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ABSTRACT

Driven by the increasing demand for wireless broadband, low latency and
power-efficient networks, multiple-input multiple-output (MIMO) full-duplex relaying
(FDR) schemes have gained much attention in recent years. However, the performance
of FDR schemes is impaired by sophisticated self-interference suppression techniques.
As such, MIMO virtual FDR (VFDR) schemes have been considered as practical
alternatives to recover spectral efficiency loss in half-duplex relays (HDR) without the
need for sophisticated self-interference suppression algorithms. Successive relaying
(SR) scheme is one of the VFDR techniques which uses a pair of HD relays that
alternate between reception and retransmission of the source information to the
destination. The performance of the SR based VFDR scheme is affected by inter-relay
interference (IRI) due to the concurrent transmission of the source and relay nodes.
The interference in VFDR schemes is conventionally treated as a degrading factor
on the information decoding receivers resulting in the design of several interference
avoidance and cancellation techniques. On the contrary, this thesis developed several
VFDR schemes which exploit the interference to achieve performance improvement.
In this study, interference management techniques, transmit/receive beamforming
matrices, power allocation and joint optimisation algorithms were developed. First,
a reliable MIMO VFDR scheme in the presence of IRI was designed, where the IRI
was exploited for reliability improvements. The results showed significant reliability
improvement over the existing schemes. Second, a joint power allocation for MIMO
VFDR schemes under network power constraint was developed. The power allocation
problem in the presence of IRI was formulated based on primal-dual algorithm. The
results showed that the joint optimisation algorithm can efficiently utilise the network
power when compared with the conventional approach. Third, simultaneous wireless
information and power transfer (SWIPT) in MIMO VFDR system was proposed,
where the transmit beamforming matrices which optimise the achievable rate and
harvested energy at the relays were jointly designed. The results showed that the
interference energy can be harnessed to improve the SWIPT system throughput.
Finally, a joint optimisation of the power split and relay position in SWIPT MIMO
VFDR network were investigated. Results showed that the joint optimisation of the
power split and distance factors can greatly improve the system outage performance.
The analytical and numerical results in the research showed that IRI can be exploited to
improve the throughput, reliability and energy harvesting of a wireless communication
system. The results also showed a minimum achievable rate improvement of 80% over
the HDR schemes and a reliability of 100% over the FDR schemes.
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ABSTRAK

Didorong oleh permintaan yang semakin meningkat terhadap jalur lebar
wayarles, pendaman rendah dan rangkaian berkuasa cekap, geganti dupleks penuh
(FDR) berbilang-input berbilang-output (MIMO) telah mendapat banyak perhatian
kebelakangan ini. Bagaimanapun, prestasi skim FDR terjejas oleh penindasan
gangguan diri yang kompleks. Oleh itu, MIMO FDR maya (VFDR) telah
dipertimbangkan sebagai alternatif praktikal untuk mendapatkan semula kehilangan
kecekapan spektrum dalam geganti dupleks separuh (HD) tanpa memerlukan algoritma
penindasan gangguan kendiri yang rumit. Geganti berturut-turut (SR) adalah salah satu
teknik VFDR yang menggunakan sepasang geganti HD silih-ganti antara penerimaan
dengan penghantaran semula isyarat maklumat dari sumber ke destinasi. Prestasi
skim VFDR berdasarkan SR terjejas oleh gangguan antara geganti (IRI) akibat
penghantaran isyarat serentak dari sumber dan geganti. Gangguan dalam skim
VFDR lazimnya dianggap sebagai faktor degradasi penerima penyahkodan informasi
yang membawa kepada reka bentuk beberapa teknik penghindaran gangguan dan
pembatalan gangguan. Sebaliknya, tesis ini membangunkan beberapa skim VFDR
yang mengeksploitasi gangguan bagi mencapai peningkatan prestasi. Dalam kajian
ini, teknik pengurusan gangguan, pembentukan alur penghantar/penerima, peruntukan
kuasa dan algoritma pengoptimuman bersama telah direka. Pertama, satu skim
MIMO VFDR yang boleh dipercayai dalam kehadiran IRI telah direka, iaitu IRI
dimanfaatkan untuk penambahbaikan kebolehpercayaan. Hasil kajian menunjukkan
peningkatan kebolehpercayaan yang memberangsangkan berbanding skim sedia ada.
Kedua, satu peruntukan kuasa bersama untuk MIMO VFDR di bawah kekangan
kuasa rangkaian telah dibangunkan. Masalah peruntukan kuasa dalam kehadiran IRI
dirumus menggunakan algoritma primal-dual. Hasil kajian menunjukkan bahawa
algoritma pengoptimuman bersama boleh menggunakan kuasa rangkaian secara cekap
berbanding dengan pendekatan konvensional. Ketiga, pemindahan maklumat wayarles
dan tenaga serentak (SWIPT) dalam sistem MIMO VFDR telah dicadangkan, iaitu
matriks pembentukan alur penghantaran yang mengoptimumkan kadar yang dapat
dicapai dan tenaga yang dituai telah direka bersama. Keputusan menunjukkan bahawa
tenaga gangguan boleh dimanfaatkan untuk menambahbaik daya pemprosesan sistem
SWIPT. Akhir sekali, pengoptimuman bersama pembahagian kuasa dan kedudukan
geganti dalam rangkaian SWIPT MIMO VFDR telah dikaji. Hasil kajian menunjukkan
bahawa pengoptimuman bersama faktor-faktor pembahagian kuasa dan kedudukan
boleh menambahbaik secara ketara kebarangkalian gangguan sistem. Dapatan analisis
dan dapatan berangka dalam kajian ini menunjukkan bahawa IRI boleh dimanfaatkan
untuk meningkatkan daya pemprosesan, kebolehpercayaan dan penuaian tenaga dalam
sistem perhubungan wayarles. Keputusan tersebut juga menunjukkan kadar minimum
penambahbaikkan sebanyak 80% pada skim HDR dan kebolehpercayaan sebanyak
100% pada skim FDR.
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CHAPTER 1

INTRODUCTION

Current wireless communication systems promise high quality of service in

voice and data communication. Other features such as massive number of connected

devices, high mobility, low latency, reliability, resilience, security, long battery life and

more have led to numerous research in the ongoing 5-th generation standardisation

process [1]. Although several solutions have been provided in the 5-th generation

standardisation process, several key issues are still being addressed. One key challenge

of wireless communication is the cell edge coverage issue. When wireless signals are

transmitted through space, the transmit power attenuates exponentially [2], leading to

low data rates at the cell edge and shadowed environments. Among several solutions,

the advantage of using relays to overcome the coverage hole and assist the network

has been studied and the progress made so far can be found in the numerous research

articles.

In recent and future wireless communications, relays have been adopted as one

of the key technology to improve service coverage at the cell edge, eliminate dead

spot, reduce energy consumption, enhance capacity and increase network reliability

[3,4]. The advantages provided by relay networks have attracted interest in the wireless

communication field. This has led to several research works aimed at studying the

performance benefits in both dedicated and user-based relay networks. In general,

relays can operate in half-duplex (HD) mode (transmit and receive in the orthogonal

time slot or orthogonal frequencies) or full-duplex (FD) mode (simultaneously transmit
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and receive in the same time slot and frequencies).

However, the use of HD relays in 3rd Generation Partnership Project (3GPP)

and Long Term Evolution-Advanced (LTE-A) is limited by HD constraint. This

constraint describes the inability of a relay to transmit and receive simultaneously,

consequently, a spectral efficiency loss of at least 50% is experienced, since extra

dedicated bandwidth is always required for relaying transmission. On the other

hand, FD relays have also been recently introduced in wireless networks, but their

performance is limited by self-interference and loop back residual interference. The

self-interference in FD relays exist due to the simultaneous reception and transmission

on the same channel resulting in power leakage from the transmitter of the relay to

its receiver, the interference from the transmitter could saturate its own receiver’s

analogue to digital converter. The isolation of transmitter and receiver chains in

FD relaying are characterised with the self-interference or co-channel interference.

Although several techniques have been proposed to combat the self-interference in

FD relays [5], researchers have highlighted that a part of the self-interference could

still exist in the system, such interference is referred to as residual self-interference.

Due to the challenges in the use of FD relays especially in multi-antenna scenarios,

the majority of research results are still based on the HD signal models, as they can

be deployed in a more practical scenario. However, the challenge remains on how to

overcome HD constraint in HD relays.

Several schemes have been proposed to combat HD constraint in HD relaying

networks [6], such as two-way relaying scheme [7], cognitive cooperative relaying

scheme [8] and successive relaying (SR) scheme [9]. These schemes are termed virtual

FD (VFD) relaying schemes, by exploiting these schemes the spectral efficiency loss

in HD relays can be recovered and the system performance can be improved. VFD

relaying achieves close to the performance limits of FD relaying by separating the

reception and transmission of FD relaying either in space or time. Two-way relaying
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achieves VFD relaying modes by receiving and transmitting at least two streams of data

in orthogonal time. In SR, two or more relays which are separated by space, alternate

between reception and transmission of signals from the source to the destination. SR

protocol is able to recover the losses in one-way HD relays if the relays are properly

positioned and the inter-relay interference is properly managed. The improvement in

spectral efficiency introduced by the SR relaying scheme has motivated its applications

in multiple users and multiple antennas scenarios. Single-antenna SR networks have

been broadly studied while only a few studies have been carried out on multi-antenna

SR schemes which has motivated the study in this thesis.

Although several performance benefits can be achieved in cooperative schemes,

it is important to note that the cooperating nodes or relays could be fixed node such

as infrastructural relays or mobile nodes such as handheld devices (Mobile phones,

tablets, laptops etc.). While the infrastructural relays can be connected to a power

grid, handheld devices usually rely on batteries. The lifetime of battery-powered

devices is limited and therefore requires energy replenishing. These mobile devices

can be remotely charged by wireless power transfer while simultaneously receiving

information from the same RF signal, which has motivated the study of simultaneous

wireless information and power transfer (SWIPT) in this thesis.

The rest of this chapter is organised as follows. The problem background is

presented in Section 1.1. The current state of the art related to this thesis is presented

in Section 1.2. The problem statements are highlighted in Section 1.3. The objectives

of this thesis are presented in Section 1.4. The scope of the thesis is presented in

Section 1.5. The chapter is concluded with the contributions and organisation of the

thesis in Section 1.6.
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1.1 Problem Background

Wireless communication is evolving to meet the increasing quality of service

(QoS) and bandwidth demands. As the demand for wireless broadband continues

to increase, current and future wireless networks continue to promise reliable

communication and data rate improvements [10]. To ensure reliable communication at

the promised data rate between the user at the cell edge and the base station through a

direct transmission can be very expensive, due to the transmission power required as

the distance between the user and the base station increases. Relays can bridge this

gap by improving the link quality, reliability and signal to noise ratio between the base

station and the cell edge users. Although signal to noise ratio improvements can be

achieved by employing relays, the use of HD relay still shows about 50% spectral

efficiency losses which cannot be ignored for real-time applications such as video

conferencing. VFD relaying schemes have been proposed as a possible solution to

recover the losses due to HD constraint while providing an easier means of tackling the

self-interference in FD relaying scheme. In addition, VFD relaying schemes provide

means of increasing signal reliability and power efficiency.

As wireless signals travel from a source to the destination, its power decays

exponentially. Several studies have shown that the use of relays in networks (either

infrastructural or user enabled relays) can provide diversity gain and data rate

improvements in cooperative communication [11, 12]. The diversity gain provides

redundant paths for the signal to combat the effect of deep fade, thereby improving the

user’s capacity and QoS. Given the numerous benefits of cooperative communications,

reliable and efficient algorithms are required to exploit these benefits.

In SR based VFD relaying scheme, two or more HD relays are implemented

to mimic an FD relay. The participating relays alternate between reception and

transmission to enable the source to transmit new messages to the destination
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continuously. However, due to the co-channel operation of the participating relays, the

performance of the SR scheme can be degraded by inter-relay interference (IRI) [13].

In the existing SR schemes, the IRI is either avoided using interference avoidance

techniques or cancelled out using successive interference cancellation (SIC) [14] while

beamforming techniques have been applied in multiple antenna scenarios [15]. The

cancellation or avoidance of the IRI can greatly improve the capacity of the SR scheme,

but the full diversity provided by the SR scheme cannot be achieved. In general, IRI has

always been considered as an unwanted signal in SR scheme. However, improving the

reliability of user’s information in wireless communication requires sending multiple

copies of the same signal to the user, either in the frequency domain, time domain or

spatial domain [16]. This thesis is motivated by the fact that the IRI can be decoded

as shown by the successive interference cancellation schemes. However, instead of

discarding the decoded IRI, it can be retransmitted to the user, thereby improving the

user’s signal reliability. Another motivating factor is, by improving the reliability of

the user, beamforming and power allocation algorithms can be implemented to improve

the network power allocations.

To further improve the system performance, power efficiency is a vital design

consideration. Although power allocation schemes have been widely studied in

multiple input multiple output (MIMO) systems [17–19], the existing schemes cannot

be directly applied to SR schemes where the IRI is exploited. This is due to

the different power requirements from the source and inter-relay link. Uniform

power allocation at each node has been generally adopted for ease of analysis and

computation. Meanwhile, in MIMO systems, it has been shown that water filling power

allocation is optimal. However, in a MIMO relay network, individual power allocation

and aggregate power allocation have been shown to further improve the system power

efficiency in one way relaying scheme [17] and can further be extended to SR schemes.

Attracted by the benefits of simultaneous wireless information and power
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transfer in replenishing the batteries of mobile users. Users cooperation can be

encouraged if the mobile users who are serving as relays can harvest energy from

the RF signals and use the harvested energy to forward the signal [20]. Recent

studies in SWIPT have shown that several factors such as; increasing the number

of relay receive antennas, relay positioning in the network and beamforming designs

can help to improve energy harvesting efficiency at the relay. In FD relay networks,

energy harvesting can be enhanced by utilising the self-interference [21], while energy

harvesting utilising IRI in SR based VFD relaying scheme has not been explored.

Note that SWIPT systems can be implemented with separate or co-located information

decoders (ID) and energy harvesting (EH) receiver architecture. In the co-located

SWIPT design, the ID and EH receivers possess the same channel coefficients from

the source, while in the separate architecture the ID and EH receivers possess different

channels coefficients from the source [22].

IRI has traditionally been assumed as a performance degrading factor to the

ID receiver. However, this thesis exploits the IRI for energy harvesting and data

rates improvements with respect to the relay distance and power split factor. The

optimisation of relay position and power split factor have been widely investigated

in several literatures, these two optimisations are usually studied separately [23, 24].

Given that the relay position and power split factor determines the path loss of the

adjacent hop, this thesis studies the joint optimal relay position and power split

parameter that minimises the end to end outage probability of the SR scheme with

and without IRI.

1.2 State-of-the-Arts

The future 5-th generation (5G) network is currently being studied. A survey on

5G is presented in [25], where it is highlighted that the technology will operate within

small cells. Hence, relays will play an important role in connecting several devices,
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small cells and the base station [26, 27]. Also as the cell size becomes smaller, the

difference between the transmit and receive power in an FD relays network become

smaller, therefore FD relays are currently being studied as the key technology to

facilitate the implementation of 5G and beyond. The key issues with the FD relays are

self-interference and the complexity in the design of the transmit and receive chains

as the number of antennas increases [5]. Note that the future 5G network proposes

to deliver high data rate by implementing a large number of antenna array known as

massive multiple input multiple output (Massive MIMO).

SWIPT enabled relays are also currently being studied as they could be vital

in the energy efficiency of battery-powered devices. The rate-energy (R-E) tradeoff of

SWIPT systems for direct transmission has been studied in [22, 28]. In [29], practical

receivers for SWIPT systems are investigated. The authors also defined the R-E

tradeoff for single antenna system with power split and time switch architectures. The

architectures are extended to MIMO receivers and the optimal beamforming matrices

for MIMO broadcast SWIPT network are presented in [22], where the R-E tradeoff is

also discussed.

However, with the current research activities and the issue with self-

interference in FD relaying schemes, there is a need to develop relaying schemes

that can fully mimic the FD relays with less sophisticated interference suppression

techniques using HD relays while recovering the loss in spectral efficiency due to HD

constraint. In addition, there is a need to consider the use of IRI in such network

to improve the system reliability and enhance energy harvesting efficiency while

encouraging cooperation between users. This is important as billions of devices are

expected to be connected in 5G networks.
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1.3 Problem Statement

Bandwidth is a limited resource and requires efficient utilisation. SR based

VFD relaying schemes can efficiently utilise the limited bandwidth [30], but their

performance is degraded by inter-relay interference [31]. Although interference

avoidance and cancellation schemes have been proposed, they fail to exploit the full

diversity provided by the SR based VFD scheme. Due to the inefficient utilisation of

the diversity, the current SR based VFD relaying schemes exhibit poor outages and

inefficient power allocation.

The interference cancellation and avoidance techniques also show significant

losses in terms of achievable rates and energy harvesting in SWIPT systems. Based

on the current studies SWIPT systems can thrive if the amount of harvested energy is

sufficiently high [21, 32]. By using properly designed beamforming and interference

mitigation techniques, the performance of the VFD relaying systems can be improved

with information decoding relay receivers only or with SWIPT enabled relay receiver

nodes. In addition, the VFD relaying scheme with only information decoding receivers

stand to gain from exploiting interference to improve the diversity-multiplexing

tradeoff, outage probability, efficient network power utilisation and achievable rates,

while the VFD relaying scheme with SWIPT enabled relay receivers can exploit IRI

to improve the amount of harvested energy, achievable rates, R-E tradeoff and outage

probability with optimised beamforming and covariance matrices.

The development of new VFD relaying schemes in the presence of inter-

relay interference is crucial to overcoming the sophisticated interference cancellation

techniques in FD relays [33, 34]. The development is also crucial in 5G wireless

communication networks with billion of connected devices [35–37], where the systems

have to learn to cope with interference [38]. To this end, this thesis investigates the

effect of IRI in SR based VFD relaying network with emphasis on the user data rate,
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outage probability, diversity and multiplexing tradeoff, energy harvesting, R-E tradeoff

etc. These problems will be addressed by answering the following research questions.

1. How can inter-relay interference be exploited to improve the achievable

throughput and reliability of the user?

2. How can power allocation improve the end to end system performance in terms

of throughput and outage probability in the presence of IRI?

3. How can IRI be exploited to improve the achievable rate and energy harvesting

in SWIPT networks?

4. What are the optimal power split and distance factors for a SWIPT VFD

relaying network that minimise the end to end outage probability?

In summary, it is observed that the inter-relay interference which has conventionally

been assumed as a degrading factor in VFD relaying schemes, can be exploited by

proper interference mitigation and beamforming techniques to improve VFD relaying

system performance.

1.4 Objective of Research

This thesis aims to demonstrate the use of inter-relay interference in enhancing

system reliability, improving the system data rate and improving the power efficiency

in VFD relaying systems. Based on the aforementioned aims, the main objectives of

this thesis are presented in the following paragraphs.



10

1. The first objective is to propose a reliable MIMO virtual FD relaying scheme

in the presence of inter-relay interference.

2. The second objective is to propose an efficient power allocation scheme in

a MIMO VFD relaying network to improve the system capacity and outage

performance in the presence of IRI.

3. The third objective is to design the source transmit beamforming matrices

which optimise the information rate at the ID receiver and the energy harvesting

at the EH receiver for a MIMO VFD SWIPT relaying system, where the system

is implemented with separate information decoding and energy harvesting

receivers in the presence of IRI.

4. The final objective is to design the optimal power allocation to the ID and EH

receivers and the optimal relay position for a simultaneous wireless information

and power transfer enabled MIMO VFD relaying scheme, where the scheme

is implemented with co-located information decoders and energy harvesters in

the presence of IRI.

In summary, HD relays exhibit a spectral efficiency loss of about 50% since they

require addition time or frequency resource. On the other hand, FD relaying

schemes requires sophisticated self-interference suppression algorithms. This thesis

presents VFD relaying schemes to bridge the gap between the HD and FD relaying

schemes using HD relays in the presence of IRI. Unlike the existing schemes, this

thesis proposes VFD relaying schemes to recover the spectral efficiency loss in HD

relaying networks, while achieving the performance of FD relaying schemes with

less sophisticated interference mitigation techniques. In addition, the research aims

to exploit the IRI for system improvements in terms of capacity, reliability, energy

harvesting etc.
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1.5 Scope of Work

The scope of this thesis includes developing receive and transmit beamforming

matrix for multiple antenna VFD relaying system in the presence of IRI. Relay transmit

antenna selection algorithm will be implemented to reduce the dimension of IRI. The

scope is limited to numerical and analytical simulations of the proposed schemes.

The user analysis in terms of capacity, outage probability, energy harvesting, power

optimisation and relay position optimisation will be addressed. The research also

focuses only on the physical layer. The performance analysis will be evaluated using

MATLAB simulator, while convex optimisation tools such as CVX and Nsolve in

Mathematical will be used for optimisation algorithms. The scenarios of interest are

listed as follows.

1. Perfect channel state information (CSI) is assumed in this thesis.

2. A four-node network with a single source, single destination and two HD
decode and forward relays are considered.

3. The direct link between the source and the destination is assumed to be weak
and disconnected.

4. The relays are assumed to be information decoding receivers in both Chapters
4 and 5.

5. The relays are assumed to be separate information decoding and energy
harvesting receivers in Chapter 6.

6. The relays are assumed to be integrated information decoding and energy
harvesting receivers in Chapter 7.

The following are beyond the scope of this thesis.

1. The performance of the proposed scheme in 5G networks.

2. The performance of the scheme in frequency selective and fast fading channels.

3. The RF power consumption at the nodes.
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4. The performance of the proposed scheme in multiple relays greater than two.

1.6 Contributions and Organisation of the Thesis

The main contributions of this thesis are summarised as follows,

• In Chapter 4, a system which exploits IRI in MIMO VFD relaying network is

proposed. The IRI is managed by the use of relay transmit antenna selections

and relay receive beamforming matrix. The proposed scheme jointly decodes

the source and the IRI symbols at the relay receiver, a superposition of the

decoded symbols are transmitted to the destination. Analytical and numerical

results are provided to validate the performance of the proposed scheme. The

analytical and numerical results show that the proposed scheme can achieve the

full diversity provided by SR scheme while maintaining the multiplexing gain

of the FD relaying scheme. The results also show that the proposed scheme can

outperform conventional SR based VFD relaying scheme in terms of outage

probability, diversity and multiplexing gain even in the presence of IRI.

• Power allocation optimisation for MIMO VFD relaying scheme under network

power constraint is proposed in Chapter 5. Individual power constraint at each

antenna and the aggregate power constraint at each node are addressed. A joint

power allocation problem under network power constraint is also formulated

as a convex optimisation problem. The formulated problem is addressed using

the low complexity and high computational efficient Lagrangian primal-dual

optimisation algorithm [39]. Due to the effect of the IRI power on the relay

receiver, an iterative algorithm is presented to address the joint power allocation

problem. The results justify the achieved improvements in capacity and outage

probability of the proposed scheme.
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• A MIMO VFD relaying scheme with separate information decoding and energy

harvesting receivers is proposed in Chapter 6. The source and relay transmit

beamforming matrix are designed for a VFD relaying scheme with separate

information decoding and energy harvesting receivers. The harvested energy at

the relay of the proposed scheme is used to forward the relay decoded message

to the destination. The results show that by properly designing the precoding

matrices for the separate information decoding and energy harvesting receivers,

the end to end capacity of the VFD relaying scheme can be improved. In

addition, it is shown that EH receivers can rely on interference sources to

improve the amount of harvested energy.

• A MIMO VFD relaying scheme with co-located information decoding and

energy harvesting receivers is proposed in Chapter 7. The R-E tradeoff for

co-located receivers of the proposed scheme is presented. The optimal power

split factor for a fixed relay distance factor, the optimal distance factor for a

fixed power split factor as well as the optimal joint power and distance factors

which minimise the end to end outage probability are also studied. The results

show that inter-relay interference can improve the R-E tradeoff of the SWIPT

VFD relaying scheme. In addition, the joint optimisation of the power split

and distance factors improves the outage performance of the system compared

to the conventional schemes where the distance or the power allocation factors

are optimised separately.

In summary, this thesis proposes new techniques of handling inter-relay interference

in a MIMO VFD relay system. The proposed schemes employ beamforming, power

allocation, antenna selection, energy harvesting to achieve improved performance. The

proposed schemes are able to achieve better throughput, outage probability, power

efficiency, diversity and reliability.
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The rest of the thesis is organised as follows. In Chapter 2, related works

are investigated and presented in a literature review. Chapter 3 presents the research

methodology. In Chapter 4, the proposed reliable virtual FD relaying scheme in the

presence of inter-relay interference is discussed. Chapter 5 presents the proposed joint

power allocation for decode and forward (DF) concatenated MIMO VFD relaying

scheme under network power constraint. In Chapter 6, the proposed wireless

information and power transfer in MIMO virtual FD relaying system is discussed.

The power split and relay position optimisation for SWIPT MIMO virtual FD relaying

network are studied in Chapter 7. Finally, the conclusions of the thesis and suggestions

on the future works are given in Chapter 8.
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