136 research outputs found

    Distributed space-time coding including the golden code with application in cooperative networks

    Get PDF
    This thesis presents new methodologies to improve performance of wireless cooperative networks using the Golden Code. As a form of space-time coding, the Golden Code can achieve diversity-multiplexing tradeoff and the data rate can be twice that of the Alamouti code. In practice, however, asynchronism between relay nodes may reduce performance and channel quality can be degraded from certain antennas. Firstly, a simple offset transmission scheme, which employs full interference cancellation (FIC) and orthogonal frequency division multiplexing (OFDM), is enhanced through the use of four relay nodes and receiver processing to mitigate asynchronism. Then, the potential reduction in diversity gain due to the dependent channel matrix elements in the distributed Golden Code transmission, and the rate penalty of multihop transmission, are mitigated by relay selection based on two-way transmission. The Golden Code is also implemented in an asynchronous one-way relay network over frequency flat and selective channels, and a simple approach to overcome asynchronism is proposed. In one-way communication with computationally efficient sphere decoding, the maximum of the channel parameter means is shown to achieve the best performance for the relay selection through bit error rate simulations. Secondly, to reduce the cost of hardware when multiple antennas are available in a cooperative network, multi-antenna selection is exploited. In this context, maximum-sum transmit antenna selection is proposed. End-to-end signal-to-noise ratio (SNR) is calculated and outage probability analysis is performed when the links are modelled as Rayleigh fading frequency flat channels. The numerical results support the analysis and for a MIMO system maximum-sum selection is shown to outperform maximum-minimum selection. Additionally, pairwise error probability (PEP) analysis is performed for maximum-sum transmit antenna selection with the Golden Code and the diversity order is obtained. Finally, with the assumption of fibre-connected multiple antennas with finite buffers, multiple-antenna selection is implemented on the basis of maximum-sum antenna selection. Frequency flat Rayleigh fading channels are assumed together with a decode and forward transmission scheme. Outage probability analysis is performed by exploiting the steady-state stationarity of a Markov Chain model

    Virtual full-duplex multiple-input multiple-output relaying in the presence of inter-relay interference

    Get PDF
    Driven by the increasing demand for wireless broadband, low latency and power-efficient networks, multiple-input multiple-output (MIMO) full-duplex relaying (FDR) schemes have gained much attention in recent years. However, the performance of FDR schemes is impaired by sophisticated self-interference suppression techniques. As such, MIMO virtual FDR (VFDR) schemes have been considered as practical alternatives to recover spectral efficiency loss in half-duplex relays (HDR) without the need for sophisticated self-interference suppression algorithms. Successive relaying (SR) scheme is one of the VFDR techniques which uses a pair of HD relays that alternate between reception and retransmission of the source information to the destination. The performance of the SR based VFDR scheme is affected by inter-relay interference (IRI) due to the concurrent transmission of the source and relay nodes. The interference in VFDR schemes is conventionally treated as a degrading factor on the information decoding receivers resulting in the design of several interference avoidance and cancellation techniques. On the contrary, this thesis developed several VFDR schemes which exploit the interference to achieve performance improvement. In this study, interference management techniques, transmit/receive beamforming matrices, power allocation and joint optimisation algorithms were developed. First, a reliable MIMO VFDR scheme in the presence of IRI was designed, where the IRI was exploited for reliability improvements. The results showed significant reliability improvement over the existing schemes. Second, a joint power allocation for MIMO VFDR schemes under network power constraint was developed. The power allocation problem in the presence of IRI was formulated based on primal-dual algorithm. The results showed that the joint optimisation algorithm can efficiently utilise the network power when compared with the conventional approach. Third, simultaneous wireless information and power transfer (SWIPT) in MIMO VFDR system was proposed, where the transmit beamforming matrices which optimise the achievable rate and harvested energy at the relays were jointly designed. The results showed that the interference energy can be harnessed to improve the SWIPT system throughput. Finally, a joint optimisation of the power split and relay position in SWIPT MIMO VFDR network were investigated. Results showed that the joint optimisation of the power split and distance factors can greatly improve the system outage performance. The analytical and numerical results in the research showed that IRI can be exploited to improve the throughput, reliability and energy harvesting of a wireless communication system. The results also showed a minimum achievable rate improvement of 80% over the HDR schemes and a reliability of 100% over the FDR schemes

    Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems

    Get PDF
    Nach einer Einleitung behandelt Teil 2 Mehrbenutzer-Scheduling fĂŒr die AbwĂ€rtsstrecke von drahtlosen MIMO Systemen mit einer Sendestation und kanaladaptivem precoding: In jeder Zeit- oder Frequenzressource kann eine andere Nutzergruppe gleichzeitig bedient werden, rĂ€umlich getrennt durch unterschiedliche Antennengewichte. Nutzer mit korrelierten KanĂ€len sollten nicht gleichzeitig bedient werden, da dies die rĂ€umliche Trennbarkeit erschwert. Die Summenrate einer Nutzermenge hĂ€ngt von den Antennengewichten ab, die wiederum von der Nutzerauswahl abhĂ€ngen. Zur Entkopplung des Problems schlĂ€gt diese Arbeit Metriken vor basierend auf einer geschĂ€tzten Rate mit ZF precoding. Diese lĂ€sst sich mit Hilfe von wiederholten orthogonalen Projektionen abschĂ€tzen, wodurch die Berechnung von Antennengewichten beim Scheduling entfĂ€llt. Die RatenschĂ€tzung kann basierend auf momentanen Kanalmessungen oder auf gemittelter Kanalkenntnis berechnet werden und es können Datenraten- und Fairness-Kriterien berĂŒcksichtig werden. Effiziente Suchalgorithmen werden vorgestellt, die die gesamte Systembandbreite auf einmal bearbeiten können und zur KomplexitĂ€tsreduktion die Lösung in Zeit- und Frequenz nachfĂŒhren können. Teil 3 zeigt wie mehrere Sendestationen koordiniertes Scheduling und kooperative Signalverarbeitung einsetzen können. Mittels orthogonalen Projektionen ist es möglich, Inter-Site Interferenz zu schĂ€tzen, ohne Antennengewichte berechnen zu mĂŒssen. Durch ein Konzept virtueller Nutzer kann der obige Scheduling-Ansatz auf mehrere Sendestationen und sogar Relays mit SDMA erweitert werden. Auf den benötigten Signalisierungsaufwand wird kurz eingegangen und eine Methode zur SchĂ€tzung der Summenrate eines Systems ohne Koordination besprochen. Teil4 entwickelt Optimierungen fĂŒr Turbo Entzerrer. Diese Nutzen Signalkorrelation als Quelle von Redundanz. Trotzdem kann eine Kombination mit MIMO precoding sinnvoll sein, da bei Annahme realistischer Fehler in der Kanalkenntnis am Sender keine optimale InterferenzunterdrĂŒckung möglich ist. Mit Hilfe von EXIT Charts wird eine neuartige Methode zur adaptiven Nutzung von a-priori-Information zwischen Iterationen entwickelt, die die Konvergenz verbessert. Dabei wird gezeigt, wie man semi-blinde KanalschĂ€tzung im EXIT chart berĂŒcksichtigen kann. In Computersimulationen werden alle Verfahren basierend auf 4G-Systemparametern ĂŒberprĂŒft.After an introduction, part 2 of this thesis deals with downlink multi-user scheduling for wireless MIMO systems with one transmitting station performing channel adaptive precoding:Different user subsets can be served in each time or frequency resource by separating them in space with different antenna weight vectors. Users with correlated channel matrices should not be served jointly since correlation impairs the spatial separability.The resulting sum rate for each user subset depends on the precoding weights, which in turn depend on the user subset. This thesis manages to decouple this problem by proposing a scheduling metric based on the rate with ZF precoding such as BD, written with the help of orthogonal projection matrices. It allows estimating rates without computing any antenna weights by using a repeated projection approximation.This rate estimate allows considering user rate requirements and fairness criteria and can work with either instantaneous or long term averaged channel knowledge.Search algorithms are presented to efficiently solve user grouping or selection problems jointly for the entire system bandwidth while being able to track the solution in time and frequency for complexity reduction. Part 3 shows how multiple transmitting stations can benefit from cooperative scheduling or joint signal processing. An orthogonal projection based estimate of the inter-site interference power, again without computing any antenna weights, and a virtual user concept extends the scheduling approach to cooperative base stations and finally included SDMA half-duplex relays in the scheduling.Signalling overhead is discussed and a method to estimate the sum rate without coordination. Part 4 presents optimizations for Turbo Equalizers. There, correlation between user signals can be exploited as a source of redundancy. Nevertheless a combination with transmit precoding which aims at reducing correlation can be beneficial when the channel knowledge at the transmitter contains a realistic error, leading to increased correlation. A novel method for adaptive re-use of a-priori information between is developed to increase convergence by tracking the iterations online with EXIT charts.A method is proposed to model semi-blind channel estimation updates in an EXIT chart. Computer simulations with 4G system parameters illustrate the methods using realistic channel models.Im Buchhandel erhĂ€ltlich: Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems / Fuchs-Lautensack,Martin Ilmenau: ISLE, 2009,116 S. ISBN 978-3-938843-43-

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements
    • 

    corecore