
3
√

172+36
√

29
+ 1

3

]
≈ 0.3481616954

for νx = νy = ν = ∆t
(∆x)2

.

74

Proof. We can handle the two dimension case similar to the one dimensional case. Here we

need to form f(νx, νy, θ, ω) = λ and then solvefθ(νx, νy, θ, ω) = 0

fω(νx, νy, θ, ω) = 0

For the degree two iterate, we get

θ = 0 ω = 0

θ = 0 ω = π

θ = π ω = 0

θ = π ω = π

Then we compute f(ν, nu, ·, ·) for each value of θ and ω and we get

−1 ≤ 1 ≤ 1

−1 ≤ 1− 4ν + 8ν2 ≤ 1

−1 ≤ −1 ≤ 1− 4ν + 8ν2 ≤ 1

−1 ≤ 1− 8ν ≤ 1

Solving for all cases and combining the answer we get thatν ≤ 1/4. We can apply the same

analysis and compute the result for degree three and four.

We note here, that we can let νx 6= νy by writing νy = cνx for some constant c and apply

the same analysis above and get a similar result when the space grid is not square.

4.5 Numerical Implementation and Examples

All the examples are implemented in Matlab using a 2Ghz Pentium IV. In order to implement

the DPM, an object class for computing the iterates was developed that utilizes matrix coef-

ficients. This object class implements all the basic mathematical operations and includes an

integral operator over the time domain. The linear operators are implemented as pluggable

modules for the DPM routine which makes the method versatile when considering different

types of PDEs and testing different operators used for each derivative. All the floating point

arithmetic is computed in double precision.

75

The first example we consider isut = ux

u(x, 0) = sinx
.

We use the centered difference operator for the first derivative, which is Luj =
uj+1−uj−1

2∆x
.

We choose ∆x = 1/100, and ran the method for a total of 200 iterations using a degree

three iterate with ∆t = ∆x, the maximum value allowed by the CFL condition. The result

is shown in Figure 4.2 for times t = 0, 2, 4. We note that while the first two iterates are

unstable, using the degree three iterate results in a stable method.

−4 −2 0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(a)

−4 −2 0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(b)

−4 −2 0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(c)

DPM
True solution

DPM
True solutionu0

Figure 4.2: Degree 4 iterate for solving ut = ux using a centered difference scheme.

The second example is using the heat equation in one dimension. We used the centered

difference scheme Luj =
uj+1−2uj+uj−1

(∆x)2
. The degree four iterate is used again for computation

and the result is shown in Figure 4.3. We note the computational cost of computing using

the higher degree iterate allows us to compute the final result in less timesteps.

The third example we present is to solve inviscid form of Burger’s equation, which isut = −uux

u(0, x) = f(x)
. (4.2)

We choose f(x) = −3/π tan−1 x+3/2. We see the computed result up to the start of the

shock formation in Figure 4.4(a) using DPM. In (b), the same result is computed using the

Lax-Wendroff scheme. However, the stability condition is O(∆t/(∆x)2) for Lax-Wendroff,

but the third degree DPM only requires ∆t/∆x ≤ 1/4. As a result, 21000 iterates must

be computed for the Lax-Wendroff versus 420 for the DPM method. The computational

76

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
t=0
t=0.35
t=0.70
t=1.4

Figure 4.3: Degree 4 iterate for solving ut = uxx using a centered difference scheme.

savings, even with computing the higher degree iterates, is substantial.

The final example we present is an image smoothing example. Using the fourth degree

iterate for solving ut = ∆u with the noisy initial image in Figure 4.5(a), we compute the

result in less time. The intermediate and final results are shown in Figure 4.5(b) and (c).

Here, we chose the maximum value for ν = ∆t/(∆x)2 in Theorem 4.4.4.

Copyright c© James H. Money 2006

77

−10 −5 0 5 10
1

1.5

2

2.5

3

3.5

4
(a)

−10 −5 0 5 10
1

1.5

2

2.5

3

3.5

4
(b)

t=0
t=0.525
(420 steps)

t=0
t=0.525
(21000 steps)

Figure 4.4: Degree 3 iterate for solving ut = −uux in the present of a shock. (a) is computed
via DPM. (b) is the same result using Lax-Wendroff

(a) (b) (c)

Figure 4.5: Degree 3 iterate for solving ut = ∆u in 2D using a centered difference scheme.
Image (a) is the initial noisy image. Image (b) is the result after 5 iterations. Image (c) is
the result after 10 iterations.

78

5 EIGIFP

5.1 Inverse Free Krylov Subspace Method

In this chapter, we consider locating a small number of the algebraically smallest eigenvalues

of the pencil (A,B). We assume that A and B are symmetric and sparse, and that B > 0.

We utilize the theory of Golub and Ye [40] for an inverse free method for the generalized

eigenvalue problem by computing approximations to the shifted pencil (A − ρkB,B). By

computing the shifted pencil, no direct inversion of B is required and we avoid problems

that arise when B is ill-conditioned.

The core of eigifp is this inverse free preconditioned Krylov subspace projection method[40].

First, we describe the basic method and we describe some enhancements incorporated into

eigifp. We note that the basic method with a different development of preconditioning

strategy is described by Knyazev [43] (see also [3, p.360]). A prior version of this work also

appears in [51].

Throughout, we shall consider the smallest eigenvalue of (A,B). Indeed, a direct call to

eigifp computes the k smallest eigenvalues. To compute the largest eigenvalue of (A,B),

we just need to compute the smallest eigenvalue of (−A,B) and reverse the sign.

5.1.1 Basic Method

Given an approximate eigenvector xk, we construct a new approximation xk+1 by the Rayleigh-

Ritz projection of (A,B) onto the Krylov subspace

Km(A− ρkB, xk) := span{xk, (A− ρkB)xk, . . . , (A− ρkB)mxk}

where ρk = xT
kAxk/x

T
kBxk is the Rayleigh quotient and m is a parameter to be chosen.

Specifically, let Zm be the matrix consisting of the basis vectors of Km. We then form the

matrices

Am = ZT
m(A− ρkB)Zm

and

Bm = ZT
mBZm,

79

and find the smallest eigenpair (µ1, v1) for (Am, Bm). Then the new approximate eigenvector

is

xk+1 = Zmv1

and, correspondingly, the Rayleigh quotient

ρk+1 = ρk + µ1

is a new approximate eigenvalue.

Iterating with k, the above forms the outer iteration of the method. Now, to construct

the basis vectors Zm, an inner iteration will be used, where m is dimension of the subspace

in the approximation. Since m can vary independently of k, we call this construction of

the basis vectors an inner iteration, typically using the Lanczos or Arnoldi algorithms. We

use either the Lanczos algorithm to compute an orthonormal basis or the Arnoldi algorithm

to compute a B-orthonormal basis. While in theory the outer iteration is independent of

the bases constructed, they have different numerical stability. Experiments(see [40]) lead

us to use an orthonormal basis by the Lanczos method when the outer iteration is not

preconditioned and to use a B-orthonormal basis by the Arnoldi algorithm when the outer

iteration is preconditioned (see below).

Golub and Ye [40] showed that ρk converges to an eigenvalue and xk converges in direction

to an eigenvector. Furthermore, they have the following local convergence result.

Theorem 5.1.1 Let λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of (A,B) and (ρk+1, xk+1) be the

approximate eigenpair obtained from (ρk, xk) by one step of the inverse free Krylov subspace

method. Let σ1 < σ2 ≤ · · · ≤ σn be the eigenvalues of A− ρkB. If λ1 < ρk < λ2, then

ρk+1 − λ1 ≤ (ρk − λ1)ε
2
m +O((ρk − λ1)

3/2) (5.1)

where

εm = min
p∈Pm,p(σ1)=1

max
i6=1

|p(σi)| ≤ 2

(
1−

√
ψ

1 +
√
ψ

)m

,

Pm denotes the set of all polynomials of degree not greater than m, and

ψ =
σ2 − σ1

σn − σ1

.

This bound shows that the speed of convergence depends on m and the relative gap

between σ1 and σ2, ψ. We also note that a key condition of the theorem is that ρk ∈ (λ1, λ2).

80

We accelerate the convergence of eigifp by increasing the spectral gap ψ through an

equivalent transformation that we call preconditioning. One way of doing this is the congru-

ence transformation

(Â, B̂) := (L−1AL−T , L−1BL−T), (5.2)

which preserves the eigenvalues λi but changes σi. Indeed, applying our algorithm to (Â, B̂),

the speed of convergence depends on the spectral gap of

Â− ρkB̂ = L−1(A− ρkB)L−T .

By choosing L to be the factor in the LDLT factorization of A−ρkB with D being a diagonal

matrix of ±1, we obtain an ideal situation where ψ = 1 and hence εm = 0. In practice, we

can use an incomplete LDLT factorization to arrive at a small εm.

As in the preconditioned conjugate gradient method, preconditioning transformation

(5.2) can be carried out implicitly; Golub and Ye [40] give a detailed algorithm. Indeed,

the only operation involving the preconditioning transformation is L−TL−1. Thus, if M is

approximately A − λ1B and is symmetric positive definite, then we only need M−1 to im-

plement the preconditioned iteration. We call M−1 a preconditioner, which need not be in

the factorized form L−TL−1.

We also note the method has recently been extended to the block case similar to the

Lanczos block algorithm in [63]. This block method allows one to calculate multiple or

clustered eigenvalues in a fraction of the time the non-block version of eigifp required or

failed to faithful calculate to the desired tolerance.

5.1.2 LOBPCG Type Subspaces Enhancement

Our algorithm reduces to the steepest descent method when m = 1. Knyazev [45, 44]

has derived a method, called locally optimal preconditioned conjugate gradient method

(LOBPCG), where the previous approximate eigenvector xk−1 in the steepest descent method

is added to span{xk, (A − ρkB)xk} and a new approximate eigenvector is constructed from

span{xk−1, xk, (A− ρkB)xk} by projection. It results in a conjugate gradient like algorithm

and Knyazev has observed a dramatic speedup in convergence over the steepest descent

method.

Here, we also apply this technique to our method to enhance the Krylov subspaceKm(A−
ρkB, xk), namely, at step k, we use the Rayleigh-Ritz projection on the enhanced subspace

span{xk−1, xk, (A− ρkB)xk, . . . , (A− ρkB)mxk}. In eigifp, we compute xk − xk−1 at every

81

step and, when a basis Zm has been constructed for Km(A − ρkB, xk), we orthogonalize

xk − xk−1 against Zm to obtain zm+2 and then extend the basis matrix to

Ẑm =
[
Zm zm+2

]
.

Our experiments have shown that this provides noticeable speedup in convergence; yet it

only incurs very little extra cost.

5.1.3 Deflation

The algorithm we have described finds the smallest eigenvalue. Once we have this, we

can continue to find the next smallest eigenvalue by the same procedure through deflation.

Because of the form of the Krylov subspace, the deflation needs to be done slightly differently

from standard methods like the Lanczos algorithm.

When p eigenpairs have been found, let Vp be the matrix consisting of the p eigenvectors

with V T
p BVp = I and Λp be the diagonal matrix consisting of the corresponding eigenvalues,

i.e. AVp = BVpΛp. We consider

(Ap, B) := (A+ (BVp)Σ(BVp)
T , B) (5.3)

where Σ = diag{σi − λi} with σi any value chosen to be greater than λp+2. Then, it is easy

to check that the eigenvalues of (5.3) are the union of {λp+1, λp+2, · · · , λn} and {σ1, · · · , σp}.
Thus, its smallest eigenvalue is λp+1, which is computed by applying our method to (5.3).

5.1.4 Black-box Implementations

In order to implement our method as a black-box routine, we need to address the following

issues:

1. How do we carry out preconditioned iterations without a user supplied preconditioner?

2. How do we choose the number of inner iterations to optimize the overall performance?

3. When do we terminate the iteration?

We describe now how these are dealt with in eigifp. We note that users always have options

to override the default settings (see Section 3).

To implement the preconditioned iteration, we use an approximate eigenvalue σ and

compute an incomplete LDLT factorization of A − σB using the MATLAB threshold ILU

82

routine luinc (with a default threshold 10−3). If an initial approximation σ is not provided

by the user, eigifp will start with the non-preconditioned iterations and switch to the

preconditioned one when a good approximate eigenvalue is identified. For this, we first

estimate the error λ1 − ρk using the eigenvector residual and an estimated gap between the

first two eigenvalues of A− ρkB. We then switch to the preconditioned iterations when the

error is below a certain threshold. As a safeguard against this switching occurring too early,

we revert back to the non-preconditioned iteration if the subsequent approximate eigenvalues

ρk significantly drift away from the shift point chosen.

The only parameter to be chosen in our method is the number of inner iterations m.

Experiments have shown that an optimal value of m is larger if the problem is more difficult

while it is smaller if the problem is easier (e.g., if we have a good preconditioner). However,

we do not know which value works best for a given matrix. By default, we adaptively choose

m in eigifp as follows. Starting with a small value of m (2 for non-preconditioned iterations

and 1 for preconditioned iterations), we double the value m and compute its convergence

rate after some iterations. We continue increasing m as long as the rate of convergence

has roughly double, but reset it to the previous value when the rate of convergence is not

increased proportionally.

Finally, we terminate the iteration when the 1-norm of the residual rk = (A − ρkB)xk

drops below a certain threshold. The default threshold is

‖rk‖1

‖xk‖1

≤ p(n)ε(‖A‖1 + ‖ρkB‖1), (5.4)

where ε is the machine roundoff unit and we set p(n) = 10
√
n. We note that if p(n) is the

maximal number of non-zero entries in each row of the matrices, (5.4) is approximately the

size of roundoff errors encountered in computing the residual rk = (A − ρkB)xk and would

be the smallest threshold one could expect.

When eigifp terminates with a converged eigenpair, its residual satisfies the termination

criterion (5.4). It can be easily checked that (ρk, xk) is an exact eigenvalue and eigenvector

of a slightly perturbed problem, i.e.

(A+ E)xk = ρk(B + F)xk

where
‖E‖1

‖A‖1

≤ p(n)
√
nε and

‖F‖1

‖B‖1

≤ p(n)
√
nε.

83

Here a stronger result (with E and F symmetric and the factor
√
n removed) is obtained

if we use the 2-norm instead of the 1-norm, but we have adopted the 1-norm so that the

threshold in (5.4) can be computed for large sparse matrices.

5.1.5 Relation to Total Variation Image Deblurring

We note here that the pencil (A,B) problem can be related to the TV image deblurring

problem. In the Lagged Diffusivity Fixed Point method, one computes the solution

KT (Ku− u0)− λLu = 0

or

KTKu = λLu+KTu0

which we can rewrite as

Au = λLu+ f

where A = KTK and f = KTu0. This form of the problem is called the nonhomogeneous

eigenvalue problem. The solution of this problem can be found using the eigenpairs of the

pencil (A,L) and solving a corresponding constraint on the eigenvector u. However, all the

eigenvectors and eigenvalues must be known, which makes a direct utilization of eigifp

infeasible. In addition, the corresponding eigenpair that we desire in the computation is

not clearly understood at this point requiring a calculation to compute all eigenpairs for the

nonhomogeneous problem.

5.2 Numerical Comparisons

In this section, we present some numerical comparisons between eigifp and some existing

programs for computing the smallest eigenvalue of large matrices. The test matrices are a

set of symmetric matrices taken from the Harwell-Boing collection [30], as listed in Table I.

All the executions were carried out using MATLAB version 6.0 with the most recent patches

from MathWorks on a Pentium III Xeon 1.8Ghz with 1GB of RAM.

The performance comparison parameters we considered were the residual of the approx-

imate eigenpair obtained (Res := ‖Ax− ρkBx‖1/(‖A‖1 + |ρk|‖B‖1)), the number of matrix-

vector multiplications, and the CPU time. The CPU time was gathered with on-screen

outputs suppressed. Where applicable, it was also important to consider whether it is the

smallest eigenvalue that had been obtained.

84

Since these programs have different functionalities, we carried out the testing in two

environments. For the first, the input parameters were solely the matrices, assumed no other

knowledge about the problem. In this case, eigifp was compared with eigs of MATLAB

6. For the second, we assumed that an approximate eigenvalue was available, from which a

preconditioner was computed and supplied to the programs. Then, eigifp was compared to

lobpcg (version 4.0) [45] and jdcg [55]. (Note that jdcg is a variation of the Jacobi-Davidson

method [68].)

Table II presents the results for the first test, where we compared eigifp(A,B,1) with

eigs(A,B,1,’SA’) for computing the algebraically smallest eigenvalue. For most problems,

we see that eigifp outperformed eigs in both matrix-vector multiplications and CPU time.

In several cases, eigifp also gave a smaller eigenvalue than eigs.

Table III presents the results for the second test. Here, we took the smallest eigenvalue

λ1 (as computed by eigifp) and perturbed it to arrive at the approximate eigenvalue µ =

λ1(1 − 0.1 ∗ sgn(λ1)). This perturbation yielded µ < λ1, which was required by lobpcg

and jdcg, but not by eigifp. Using µ, we computed the incomplete Cholesky factorization

with the threshold 10−3 (by choinc(A-µ B, 1e-3) in MATLAB). The incomplete Cholesky

factor was then supplied as a preconditioner to eigifp, lobpcg and jdcg. Here, the stopping

tolerance was set according to (5.4)

In this test, eigifp outperformed jdcg and was comparable to lobpcg in terms of matrix-

vector multiplications (MV). In terms of CPU time, it was slightly faster than lobpcg but

jdcg performed best. eigifp also gave slightly better results than jdcg and lobpcg in

terms of convergence of residuals. The eigenvalues returned by all three programs, when

they converged, were comparable and we omit their listing in the table.

We conclude that eigifp is a very competitive program overall. It has the advantage

Table 5.1: Harwell-Boing Test Matrices Used
No. Matrix Size No. Matrix Size
1 CAN 1072 1072 10 E40R0000 17281
2 ZENIOS 2873 11 DWT 2680 2680
3 BCSPWR10 5300 12 JAGMESH9 1349
4 BCSSTK13 2003 13 NOS7 729
5 BCSSTK18 11948 14 LSHP3466 3466
6 BCSSTK25 15439 15 PLAT1919 1919
7 BCSSTK27 1224 16 1138 BUS 1138
8 BCSSTK33 8738 17 ERIS1176 1176
9 SSTMODEL 3345 18 S3DKT3M2 90449

85

that while minimal user input is required it can exploit any extra information available to

improve the performance.

Finally, we remark that our test was limited to the smallest eigenvalue only. Since

the programs considered here use different mechanisms for computing several eigenvalues,

they may perform differently when several eigenvalues are sought. eigifp computes several

eigenvalues through deflation, but when implemented with preconditioning, the main cost

is in computing the initial approximation and then the preconditioner; following this more

eigenvalues are typically computed using only a few iterations with the same preconditioner

and would represent only a small overhead.

Copyright c© James H. Money 2006

86

Table 5.2: Res - normalized residual; MV - number of multiplications by A; Prec - number of
multiplications by preconditioner; CPU - CPU time (in seconds); λ1 - eigenvalue obtained.

EIGS EIGIFP
Res MV CPU λ1 Res MV Prec CPU λ1

1 4e-17 150 0.3 -4.3 1e-15 31 6 1.3 -4.3
2 9e-17 60 0.1 -1.4 2e-15 26 3 0.1 -1.4
3 9e-17 140 0.7 -3.1 3e-17 47 4 0.5 -3.1
4 1e-08 20050 61 1.6e+5 1e-07 4065 0 18 4.3e+4
5 3e-09 119500 1511 2.0 6e-09 24421 0 536 1.8
6 3e-09 154411 6995 1.7e+3 7e-13 33993 16 1633 1.1e-3
7 4e-07 12260 28 1.6e+2 3e-15 3548 9 13 1.4e+2
8 1e-17 210 4 -2.5e1 9e-16 72 7 25 -2.5e1
9 1e-17 90 0.2 -5.6 6e-17 35 4 0.3 -5.6
10 5e-09 172830 4006 -3.1 4e-07 43408 40763 35649 -3.1
11 4e-17 170 0.4 -4.1 5e-16 82 5 0.8 -4.1
12 4e-17 560 0.8 -2.0 2e-14 96 9 0.4 -2.0
13 2e-10 7310 8 1.1e-2 7e-14 114 69 0.6 4.2e-3
14 2e-17 960 3 -2.0 1e-15 140 9 1 -2.0
15 2e-08 19210 41 1.2e-7 5e-08 3989 0 12 4.4e-9
16 2e-08 11400 14 3.5e-3 1e-14 709 10 1 3.5e-3
17 1e-17 90 0.1 -4.9 1e-15 39 4 0.2 -4.9
18 1e-10 904510 119082 3.8e-5 3e-11 181101 0 41930 2.7e-8

87

Table 5.3: Res - normalized residual; MV - number of multiplications by A; CPU - CPU time
(in seconds), err - error encountered.

LOBPCG JDCG EIGIFP
Res MV CPU Res MV CPU Res MV CPU

1 9e-15 26 0.5 3e-15 35 0.4 1e-15 27 0.4
2 1e-14 15 0.2 4e-15 25 0.1 1e-15 16 0.1
3 5e-15 25 0.9 1e-14 34 0.5 1e-15 26 0.6
4 err err err 3e-14 115 2 8e-15 144 3
5 err err err 8e-14 74 4 7e-14 63 5
6 2e-14 30879 1568 9e-12 30879 2408 1e-19 1355 276
7 1e-14 77 1 1e-14 96 0.7 3e-15 88 1
8 5e-15 42 6 6e-15 53 7 4e-15 42 7
9 2e-15 19 0.4 4e-15 28 0.3 1e-15 19 0.3
10 2e-12 17282 3523 4e-10 17282 2334 9e-12 17305 3397
11 7e-15 34 0.7 3e-15 44 0.5 1e-15 34 0.6
12 1e-13 1350 15 7e-15 109 0.5 3e-16 271 2
13 5e-15 20 0.1 1e-14 32 0.1 2e-14 19 0.1
14 5e-15 226 6 5e-15 117 2 6e-15 115 2
15 6e-02 1920 50 err err err 1e-05 29106 960
16 1e-14 69 0.6 2e-14 70 0.2 6e-14 70 0.4
17 5e-15 13 0.1 7e-15 22 0.1 2e-16 14 0.1
18 6e-08 501 667 1e-07 501 413 4e-09 4119 4943

88

6 Conclusion

We presented a method for using a reference image in combination with the Chan and

Wong [23] TV minimizing functional for blind deconvolution. Using this Semi-Blind method

we developed, we allow non-centrosymmteric kernels and images with non-black background

images to be computed with fine details intact. We have analyzed the error in computing

the kernel function when using this reference image. In particular, the shock filter works

well as a reference image since it provides good information on edges and relative position

information.

We have presented an extension to the TV functional for the general Lp fidelity term.

Using the Euler-Lagrange form, we found solutions using the cases when p = 1 and p = 2

for corresponding kernel and image functionals. We conclude that using the L2 norm for

kernel recovery and L1 norm for the image recovery results in the best computed images for

both the blind and Semi-Blind methods. We compute the optimal values for the Lagrange

multipliers in the functionals for the one dimensional case and showed that utilizing this

information is accurate even in a two dimensional setting. In the case of the L1 fidelity

norm, we saw that there is loss of continuity in the residuals as compared to using the L2

fidelity term.

We presented a modification to Picard’s Method that utilizes the discrete data directly

in computations, yet keeps the extensibility of the Modified Picard Method. This method

was compared to the MPM and showed that it produces the same result minus the error

due to approximating the derivatives. The DPM was proven to be equivalent to the forward

time difference FD scheme, as well as the Lax-Wendroff scheme for the appropriate degree

of the iterate. We showed how to effectively compute the higher degree stability conditions

for linear problems.

We developed an black-box implementation of the inverse free preconditioned method

by Golub and Ye [40]. The method adaptively chooses the degree of the subspace utilized

based on the convergence pattern of the prior approximations to the solution. Appropriate

assumptions were made to improve the algorithms permformance. eigifp was compared to

existing methods and was shown to be competitive to those routines in numerical tests.

Copyright c© James H. Money 2006

89

REFERENCES

[1] Luis Alvarez and Luis Mazorra. Signal and image restoration using shock filters and

anisotropic diffusion. SIAM Journal on Numerical Analysis, 31(2):590–605, 1994.

[2] James Baglama, Daniela Calvetti, and Lothar Reichel. Algorithm 827: irbleigs: A

MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix.

ACM Transactions on Mathematical Software, 29(3):337–348, September 2003.

[3] Zhaojun Bai, James Demmel, Axel Ruhe Jack. Dongarra, and Henk van der Vorst.

Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,

Philadelphia, 2000.

[4] Leah Bar, Alexander Brook, Nir Sochen, and Nahum Kiryati. Color image deblurring

with impulsive noise. Lecture Notes in Computer Science, 3752:49–60, 2005.

[5] Leah Bar, Nir Sochen, and Nahum Kiryati. Variational pairing of image segmentation

and blind restoration. Lecture Notes in Computer Science, 3022:166–177, 2004.

[6] Leah Bar, Nir Sochen, and Nahum Kiryati. Image deblurring in the presence of salt-

and-pepper noise. Lecture Notes in Computer Science, 3459:107–118, 2005.

[7] Leah Bar, Nir Sochen, and Nahum Kiryati. Semi-blind image restoration via Mumford-

Shah regularization. IEEE Transactions on Image Processing, 15(2):483–493, 2006.

[8] Marcelo Bertalmio, Gerald Shapiro, Vicent Caselles, and Coloma Ballester. Image

inpainting. SIGGRAPH, 2000.

[9] David C. Carothers, G. Edgar Parker, James S. Sochacki, and Paul G. Warne. Some

properties of solutions of polynomial systems of differential equations. Electronic Journal

of Differential Equations, 2005(40):1–17, 2005.

[10] Francine Catt, Pierre-Louis Lions, Jean-Michel Morel, and Tomeu Coll. Image selective

smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical

Analysis, 29(1):182–193, 1992.

90

[11] Antonin Chambolle, Ronald A. DeVore, Namyong Lee, and Bradley J. Lucier. Nonlinear

wavelet image processing: variational problems, compression, and noise removal through

wavelet shrinkage. IEEE Transactions on Image Processing, 7(3):319–335, 1998.

[12] Raymond Chan, Tony F. Chan, Lixin Shen, and Zuowei Shen. Wavelet deblurring

algorithms for spatially varying blur from high-resolution image reconstruction. Linear

Algebra and It’s Applications, 366:139–155, 2003.

[13] Tony F. Chan and Selim Esedoglu. Aspects of total variation regularized l1 function

approximation. SIAM Journal on Applied Mathematics, 75(5):1817–1837, 2005.

[14] Tony F. Chan, Selim Esedoglu, Frederick Park, and Andy Yip. Recent developments in

total variation image restoration. In ”Handbook of Mathematical Models in Computer

Vision”,Springer Verlag, 2005.

[15] Tony F. Chan and Sung Ha Kang. Error analysis for image inpainting. Technical report,

UCLA, 2004.

[16] Tony F. Chan, Sung Ha Kang, and Jianhong Shen. Euler’s elastica and curvature-based

inpainting. SIAM Journal on Applied Mathematics, 63(2):564–592, 2002.

[17] Tony F. Chan, Stanley Osher, and Jianhong Shen. The digital TV filter and nonlinear

denoising. IEEE Transactions on Image Processing, 63(2):231–241, 2001.

[18] Tony F. Chan and Jianhong Shen. Mathematical models for local deterministic inpaint-

ings. SIAM Journal on Applied Mathematics, 62(3):1019–1043, 2001.

[19] Tony F. Chan and Jianhong Shen. Image Processing and Analysis - Variational, PDE,

wavelet, and stochastic methods. SIAM, 2005.

[20] Tony F. Chan and Jianhong Shen. Variational image inpainting. Communications of

Pure and Applied Mathematics, 58:579–619, 2005.

[21] Tony F. Chan and Jianhong Shen. Theory and computation of variational image de-

blurring. IMS Lecture Notes, 2006.

[22] Tony F. Chan and Luminita A. Vese. Active contours without edges. IEEE Transactions

on Image Processing, 10(2):266 – 277, 2001.

91

[23] Tony. F. Chan and Chiu-Kwong Wong. Total variation blind deconvolution. IEEE

Transactions on Image Processing, 7(3):370–275, 1998.

[24] Tony F. Chan, Andy M. Yip, and Frederick Park. Simultaneous total variation image

inpainting and blind deconvolution. International Journal of Imaging Systems and

Technology, 15(1):92–102, 2005.

[25] Ingrid Daubechies and Gerd Teschke. Variational image restoration by means of

wavelets: Simultaneous decomposition, deblurring, and denoising. Applied and Compu-

tational Harmonic Analysis, 19(1):1–16, 2005.

[26] Ronald A. DeVore, Bjorn Jawerth, and Bradley J. Lucier. Image compression through

wavelet transform coding. IEEE Transactions on Information Theory, 38(2):719 – 746,

1992.

[27] Ronald A. DeVore, Bjorn Jawerth, and Vasil Popov. Compression of wavelet coeffecients.

American Journal of Mathematics, 114:737 – 785, 1992.

[28] David L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information

Theory, 41(3):613–627, 1995.

[29] David L. Donoho and Iain M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81:425–455, 1994.

[30] I. Duff, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Transactions on

Mathematical Software, 1989.

[31] Lawrence Evans. Partial Differential Equations, pages 221–233. American Mathematical

Society, 1998.

[32] D. Fish, A. Brinicombe, E. Pike, and J. Walker. Blind deconvolution by means of the

richardsonlucy algorithm. Journal of the Optical Society of America A, 12(1):58–65,

1995.

[33] Diederik Fokkema, Gerard Sleijpen, and H. Van der Vorst. Jacobi-davidson style qr

and qz algorithms for the reduction of matrix pencils. SIAM Journal on Scientific

Computing, 20:94–125, 1999.

[34] B. Roy Freiden. Restoring with maximum likelihood and maximum entropy. Journal

of Optical Society of America, 62:511–518, 1972.

92

[35] Haoying Fu, Michael K. Ng, Mila Nikolova, and Jesse L. Barlow. Efficient minimization

methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM Journal on Scientific

Computing, 27(6):1881–1902, 2006.

[36] Stewart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6:721–741, 1984.

[37] Charles F. Van Loan Gene H. Golub. Matrix Computations. The Johns Hopkins Uni-

versity Press, Baltimore, 1983.

[38] Guy Gilboa, Nir Sochen, and Yehoshua Y. Zeevi. Regularized shock filters and complex

diffusion. ECCV 2002, LVCS 2350, Springer-Verlag, pages 399–413, 2002.

[39] Guy Gilboa, Nir Sochen, and Yehoshua Y. Zeevi. Image enhancement and denoising

by complex diffusion processes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(8):1020–1036, 2004.

[40] Gene H. Golub and Qiang Ye. An inverse free preconditioned Krylov subspace methods

for symmetric generalized eigenvalue problems. SIAM Journal of Scientific Computa-

tion, 24:312–334, 2002.

[41] B. R. Hunt. The application of constrained least squares estimation to image restoration

by digital computer. IEEE Transactions on Computers, 22:805, 1973.

[42] Stefan Kindermann, Stanley Osher, and Peter W. Jones. Deblurring and denoising of

images by nonlocal functionals. Multiscale Modeling and Simulation: A SIAM Interdis-

ciplinary Journal, 4(4):1091–1115, 2005.

[43] Andrew V. Knyazev. Convergence rate estimates for iterative methods for a mesh

symmetric eigenvalue problem. Soviet journal of numerical analysis and mathematical

modelling, 2:371–396, 1987.

[44] Andrew V. Knyazev. Preconditioned eigensolvers - an oxymoron? Electronic Transac-

tions on Numerical Analysis, 7:104–123, 1998.

[45] Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal

block preconditioned conjugate gradient method. SIAM Journal of Scientific Compu-

tation, 23:517–541, 2001.

93

[46] Rich Lehoucq, Danny Sorenson, and Chao Yang. ARPACK Users’ Guides, Solution

of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Method. SIAM,

Philadelphia, 1998.

[47] He Lin, Antonio Marquina, and Stanley J. Osher. Blind deconvolution using TV regu-

larization and Bregman iteration. International Journal of Imaging Systems and Tech-

nology, 15(1):74–83, 2005.

[48] L. B. Lucy. An iterative technique for the rectifications of observed distributions. As-

tronomy Journal, 79:745–754, 1974.

[49] G. Dal Maso, Jean-Michel Morel, and Sergio Solimini. A variation method in image

segmentation: existence and approximation results. Acta Metematica, 168:89 – 151,

1992.

[50] James Money. A general ODE and PDE solver using Picard’s method. MAA Sectional

Meetings, 1998.

[51] James Money and Qiang Ye. Algorithm 845: EIGIFP: a MATLAB program for solving

large symmetric generalized eigenvalue problems. ACM Transactions on Mathematical

Software, 31(2):270–279, 2005.

[52] Keith W. Morton and David F. Mayers. Numerical Solution of Partial Differential

Equations. Cambridge University Press, 1994.

[53] David Mumford and Jayant Shah. Optimal approximation by piecewise smooth func-

tions and associated variation problems. Communications on Pure and Applied Math-

ematics, 42:577 – 685, 1989.

[54] James G. Nagy and Dianne P. O’Leary. Restoring images degraded by spatially variant

blur. SIAM Journal on Scientific Computing, 19(4):1063–1082, 1998.

[55] Yvan Notay. Combination of Jacobi-Davidson and conjugate gradient for the partial

symmetric eigenproblem. Numerical Linear Algebra with Applications, 9:21–44, 2002.

[56] Stanley Osher and Leonid Rudin. Feature-oriented image enhancement using shock

filters. SIAM Journal of Numerical Analysis, 27(4):919–940, 1990.

[57] Stanley Osher, Leonid Rudin, and Emad Fatemi. Nonlinear total variation based noise

removal algorithms. Physica D, 60:259–268, 1992.

94

[58] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood

Cliffs, N.J., 1980.

[59] David L. Phillips. A technique for the numerical solution of certain integral equations

of the first kind. Journal of ACM, 9(1):84–97, 1962.

[60] Emile Picard. Traite D’Analyse, volume 3. Gauthier-Villars, 1922-1928.

[61] C. David Pruett, Joseph W. Rudmin, and Justin M. Lacy. An adaptive N-body algo-

rithm of optimal order. Journal of Computational Physics, 187:298–317, 2003.

[62] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Springer,

2000.

[63] Patrick D. Quillen. Generalizations of an inverse free Krylov subspace method for the

symmetric generalized eigenvalue problem. PhD thesis, University of Kentucky, 2005.

[64] William H. Richardson. Bayesian-based iterative method of image restoration. Journal

of Optical Society of America, 62:55–59, 1972.

[65] J.W. Rudmin. Application of the Parker-Sochacki method to celestial mechanics. Tech-

nical report, James Madison University, 1998.

[66] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University

Press, Manchester, UK, 1992.

[67] Kaleem Siddiqi, Yves B. Lauziere, Allen Tannenbaum, and Steven W. Zuker. Area

and length minimizing flows for shape segmentations. IEEE Transations on Image

Processing, 7:433 – 443, 1998.

[68] Gerard Sleijpen and Henk van der Vorst. A Jacobi-Davidson iteration method for linear

eigenvalue problems. Journal of Matrix Analysis and Applications, 17:401–425, 1996.

[69] James S. Sochacki and G. Edgar Parker. Implementing the Picard iteration. Neural,

Parallel, and Scientific Computation, 4:97–112, 1996.

[70] James S. Sochacki and G. Edgar Parker. A Picard-Maclaurin theorem for initial value

PDE’s. Abstract and Applied Analysis, 5(1):47–63, 2000.

[71] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge Press, 1997.

95

[72] David Strong, Peter Blomgren, and Tony F. Chan. Spatially adaptive local feature-

driven total variation minimizing image restoration. Proceedings of the SPIE Annual

Meeting, 3137:222–233, 1997.

[73] David Strong and Tony F. Chan. Relation of regularization parameter and scale in total

variation based image denoising. Technical report, UCLA, CAM 96-07.

[74] S. Twomey. On the numerical solution of Fredholm integral equations of the first

kind by the inversion of the linear system produced by quadrature. Journal of ACM,

10(1):97–101, 1963.

[75] Curtis Vogel. Computational Methods for Inverse Problems. SIAM, 2002.

[76] Curtis Vogel and Mary Oman. Iterative methods for total variation denoising. SIAM

Journal on Scientific Computing, 17(1):227–238, 1996.

[77] Paul G. Warne, Debra A. P. Warne, James S. Sochacki, G. Edgar Parker, and David C.

Carothers. Explicit a-priori error bounds and adaptive error control for approxima-

tion of nonlinear initial value differential systems. Computers and Mathematics with

Applications, to appear.

[78] Martin Welk, David Theis, and Joachim Weickert. Variational deblurring of images with

uncertain and spatially variant blurs. Pattern Recognition, Lecture Notes in Computer

Science, 3663:485–492, 2005.

[79] Herbert S. Wilf. generatingfunctionology. Academic Press, 2 edition, 1994.

[80] Yu-Li You and Mostafa Kaveh. Anisotropic blind image restoration. IEEE Transactions

on Image Processing, 8(3), 1999.

[81] Olgierd C. Zienkiewicz, Robert L. Taylor, and Jian Z. Zhu. The Finite Element Method:

Its Basis and Fundamentals. Butterworth-Heinemann, 6th edition, 2005.

96

VITA

1. Background

(a) Date of Birth: October 27, 1975

(b) Place of Birth: Charlotte, NC

2. Academic Degrees

(a) B.S., Computer Science(Mathematics minor), James Madison University, 1998.

(b) M.S., Mathematics, University of Kentucky, 2003.

3. Professional Experience

(a) Teaching Assistant, Mathematics Department, University of Kentucky, Fall 2001-

Spring 2006.

(b) Research Assistant under Dr. Ren-Cang Li, University of Kentucky, Summer

2003-Spring 2004.

(c) Research Assistant under Dr. Qiang Ye, University of Kentucky, Summer 2002.

(d) Software Engineer, BAE Systems, Reston, VA January 1999-August 2001.

(e) System Administrator, Department of Mathematics, James Madison University,

May 1998-January 1999.

4. Publications

(a) Algorithm 845: EIGIFP: a MATLAB program for solving large symmetric gener-

alized eigenvalue problems. (with Qiang Ye) ACM Transactions on Mathematical

Software, 2005, 31(2), p.270-279.

97

	VARIATIONAL METHODS FOR IMAGE DEBLURRING AND DISCRETIZED PICARD'S METHOD
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	1 Preliminaries
	1.1 Image Processing and Image Model
	1.1.1 Total Variation Minimizing Schemes
	1.1.2 Image Deblurring

	1.2 Numerical Methods
	1.2.1 Picard's Method
	1.2.2 Generalized Eigenvalue Problems and EIGIFP

	1.3 Organization

	2 Semi-Blind Total Variation Deconvolution
	2.1 TV Minimizing Blind Deconvolution
	2.2 Reference Image and Shock Filter
	2.3 Numerical Implementation
	2.3.1 Kernel Refinements
	2.3.2 Examples

	3 Lp Norm Fidelity in Semi-Blind Total Variation Deconvolution
	3.1 Lp Fidelity Term Functionals
	3.2 Adaptive Scale Selection for L2
	3.3 Adaptive Scale Recognition for L1
	3.4 Numerical Comparisons and Experiments
	3.4.1 Numerical Implementation
	3.4.2 Scale Dependence in the L1 Fidelity Term
	3.4.3 Fitting Term Comparisons
	3.4.4 Examples

	4 Discretized Picard's Method
	4.1 Modified Picard Method for PDEs
	4.2 Discretized Picard's Method
	4.2.1 Computation of Li
	4.2.2 Boundary Conditions

	4.3 Comparison of MPM with DPM and Finite Differences
	4.4 Stability
	4.5 Numerical Implementation and Examples

	5 EIGIFP
	5.1 Inverse Free Krylov Subspace Method
	5.1.1 Basic Method
	5.1.2 LOBPCG Type Subspaces Enhancement
	5.1.3 Deflation
	5.1.4 Black-box Implementations
	5.1.5 Relation to Total Variation Image Deblurring

	5.2 Numerical Comparisons

	6 Conclusion
	References
	Vita

