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ADMM in Krylov Subspace and Its Application to Total Variation Restoration of
Spatially Variant Blur∗

Joo Dong Yun† and Seungjoon Yang†

Abstract. In this paper we propose an efficient method for a convex optimization problem which involves a large
nonsymmetric and non-Toeplitz matrix. The proposed method is an instantiation of the alternating
direction method of multipliers applied in Krylov subspace. Our method offers significant advantages
in computational speed for the convex optimization problems involved with general matrices of
large size. We apply the proposed method to the restoration of spatially variant blur. The matrix
representing spatially variant blur is not block circulant with circulant blocks (BCCB). Efficient
implementation based on diagonalization of BCCB matrices by the discrete Fourier transform is not
applicable for spatially variant blur. Since the proposed method can efficiently work with general
matrices, the restoration of spatially variant blur is a good application of our method. Experimental
results for total variation restoration of spatially variant blur show that the proposed method provides
meaningful solutions in a short time.
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1. Introduction. Many interesting problems in image processing involve finding a solution
of a system of linear equations given by g = Af , where A ∈ Rd×d and g, f ∈ Rd. When the
problem is ill-posed, a regularized solution can be found by reducing the solution space with
constraints that reflect our prior knowledge about the solution. With convex constraints
that reflect our prior knowledge, the problem can be written as a convex optimization. The
alternating direction method of multipliers (ADMM) [11, 26, 27] is a convex optimization
tool, which recently received considerable attention for its ease of incorporating diverse convex
constraints to the problem, ease of implementation, and fast computational speed.

The Krylov subspace method [44, 45] is a projection method which restricts the solution
space of the problem g = Af to the subspace spanned by the nth order Krylov sequence x,
Ax, A2x, . . . , An−1x constructed from a vector x ∈ Rd. By reducing the solution space to a
subspace of small dimensionality, a solution can be found efficiently. The orthonormal basis
of the Krylov subspace can be found by the Lanczos bidiagonalization when A is symmetric
and by the Arnoldi process when A is nonsymmetric. Examples of the Krylov subspace
method are minimum residual (MINRES) [41] and generalized minimum residual (GMRES)
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[46], which find solutions of systems of linear equations with a symmetric and a nonsymmetric
A, respectively, and Arnoldi–Tikhonov [15], which finds a solution of a Tikhonov regularization
problem with nonsymmetric A.

Image restoration, or deblurring, is an inverse problem of finding a clear image from
an observed image which is blurry and noisy. The image acquisition process, including the
introduction of blur and additive noise, can be modeled by a system of linear equations
[5, 6]. The restoration problem is to find a solution of the system of linear equations, which
is usually ill-posed. A meaningful solution is obtained by adopting regularizations based on
prior knowledge of the solution [24]. Various types of convex regularizations such as total
variation (TV) and `1 and `2 norms are used to penalize the roughness of the solution based
on our prior knowledge. The restoration problems can be solved in various types of convex
optimization frameworks [1, 2, 7, 8, 9].

Images captured by real world imaging systems show blur due to imperfect optical sys-
tems or acquisition conditions. Blur in images is often spatially variant in the sense that the
shape of the point spread function (PSF) changes depending on pixel locations in an image.
Optical aberrations, inaccurate focusing, camera shake, and movement of objects are all pos-
sible sources of blur. Blur introduced by an optical aberration, such as spherical aberration,
astigmatism, coma, or field curvature of a lens system, depends on pixel locations in an image
sensor [29, 34, 37, 38, 47]. Objects outside the depth-of-field show blur differently from objects
in focus [47, 53]. Objects farther away show an amount of blur different from that of objects
closer to a camera shaken during exposure [35]. Objects moving faster show more severe blur
than the background, which remains still when exposure time is long [3]. Degradation by
the spatially variant blur is modeled by a system of linear equations with a nonsymmetric
and non-Toeplitz matrix. In the case of spatially invariant blur, the degradation is modeled
by a system of linear equations with a block circulant matrix with circulant blocks (BCCB)
[1, 2, 4, 18, 33]. The BCCB matrix is a type of Toeplitz matrix which can be diagonalized
by the discrete Fourier transform (DFT) [32]. Efficient restoration methods based on the
diagonalization by the DFT are available for the spatially invariant blur [2, 17, 31]. In the
case of spatially variant blur, efficient implementation based on the diagonalization by the
DFT is not available. The solution of the system of linear equation with a nonsymmetric
and non-Toeplitz matrix is found by iterative methods, which usually are computationally
expensive.

This work presents an efficient convex optimization method based on ADMM [12] and a
Krylov subspace method [44] to find a regularized solution of the problem Af = g, where
A is nonsymmetric and non-Toeplitz. The problem is formulated as a general convex op-
timization problem with convex constraints that ADMM solves. The solution space of the
convex optimization problem is restricted to the nth order Krylov subspace. The basis of the
Krylov subspace is found by the Arnoldi process. Subproblems involved in ADMM iterations
are considerably simplified by the relationship given by the Arnoldi process. The proposed
ADMM with Krylov subspace (KADMM) is applied to the TV restoration of spatially variant
blur. Performance is evaluated with spatially variant Gaussian blur and spatially variant rota-
tional blur. Performance of the proposed method is compared to that of Nesterov’s algorithm
(NESTA) [8] and the primal-dual proximal algorithm (PA) [21], which find the solution of the
convex optimization problem in the original solution space. The proposed method provides
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similar results to NESTA and PA in the mean square error (MSE), even though the solution
space is restricted to the nth order Krylov subspace. The proposed method has significantly
lower computational complexity in terms of the number of multiplications by a large matrix
and also in terms of the wall-clock time.

Spatially variant blur can be modeled by piecewise spatially invariant blur [39, 36], for
which efficient implementation by the DFT is applicable. In [40], the piecewise invariant
blur model is applied to the restoration of spatially variant Gaussian blur. The use of the
piecewise invariant blur model is to accelerate the computationally dominant operations. The
quality of the restored images will depend on how well the model approximates the spatially
variant blur, and also on how rank-deficient the matrix A becomes after the modeling. The
aim of the proposed method is to reduce the solution space for efficient computation without
approximating the spatially variant blur.

The main contribution of this work is to provide an effective convex optimization frame-
work to solve an inverse problem with various regularizations for a system represented by
a nonsymmetric non-Toeplitz matrix. By restricting the solution space to the Krylov sub-
space, a meaningful inexact solution can be found efficiently by the ADMM, for which various
constraints and regularizations are readily available. For image restoration, the proposed
framework can be applied to fast restoration of spatially variant blur.

This paper is organized as follows. In section 2, ADMM, Krylov subspace methods, and
the restoration of spatially variant blur are introduced. In section 3, the general form of the
problem that we consider and the proposed method, KADMM, are presented. In section 4,
KADMM is applied to the TV restoration of spatially variant blur. Experimental results and
discussions are provided in section 5. Section 6 concludes the paper.

2. Basic ingredients.

2.1. Alternating direction method of multipliers. The solution of optimization problems
in the form of

(1) minimize
u∈Rd

J∑
j=1

cj(Bju)

can be found by the ADMM, where Bj ’s are arbitrary matrices and cj ’s are convex, closed,
and proper functions for j = 1, . . . , J . The variable splitting with vj = Bju for j ∈ [1, J ] and
the augmented Lagrangian method is the key idea of the ADMM. The ADMM algorithm is
given in Algorithm 1, where

(2) B =

 B1
...

BJ

 , v =

 v1
...
vJ

 , d =

 d1
...
dJ

 .
A proximal operator of a function c is defined as

(3) proxc(x) = arg min
y

c(y) +
1

2
‖x− y‖22.

The proximal operators are well defined if the function c is proper and convex [20]. For various
choices of the function h, corresponding proximal operators proxc are available in closed form.
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Algorithm 1 ADMM.

1: repeat
2: u← arg minu ||Bu− v − d||22
3: for j = 1, . . . , J do
4: vj ← proxcj/µ(Bju− dj)
5: dj ← dj − (Bju− vj)
6: end for
7: until stopping criterion is satisfied.

2.2. Krylov subspace methods. Krylov subspace methods consider an inverse problem of
the form g = Af , where A ∈ Rd×d and f , g ∈ Rd. A Krylov subspace of order n is generated
by a matrix A and a residual vector r := g −Af0 as follows:

(4) Kn(A, r) = span{r,Ar, . . . ,An−1r},

where f0 ∈ Rd is an initial solution. Krylov subspace methods approximate the solution vector
f ∈ Rd by assuming

(5) f − f0 ∈ Kn(A, r).

Then the solution can be written as

(6) f = f0 + Qnα,

where α ∈ Rn is the weight for the linear combination and Qn := [q1, . . . ,qn] ∈ Rd×n
is a matrix with the basis {q1, . . . ,qn} of the nth order Krylov subspace Kn(A, r). For
nonsymmetric A, the basis can be computed by the Arnoldi process in Algorithm 2. The
Arnoldi process also provides the following relationship:

(7) AQn = Qn+1Hn,

where Hn ∈ R(n+1)×n is an upper Hessenberg matrix. The problem of finding f ∈ Rd becomes
a problem of finding the weight α ∈ Rn of the linear combination in (6). For example, finding
f with minimum residual is equivalent to finding α with

(8) ‖g −Af‖ = ‖r−AQnα‖ = ‖βe0 −Hnα‖,

where β = ‖r‖ and e0 is the vector with zero elements except the first one. With n� d, the
size of the problem can be reduced significantly. Krylov subspace methods have been applied
to the least squares problem [41, 46] and the Tikhonov regularization problem [15]. Those
problems are subsets of convex optimization. As an extension, we propose a Krylov subspace
method which can be applied to a more general framework of convex optimization.
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Algorithm 2 Arnoldi(A, g, n, f0).

1: r0 ← g −Af0
2: q1 ← r0/‖r0‖2
3: for i = 1, . . . , n do
4: v← Aqi
5: for j = 1, . . . , i do
6: hj,i ← qT

j v
7: v← v − hj,iqj
8: end for
9: hi+1,i ← ‖v‖2

10: qi+1 ← v/hi+1,i

11: end for

3. ADMM in Krylov subspace (KADMM).

3.1. Problem formulation. Consider an optimization problem in the form of

(9) minimize
u∈Rd

h1(Au) +

J∑
j=2

hj(Gju),

where each function hj : Rd → R ∪ {+∞} is proper, closed, and convex, and each matrix
Gj ∈ Rd×d for all j. The matrix A ∈ Rd×d can be nonsymmetric and non-Toeplitz in general.

One can apply ADMM directly to solve the problem in (9) with B1 = A in Algorithm 1. If
the involved matrix A is BCCB, efficient methods based on the DFT are available to solve the
subproblems of the ADMM. However, if the matrix is not BCCB, the minimization problem
inside line 2 of Algorithm 1 cannot be accelerated by the efficient DFT implementation. In
general, solving the inverse problems of unstructured matrices such as nonsymmetric and non-
Toeplitz matrices is more difficult when the dimensionality of the involved matrix is huge. To
overcome those difficulties associated with directly applying the ADMM, we propose to restrict
the solution space to the nth order Krylov subspace when finding the solution of the convex
optimization problem with ADMM.

3.2. Application of Krylov subspace method. In order to find a solution in an efficient
manner, we restrict the solution space of the optimization problem in (9) to the nth order
Krylov subspace. An inexact solution is found in u0 + Kn(A, r) instead of in Rd, where u0

is the initial solution for the solution u, and r is the residual, r = g −Au0. The dimension
of the solution space is significantly reduced with a proper choice of n � d. Applying the
Krylov subspace method to (9), we have

(10) minimize
u∈u0+Kn(A,r)

h1(Au) +

J∑
j=2

hj(Gju).

The basis of the Krylov subspace of degree n can be efficiently computed by the Arnoldi process
as in Algorithm 2. Since the solution vector projected in Krylov subspace u0 +Kn(A, r) can
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be written in the form of (6), the objective in (10) becomes

(11) h1(AQnα + Au0) +

J∑
j=2

hj(GjQnα + Gju0),

with α ∈ Rn and Qn ∈ Rd×n. The optimization problem in (11) can be rewritten as

(12) minimize
α∈Rn

ĥ1(AQnα) +
J∑
j=2

ĥj(GjQnα),

where ĥ1(y) = h1(y + Au0) and ĥj(y) = hj(y + Gju0) for j = 2, . . . , J . Note that the
dimension of the search space n in (12) is significantly smaller than the original search space
d in (10). In the following sections, it will be shown that this reduced optimization problem
can be solved by ADMM very efficiently within a small dimension n.

3.3. Application of ADMM. The ADMM is applied to find the solution of (12). The
proposed method of applying the ADMM in the Krylov subspace is denoted by KADMM in
the remainder of the paper. The algorithm is shown in Algorithm 3.

At first, let us investigate the applicability of ADMM for (12). The application of ADMM
is justified when the following hold:

1. Each function ĥj : Rd → R is convex, closed, and proper.

2. A numerical formula for the proximal operator of each ĥj is derived.
3. The least squares problem in line 2 of Algorithm 1 is computable, or the dimension of

the problem is reduced.
The first condition is a general assumption for ADMM. The second condition is needed to
calculate line 4 of Algorithm 1 for the reduced problem (12). Finally, the third condition is
related to line 2 of Algorithm 1. These items will be justified in the following.

Lemma 1. Each ĥj : Rd → R in (12) is convex, closed, and proper.

Proof. By definition, ĥj in (12) is a translated function from hj , which is convex, closed,
and proper for j = 1, . . . , J . It is trivial to show that translation preserves those properties
[10, 13], so ĥj is also convex, closed, and proper.

Lemma 2. The proximal operator of ĥj in (12) is given by

(13) proxĥ1/µ(y) = −Au0 + proxh1/µ(y + Au0)

and

(14) proxĥj/µ(y) = −Gju0 + proxhj/µ(y + Gju0)

for j = 2, . . . , J .

Proof. Proximal operators of ĥj should be calculated in order to apply ADMM to (12).
The translation property of proximity operators [19] says that if ψ(x) = ϕ(x− z), then

(15) proxψ(y) = z + proxϕ(y − z).
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Since ĥ1(y) = h1(y+Au0) and ĥj(y) = hj(y+Gju0) for j = 2, . . . , J , the proximal operators

of ĥj can be written by a function of the proximal operators of hj , as in (13) and (14).

Now we can say that if the proximal operators of hj are computable, the proximal operators

of ĥj are also computable. This will be used in line 4 of Algorithm 1 when we apply ADMM.
The ADMM framework in Algorithm 1 is applicable by setting B1 ← AQn, u ← α,

cj ← ĥj , and Bj ← GjQn for j = 2, . . . , J . We apply ADMM to the optimization problem
in (12), which leads to the KADMM algorithm in Algorithm 3. The proximal operators (13)
and (14) are computed in lines 7 and 10 of Algorithm 3, respectively.

Proposition 3. Under the Krylov subspace assumption, i.e., u ∈ u0 + Kn(A, r), the least
squares problem on line 2 of Algorithm 1 is reduced to

(16) minimize
α∈Rn

∥∥∥∥∥∥∥∥∥


Hn

Ḡ2
...

ḠJ

α−


QT
n+1(v1 + d1)
QT
n (v2 + d2)

...
QT
n (vJ + dJ)


∥∥∥∥∥∥∥∥∥
2

2

,

where Ḡj := QT
nGjQn ∈ Rn×n for j = 2, . . . , J .

Proof. Applying Algorithm 1 to (12), the function in the least squares problem on line 2
can be written as

(17)

∥∥∥∥∥∥∥∥∥


AQn

G2Qn
...

GJQn

α−


v1 + d1

v2 + d2
...

vJ + dJ


∥∥∥∥∥∥∥∥∥
2

2

,

where the matrix Qn in the first row is the product of the Arnoldi process for A, which has
the property of AQn = Qn+1Hn as in (7). Note that Qn ∈ Rd×n is stacked by orthonormal
columns, satisfying QT

nQn = In for any n. For a given vector x ∈ Rd, ‖Qnx‖22 = ‖x‖22.
Therefore, the matrix size involved with the problem (17) can be reduced as follows:

(18)

∥∥∥∥∥∥∥∥∥


QT
n+1(Qn+1Hn)
QT
nG2Qn

...
QT
nGJQn

α−


QT
n+1(v1 + d1)
QT
n (v2 + d2)

...
QT
n (vJ + dJ)


∥∥∥∥∥∥∥∥∥
2

2

.

Since QT
n+1Qn+1 = In+1, (18) is equivalent to (16).

By the relationship (7) given by the Krylov subspace method, the least squares problem
in line 2 of Algorithm 1 can be reduced to a least squares problem of smaller size. This is
reflected in line 6 of Algorithm 3.

The matrix involved with the least squares problem in (16) has size (nJ + 1) × n. With
a fixed n� d, the size of the matrix involved with the least squares problem in (16) is much
smaller than the matrix originally given by direct application of the ADMM, whose size is
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dJ × d. The size of the least squares problem in (16) does not depend on the dimension
of the original solution space d, but only on the parameter n. Since Ḡj has size n × n, it
can be stored in a small amount of memory before the outer loop of ADMM starts and used
throughout the entire iterations of ADMM. Additionally, if Gj is an identity matrix of size
d× d, then Ḡj is an identity matrix of size n×n. In this case, we don’t have to calculate and
store the matrix during computational iterations. We will show that this reduction occurs in
certain formulations of the TV deblurring problem.

Proposition 4. For a vector α ∈ Rn, the operation of Qn+1Hnα is computationally faster
than the operation of AQnα.

Proof. Considering the sizes of the involved matrices, the operations of Qn+1(Hnα) and
A(Qnα) approximately require (2n2+2nd) ≈ O(d) and (2nd+2d2) ≈ O(d2) flops, respectively
[28]. The above claim holds for n� d.

In KADMM, the operation A is used only for the Arnoldi process to find the basis of the
nth order Krylov subspace, and the iterations of the ADMM do not require the computation-
ally expensive operation A.

The KADMM is summarized in Algorithm 3. The KADMM can find an inexact solution
to any problem for which the ADMM can be applied. By the Krylov subspace method, not
only is the dimension of search space reduced from d to n, but the size of the least squares
problem in the ADMM also is reduced greatly. The KADMM finds the solution only in the
nth order Krylov subspace.

Algorithm 3 KADMM(A,g,n,u0).

1: Qn+1,Hn ← Arnoldi(A,g, n,u0)
2: for j = 2, . . . , J do
3: Ḡj ← QT

nGjQn ∈ Rn×n
4: end for
5: repeat

6: α← arg min
α

∥∥∥∥∥∥∥∥∥


Hn

Ḡ2
...

ḠJ

α−


QT
n+1(v1 + d1)
QT
n (v2 + d2)

...
QT
n (vJ + dJ)


∥∥∥∥∥∥∥∥∥
2

2
7: v1 ← −Au0 + proxh1/µ(Qn+1Hnα− d1 + Au0)
8: d1 ← d1 − (Qn+1Hnα− v1)
9: for j = 2, . . . , J do

10: vj ← −Gju0 + proxhj/µ(GjQnα− dj + Gju0)
11: dj ← dj − (GjQnα− vj)
12: end for
13: until stopping criterion is satisfied.
14: u← Qnα + u0
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3.4. Convergence analysis. The KADMM is an application of ADMM for (12) which is
a convex optimization problem derived by the Krylov subspace method. Using the projection
method on Krylov subspace, the dimension of the search space is changed from image size
d to optional truncation order n. Given n � d, the convergence of KADMM follows the
convergence of ADMM [30, 23] of smaller optimization problems. It will be shown in numerical
experiments that the practical choice of small n gives fast convergence as well.

4. TV restoration of spatially variant blur.

4.1. Restoration of spatially variant blur. The image acquisition model is given by

(19) g(s) =
∑
t

k(s, t)f(t) + n(s),

where g, f , and n are the observed, original, and noise images, respectively, k is the blur
kernel, and s and t are two-dimensional spatial variables. The blur kernel depends on the
spatial location s, and hence the blur in this model is spatially variant. The image acquisition
model can be rewritten as

(20) g = Af + n,

where g, f , and n are the lexicographically ordered vectors of the observed, original, and
noise images. The matrix A represents the operation by the spatially variant blur kernel k.
For images of size M ×N , the sizes of vectors are MN × 1, and the size of the matrix A is
MN×MN . Deblurring or restoration is the process of obtaining the original image f given an
observed noisy blurred image g and the blur model A. This paper focuses on the development
of a restoration method assuming the blur model is given.

When the blur introduced by the image acquisition process is spatially invariant, the blur
kernel can be specified by

(21) k(s, t) = k(s− t),

and the sum in (19) becomes the two-dimensional convolution operation. For spatially in-
variant blur, the matrix A in (20) is Toeplitz [32], and with a periodic boundary condition,
the matrix A becomes BCCB [5]. Block circulant matrices can be diagonalized by the DFT
matrix. Many restoration algorithms rely on the diagonalization by the DFT matrix for their
efficient implementation [1, 2].

When the blur kernel changes depending on the locations of pixels in an observed image,
or a periodic boundary condition breaks down, the matrix A is no longer BCCB. Restoration
algorithms that rely on the inversion of the matrix A cannot be implemented efficiently using
the DFT matrix. Moreover, for spatially variant blur, the matrix A is nonsymmetric in
general. Iterative solvers that assume a symmetric matrix cannot be applied directly but
must be applied to the normal equation ATAf = ATg for the restoration of spatially variant
blur. When the blur is spatially variant and the image size is large, the least squares problem
is difficult to solve with the large nonsymmetric and non-Toeplitz matrix A. Even with images
of moderate sizes, the size of the matrix A is considerably large. Explicit construction of ATA
is not practical. The multiplication by the matrix A or AT can be implemented implicitly
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by filtering with spatially varying filter coefficients [52, 50, 29]. Using the piecewise constant
convolution function and induced DFT implementation, multiplication by A or AT can be
approximated efficiently [39, 36, 22, 25, 48, 40]. However, the approximation of A and AT

introduces mismatches of blur models in the acquisition and restoration processes.
The KADMM developed in the previous section can efficiently work with non-BCCB

general matrices. The restoration of spatially variant blur is a good application of our method.

4.2. TV restoration. TV regularization was introduced in [43] for image denoising prob-
lems and has been widely used for image deblurring since it generates visually nice results
[1, 2, 18, 4, 51]. However, most of these works are limited to the restoration of spatially
invariant blur where the matrix A has Toeplitz structure. We consider the TV restoration for
the restoration of spatially variant blur. The optimization problem can be written as

minimize
f∈RMN

TV(f)

subject to ‖Af − g‖2 ≤ ε,
0 ≤ f ≤ 1,

(22)

where the function TV(f) is the isotropic discrete total variation. The first constraint is on
the deviation between the solution and the observed images. The parameter ε > 0 can be
predetermined by the discrepancy principle [49]. The second constraint limits the dynamic
range of the solution. The TV restoration of spatially variant blur can be written in the form
of (9). The problem in (22) can be rewritten as an unconstraint optimization problem as

(23) minimize
f∈RMN

TV(f) + δ(Af |B(ε,g)) + δ(f |R(0, 1)),

where the indicator function δ is given by

(24) δ(x|X) =

{
0 if x ∈ X,
+∞ otherwise.

The set B(γ, c) := {x : ‖x− c‖2 ≤ γ} denotes a ball which has radius of γ and is centered at
a point c. The set R(β1, β2) := {x : β1 ≤ xi ≤ β2 for all i} denotes a rectangle or a box from
α to β, which ensures that the solution image f has meaningful values inside the restricted
dynamic range. The unconstrained optimization problem (23) is taken from (9) by setting

h1 = δ(·|B(ε,g)),

h2 = TV,

h3 = δ(·|R(0, 1)),

G2 = IMN ,

G3 = IMN ,(25)

where IMN is the identity matrix of size MN×MN . This problem formulation was solved for
the restoration of space invariant blur in [2, 18]. The key idea was a DFT implementation for
the least squares problem in line 2 of Algorithm 1, which is not applicable to the restoration
of spatially variant blur. We apply the KADMM to the TV restoration of spatially variant
blur.
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4.3. Application of KADMM. The solution space for the restoration problem is restricted
to the nth order Krylov subspace. With the zero vector as the initial solution, i.e., f0 = 0,
the image restoration problem in the nth order Krylov subspace becomes

minimize
α∈Rn

TV(Qnα)

subject to ‖AQnα− g‖ ≤ ε,
0 ≤ Qnα ≤ 1.

(26)

The objective of the corresponding unconstrained optimization problem can be written as

(27) TV(Qnα) + δ(AQnα|B(ε,g)) + δ(Qnα|R(0, 1)).

The KADMM algorithm can be applied by identifying (25). The KADMM for the optimization
problem in (26) is given in Algorithm 4.

The proximal operator for TV is studied in [16] with a fixed point iteration scheme. The
proximal operator for δ(·|S) is given as a projection on the set S. Therefore,

(28) proxδ(·|B(ε,c))(s) =

{
c + ε s−c

||s−c||2 , ‖s− c‖2 > γ,

s, ‖s− c‖2 ≤ γ,

and

(29) proxδ(·|R(α,β))(s)i =


α, si ≤ α,
si, α < si < β,

β, si ≥ β.

For image restoration problems, the blur is usually modeled with PSFs with compact
supports. For spatially variant blur, the PSF changes depending on spatial location. For
a PSF with compact support, for example, w × w, the multiplication by A alone requires
w2 ×MN operations for M × N size images. The multiplication by Qn requires n ×MN
operations. For n < w2, it is computationally cheaper to work with Qn than with A.

Another possible variable splitting method for TV restoration is to let G2 = ∇, where ∇ ∈
R2MN×MN is a matrix representing the discrete gradient operator, and h2(u) =

∑MN
i=1 (u2i +

u2i+MN )1/2 for u ∈ R2MN . This variable splitting method has an advantage in that the proxi-
mal operator for h2 has a closed form [21]. However, there is a slight increase of computational
complexity in the least squares problem dealing with G2. The computationally dominant part
of KADMM is the Arnoldi process that runs in the original space RMN . Since the ADMM
runs in the reduced space Rn, the computations for the ADMM iterations take only a small
part of the total computational complexity. The two variable splitting methods for KADMM
are similar to each other in terms of computational complexity.
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Algorithm 4 KADMM for the TV restoration.

1: Qn+1,Hn ← Arnoldi(A,g, n,0)
2: repeat

3: α← arg min
α

∥∥∥∥∥∥
Hn

In
In

α−

QT
n+1(v1 + d1)
QT
n (v2 + d2)

QT
n (v3 + d3)

∥∥∥∥∥∥
2

2
4: v1 ← proxδ(·|B(ε,g))(Qn+1Hnα− d1)
5: v2 ← proxTV/µ(Qnα− d2)
6: v3 ← proxδ(·|R(0,1))(Qnα− d3)
7: d1 ← d1 − (Qn+1Hn − v1)
8: d2 ← d2 − (Qnα− v2)
9: d3 ← d3 − (Qnα− v3)

10: until stopping criterion is satisfied.
11: f ← Qnα

5. Experiments.

5.1. Spatially variant Gaussian blur. The spatially variant Gaussian blur model in [9]
is used for the restoration experiments. The blur kernel at the pixel location s = (s1, s2) in
the image acquisition model in (19) is obtained from the two-dimensional separable Gaussian
function

(30) k(s, t) =
1

ξ
exp

(
−1

2

(
(t1 − s1)2

σ2x(s1)
+

(t2 − s2)2

σ2y(s2)

))
,

where the normalizing constant is given by

(31) ξ = 2πσx(s1)σy(s2).

The variances σx and σy are functions of s1 and s2, respectively. The blur kernel changes
depending on the location s, and hence the blur is spatially variant.

Three types of spatially variant Gaussian blur are considered. The first type has a smaller
amount of blur at the center and a larger amount of blur at the corners of an image. The
variances of the spatially variant Gaussian blur kernel are given by

σx(s1) = γ|0.5− s1/M |+ 0.5,

σy(s2) = γ|0.5− s2/N |+ 0.5.(32)

The second type is the opposite of the first case, with more severe blur at the center and
milder blur at the corners. The variances are given by

σx(s1) = −γ|0.5− s1/M |+ 2.5,

σy(s2) = −γ|0.5− s2/N |+ 2.5.(33)

The third type has smaller amount of blur at the lower right corner and larger amount of blur
at the upper left part of an image. The variances are given by

σx(s1) = γ(0.5− s1/M)/2 + 1.25,

σy(s2) = γ(0.5− s2/N)/2 + 1.25.(34)
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The scalar γ, which is related to the gradient of the variance, is fixed as 4 in our experiment,
and 21 × 21 kernel size is used for discretization. The spatially variant Gaussian functions
sampled at 7× 7 locations are shown in Figure 1. Note that the blur kernels in Figure 1 are
examples of blur kernels that change their shape pixelwise. Three blur models have severe
blurs with large gradient of variances.

(a) (b) (c)

Figure 1. Examples of spatially variant Gaussian blur used in the experiments. The variances change with
the pixel locations in an image. The kernels are sampled at 7× 7 pixel locations. (a) Type 1: more severe blur
at the corners. (b) Type 2: more severe blur at the center. (c) Type 3: more severe blur at the upper left corner.

5.2. Rotational blur. Rotational blur is another example of spatially variant blur. The
rotational blur is a special case of motion blur for which the blurred image g is formed as
a weighted sum of images at incremental times during acquisition. The image acquisition
process is modeled by

(35) g =
T∑
t=1

wtft + n,

where ft is an image at time t, wt is the normalization weight for the tth image, and n is
the additive noise. Assuming ft is a transformed image of f by a two-dimensional projective
transformation and using bilinear interpolation for the transformation, ft can be represented
as a linear transformation of f , i.e., ft = Ktf , where the matrix Kt contains a set of coefficients
of the bilinear transformation [9]. Then (35) can be written in the form of (20) as

g =

(
T∑
t=1

wtKt

)
f + n(36)

= Af + n.(37)

In the case of the rotational blur, ft is a rotated image centered at the original image
center by an angle θt. For our experiments, we set T = 25 and wt = 1/T for all t. The three
rotational blurs are defined by changing a range parameter ρ, where

(38) θt = ρ(t− 13)/12◦, t = 1, 2, . . . , 25.

The range of θt is [−ρ, ρ] degrees. The fourth, fifth, and sixth spatially variant blurs are
defined by rotational blur with ρ = 2, 4, 8, respectively.
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(a) (b) (c)

(d) (e)

Figure 2. Test images of size 256 × 256: (a) Cameraman, (b) Baboon, (c) Grain, (d) HD test image of
size 1920× 1080, and (e) 36-megapixel test image of size 7360× 4912.

5.3. Computational environment. Cameraman, Baboon, and Grain images of size 256×
256 pixels, a high definition (HD) image of size 1920×1080 pixels, and a 36-megapixel image of
size 7360×4912 pixels used in our experiments are shown in Figure 2. The images are blurred
by the spatially variant blur, and Gaussian noise is added to meet given blurred signal-to-noise
ratio (BSNR) values. The BSNR is defined by

(39) BSNR = 10 log
var(Af)

σ2
,

where var(Af) is the variance of Af and σ2 is the noise variance. The BSNR is set at 60 dB
in our experiments.

All the algorithms are implemented with MATLAB. The matrices A and AT for spatially
variant blur are precomputed and stored as sparse matrices. If not stated otherwise, the
matrix vector multiplications are performed with the stored sparse matrices. For larger size
images, explicit construction of A or AT is unavailable due to the large dimensionality. In this
case, the matrix vector multiplications are performed implicitly as spatially variant filtering
operations with CUDA. The computation time for the operation Ax or ATx includes the
time for the memory transfers to and from a GPU.

The value of the augmented Lagrangian parameter µ is set to one, and the value of ε is set
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Figure 3. TV restoration of spatially variant blur using KADMM in terms of the MSE over the number of
the basis vectors n = 2ζ for ζ = 1, 2, . . . , 6.

by Morozov’s discrepancy principle [18, 49], ε =
√
τMNσ, where a rule of thumb is τ = 1. The

periodic boundary condition is chosen for the experiments on spatially variant Gaussian blur,
and the zero boundary condition is chosen for the experiments on rotational blur. Termination
conditions are set by the relative change of the residuals, ‖ri − ri−1‖/‖ri‖, where ri is the
residual at the ith iteration. They are chosen to be 10−5 for all of the experiments with
256 × 256 size images. For the experiments with larger size images, they are chosen to be
10−3.

5.4. Numerical results. The performance of Krylov subspace methods is affected by the
choice of the order of Krylov subspace n. Figure 3 shows the performance of the KADMM
when the order of Krylov subspace n = 21, 22, . . . , 26. The average mean square error (MSE)
of the three 256×256 size test images for the three different Gaussian blur types and the three
different rotational blurs is shown. It can be seen that, in general, the performance increases as
the order of Krylov subspace n increases. The decreases of MSEs become incrementally smaller
as n increases. Note that as n increases, more memory is needed to store the Qn+1 matrix of
size MN × (n + 1). Moreover, the size of the least squares problem increases with n. In the
following experiments, the order of the Krylov subspace is chosen to be 16, considering the
tradeoff between the performance and the computational complexity and memory requirement.
The choice of the order of the Krylov subspace, n = 16 for our experiments, is not an unusually
small choice. GMRES and Arnoldi–Tikhonov with n = 7, 8 and n = 6, 7, respectively, are
applied to restoration problems in [14, 42], respectively. Examples of restored images by
KADMM with different n are shown in Figure 4.

The performance of the proposed KADMM is compared to that of the NESTA [8] and PA
[21] methods. NESTA and PA find the solutions in the original solution space. The matrix
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Figure 4. TV restoration of spatially variant rotational blur using KADMM with the Baboon image.
From top to bottom: Blur type 4, 5, 6. From left to right: Observed image followed by images restored with
n = 22, 23, 24, 25.

vector multiplications of A and AT for NESTA and PA are also implemented using sparse
matrices.

The quality of the restored images is measured using the MSE in Tables 1 and 2 for
the Gaussian and rotational blur, respectively. Table 3 shows the comparison of MSE for
the Gaussian blur with the HD test image. NESTA and PA find the solutions in the original
solution space, RMN , while the KADMM finds the solutions in the nth order Krylov subspace,
Kn(A, r). It can be seen that all three methods report similar MSE values. Small differences
in the MSE values of NESTA, PA, and KADMM indicate that the restriction of the solution
space does not significantly hinder the quality of the restored images.

Table 1
Numerical results of TV restoration of spatially variant Gaussian blur on test images.

Problem Calls to A, AT Dim. of search space Iteration # CPU time (sec) MSE (×10−4)

Image Blur PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM

1 4286 3013 17 65536 65536 16 2144 753 102 129.0 85.3 2.7 5.69 8.21 7.01
Cameraman 2 6000 3269 17 65536 65536 16 3001 817 192 172.0 92.4 4.3 19.7 28.0 22.2

3 5584 3073 17 65536 65536 16 2793 768 226 159.4 86.3 5.0 5.64 11.5 7.82

1 3402 4569 17 65536 65536 16 1702 1142 3001 96.8 137.7 60.1 12.2 13.4 8.41
Baboon 2 3612 4717 17 65536 65536 16 1807 1179 3001 110.8 133.4 59.3 11.6 12.4 7.76

3 3248 4529 17 65536 65536 16 1625 1132 3001 677.4 944.8 43.5 9.82 10.6 6.69

1 3940 2069 17 65536 65536 16 1971 517 50 113.0 58.7 1.5 3.27 13.1 8.07
Grain 2 4560 2113 17 65536 65536 16 2281 528 101 130.9 64.2 2.5 6.43 19.8 9.70

3 3754 2377 17 65536 65536 16 1878 594 149 113.6 66.7 3.5 3.71 13.7 6.16
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Table 2
Numerical results of TV restoration of spatially variant rotational blur on test images.

Problem Calls to A, AT Dim. of search space Iteration # CPU time (sec) MSE (×10−4)

Image Blur PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM

4 3500 2881 17 65536 65536 16 1751 720 205 9.3 6.7 4.1 1.72 8.96 7.47
Cameraman 5 4556 3321 17 65536 65536 16 2279 830 270 16.0 11.2 5.4 3.21 18.2 16.1

6 6000 3545 17 65536 65536 16 3001 886 349 32.0 17.5 6.9 5.18 35.2 31.6

4 2924 4289 17 65536 65536 16 1463 1072 231 8.0 9.8 4.6 4.03 8.68 6.84
Baboon 5 3474 4237 17 65536 65536 16 1738 1059 299 12.2 14.3 6.0 7.55 16.5 13.2

6 4100 3837 17 65536 65536 16 2051 959 291 22.0 18.9 5.8 12.2 25.8 21.1

4 3978 2349 17 65536 65536 16 1990 587 261 10.7 5.4 5.2 0.49 14.8 8.78
Grain 5 5040 2977 17 65536 65536 16 2521 744 287 17.8 10.0 5.7 1.64 34.7 25.3

6 6000 3429 17 65536 65536 16 3001 857 276 32.3 16.7 5.5 5.02 63.0 48.1

Table 3
Numerical results of TV restoration of spatially variant Gaussian blur on HD test images.

Problem Calls to A, AT Dim. of search space Iteration # CPU time (sec) MSE (×10−4)

Image Blur PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM PA NESTA KADMM

1 636 409 17 2073600 2073600 16 319 102 90 2379.2 1528.2 113.1 12.7 22.8 10.7
HD 2 648 373 17 2073600 2073600 16 325 93 93 2425.5 1394.2 115.5 21.2 32.3 17.4

3 594 341 17 2073600 2073600 16 298 85 35 2222.7 1276.1 77.4 6.64 15.7 4.86

The evolutions over time of the quadratic constraint ‖Af−g‖2 that measures the deviation
from a given image, the objective TV(f) that measures the roughness of the solution, and the
deviation from the range constraint are shown in Figures 5(a), 5(b), and 5(c), respectively.
The evolution of the MSE is shown in Figure 5(d). The Cameraman image is used with blur
type 1 as an example. The figures use log-log scales. It can be seen that both the objectives
and constraints converge over time for NESTA, PA, and KADMM. The algorithms terminate
with the quadratic constraint. The convergence for KADMM is much faster than those of
NESTA and PA. KADMM requires computation of the basis for the Krylov subspace via the
Arnoldi process before it enters into the ADMM iteration. It can be seen in Figure 5 that the
values of the objectives and constraints begin to appear after some time, i.e., after the time it
takes for the algorithm to find the basis. However, the objectives and constraints converge in a
very short time once the iterative optimization process begins. Overall, the speed of KADMM
is much faster than the speed of NESTA and PA. The CPU times in terms of wall-clock times
in Table 1 show that the proposed KADMM is faster than NESTA and PA.

Tables 1–3 also show a comparison of the computational complexity. The dominant arith-
metic operations are the matrix multiplications. The numbers of matrix vector multiplications
by A or AT are shown for NESTA, PA, and KADMM, indicating that the computational
complexity of KADMM is significantly lower than that of NESTA and PA. Note that the
iterations of NESTA and PA involve operations in the original solution space, whereas the
iterations of KADMM involve operations in the reduced solution space. By the Krylov sub-
space method, not only is the dimension of the search space reduced from d to n, but the
size of the least squares problem in the ADMM also is reduced from dJ × d to (nJ + 1)× n.
For the restoration of a 256 × 256 size image with J = 3, the size of the problem is reduced
from (256 · 256 · 3) × (256 · 256) to (16 · 3 + 1) × 16 for KADMM with n = 16. And for the
restoration of a 1920 × 1080 size image with J = 3, the size of the problem is reduced from
(1920 ·1080 ·3)×(1920 ·1080) to (16 ·3+1)×16 for KADMM with n = 16. The order reduction
by the Krylov subspace method is significant. In terms of CPU time, KADMM is much faster
than PA and NESTA, especially for larger size images. For the experiments in Table 3, the
matrix vector multiplications of A and AT are implemented using CUDA. The large size of
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(a) (b)

(c) (d)

Figure 5. TV restoration of spatially variant blur using PA (black line), NESTA (blue line), and KADMM
(red line) with the Cameraman image. (a) Evolution of quadratic constraint ‖Af−g‖2 over time (sec). (b) Evo-
lution of the objective TV(f) over time (sec). (c) Distance to range constraint over time (sec). (d) MSE over
time (sec).

the HD images prohibits explicit implementation of matrix vector multiplications with sparse
matrices. The CPU time in Table 3 is not directly comparable to that in Tables 1 and 2.

Table 4 shows the performance of the KADMM for images of different sizes. The 36-
megapixel test image shown in Figure 2(e) is scaled to various sizes: 230 × 154, 460 × 307,
920 × 614, 1840 × 1228, 3680 × 2456, and 7360 × 4912 pixels. The Gaussian blur type 2 is
applied at the BSNR of 60dB. KADMM, with n = 16, is applied to restore the blur. The
large sizes of the images prohibit explicit implementation of matrix vector multiplications
with sparse matrices. The matrix vector multiplications of A and AT are implemented using
CUDA for this experiment. The MSE values show that the KADMM restores the spatially
variant blur of various size images effectively. The number of pixels in the images quadruples
for the next larger images. The speed of the KADMM increases at about the same rates for
larger size images.

Examples of TV restoration by PA, NESTA, and KADMM for the Gaussian blur with the



502 JOO DONG YUN AND SEUNGJOON YANG

Table 4
Numerical results of TV restoration of spatially variant Gaussian blur with various size images.

Size 230× 154 460× 307 920× 614 1840× 1228 3680× 2456 7360× 4912

Calls to A, AT 17 17 17 17 17 17

Dim. of search space 16 16 16 16 16 16

Iteration # 52 61 86 92 64 51

CPU time (sec) 3.2 7.9 31.1 122.2 393.5 1427.0

MSE 4.79E-04 2.65E-04 1.14E-04 3.64E-05 1.69E-05 1.80E-05

Figure 6. TV restoration of spatially variant Gaussian blur with the Cameraman image. From top to
bottom: Blur type 1, 2, 3. From left to right: Observed image followed by images restored by PA, NESTA, and
KADMM.

Cameraman image are presented in Figure 6. The experiments are performed with the three
Gaussian blur types. Blurred images and images restored by the three algorithms are shown.
Each blur type imposes a different amount of blur depending on the pixel locations. It can
be seen that all three algorithms restore sharp images for the three types of spatially variant
Gaussian blur. An example of a restored image with HD size 1920×1080 is given in Figure 7,
where the observed image and the image restored by KADMM are shown in Figures 7(a) and
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(a)

(b)

(c)

Figure 7. TV restoration of spatially Gaussian variant blur with an HD size 1920× 1080 image with blur
type 2. (a) Noisy blurred image. (b) Image restored by KADMM. (c) Parts of (a) and (b).
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Figure 8. TV restoration of spatially variant rotational blur with the Cameraman image. From top to
bottom: Blur type 4, 5, 6. From left to right: Observed image followed by images restored by PA, NESTA, and
KADMM.

7(b), respectively. The observed image is blurred by type 2, which imposes more severe blur
at the center and milder blur at the corners, and is contaminated by the Gaussian noise. It
can be seen that the noisy and blurry HD image is effectively restored by KADMM.

Examples of TV restoration by PA, NESTA, and KADMM for the rotational blur with
the Baboon image are presented in Figure 8. The experiments are performed with the three
rotational blur types. Blurred images and images restored by the three algorithms are shown.
Each blur type imposes a different amount of blur depending on the pixel locations. It can
be seen that all three algorithms restore sharp images for the three types of spatially variant
rotational blur.

6. Conclusion. This work presents a convex optimization framework based on ADMM and
Krylov subspace methods. The proposed KADMM finds an inexact solution by restricting
the solution space to the Krylov subspace of small order. The basis of the Krylov subspace
is found by the Arnoldi process, and ADMM is applied in the Krylov subspace. Experiments
on restoration of spatially variant blur with TV show that meaningful solutions can be found
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in the restricted solution space in a short time. The quality of images restored by KADMM
is comparable to that of other convex optimization restoration methods such as NESTA and
PA. The computational complexity of KADMM is significantly reduced by the order reduction
with the Krylov subspace method. The proposed methods can be applied to various inverse
problems represented by nonsymmetric non-Toeplitz matrices.
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