43 research outputs found

    Sparse MRI and CT Reconstruction

    Full text link
    Sparse signal reconstruction is of the utmost importance for efficient medical imaging, conducting accurate screening for security and inspection, and for non-destructive testing. The sparsity of the signal is dictated by either feasibility, or the cost and the screening time constraints of the system. In this work, two major sparse signal reconstruction systems such as compressed sensing magnetic resonance imaging (MRI) and sparse-view computed tomography (CT) are investigated. For medical CT, a limited number of views (sparse-view) is an option for whether reducing the amount of ionizing radiation or the screening time and the cost of the procedure. In applications such as non-destructive testing or inspection of large objects, like a cargo container, one angular view can take up to a few minutes for only one slice. On the other hand, some views can be unavailable due to the configuration of the system. A problem of data sufficiency and on how to estimate a tomographic image when the projection data are not ideally sufficient for precise reconstruction is one of two major objectives of this work. Three CT reconstruction methods are proposed: algebraic iterative reconstruction-reprojection (AIRR), sparse-view CT reconstruction based on curvelet and total variation regularization (CTV), and sparse-view CT reconstruction based on nonconvex L1-L2 regularization. The experimental results confirm a high performance based on subjective and objective quality metrics. Additionally, sparse-view neutron-photon tomography is studied based on Monte-Carlo modelling to demonstrate shape reconstruction, material discrimination and visualization based on the proposed 3D object reconstruction method and material discrimination signatures. One of the methods for efficient acquisition of multidimensional signals is the compressed sensing (CS). A significantly low number of measurements can be obtained in different ways, and one is undersampling, that is sampling below the Shannon-Nyquist limit. Magnetic resonance imaging (MRI) suffers inherently from its slow data acquisition. The compressed sensing MRI (CSMRI) offers significant scan time reduction with advantages for patients and health care economics. In this work, three frameworks are proposed and evaluated, i.e., CSMRI based on curvelet transform and total generalized variation (CT-TGV), CSMRI using curvelet sparsity and nonlocal total variation: CS-NLTV, CSMRI that explores shearlet sparsity and nonlocal total variation: SS-NLTV. The proposed methods are evaluated experimentally and compared to the previously reported state-of-the-art methods. Results demonstrate a significant improvement of image reconstruction quality on different medical MRI datasets

    Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

    Get PDF
    The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction

    ADMM-EM Method for L

    Get PDF

    Sparse variational regularization for visual motion estimation

    Get PDF
    The computation of visual motion is a key component in numerous computer vision tasks such as object detection, visual object tracking and activity recognition. Despite exten- sive research effort, efficient handling of motion discontinuities, occlusions and illumina- tion changes still remains elusive in visual motion estimation. The work presented in this thesis utilizes variational methods to handle the aforementioned problems because these methods allow the integration of various mathematical concepts into a single en- ergy minimization framework. This thesis applies the concepts from signal sparsity to the variational regularization for visual motion estimation. The regularization is designed in such a way that it handles motion discontinuities and can detect object occlusions
    corecore