151 research outputs found

    Imaging Dyskinesias in Parkinson’s Disease

    Get PDF

    How can caffeine alleviate the motor symptoms of Parkinson’s disease? – the implications of adenosine 2A receptor antagonism

    Get PDF
    Introduction and purpose: Parkinson’s disease (PD) is the second most common neurodegenerative disease, mainly characterized by motor impairment with symptoms including rigidity, bradykinesia, rest tremor and imbalance. It develops upon degeneration of dopaminergic neurons in the substantia nigra associated with neuroinflammatory process initiated by alpha-synuclein deposits. Although, levodopa replacement therapy is the gold-standard treatment, majority of the treated patients develop dyskinesia as the side effect, resulting from altered function of dopamine receptors. It is thought that the abnormal pulsate release of dopamine can be prevented by antagonism of adenosine 2A receptors (A2ARs). Aim of the study: This review aims to outline the action mechanism of A2AR antagonism on motor performance, and thus evaluate the suggested implications of coffee consumption in PD. Material and method: The involvement of A2ARs in the pathology and treatment of PD has been analyzed based on the findings of many published studies examining the effects of A2AR modulation. Results: Blockage of A2ARs enhances the action of dopamine via D2 receptors on striatopallidal neurons, decreasing their hyperactivity, and exerts neuroprotective effect, suppressing the neuroinflammation. Conclusions: Istradefylline, being the only approved A2AR antagonist, was able to reduce total cumulative dose of levodopa, improve motor control, alleviate postural abnormalities, and provide a reduction in daily ‘off’ time experienced by patients. Recent findings suggest the effects of drinking one cup of coffee are comparable with ones obtained by the newly introduced medication, presumably via shared action mechanism by A2AR inhibition

    How can caffeine alleviate the motor symptoms of Parkinson’s disease? – the implications of adenosine 2A receptor antagonism

    Get PDF
    Introduction and purpose: Parkinson’s disease (PD) is the second most common neurodegenerative disease, mainly characterized by motor impairment with symptoms including rigidity, bradykinesia, rest tremor and imbalance. It develops upon degeneration of dopaminergic neurons in the substantia nigra associated with neuroinflammatory process initiated by alpha-synuclein deposits. Although, levodopa replacement therapy is the gold-standard treatment, majority of the treated patients develop dyskinesia as the side effect, resulting from altered function of dopamine receptors. It is thought that the abnormal pulsate release of dopamine can be prevented by antagonism of adenosine 2A receptors (A2ARs). Aim of the study: This review aims to outline the action mechanism of A2AR antagonism on motor performance, and thus evaluate the suggested implications of coffee consumption in PD. Material and method: The involvement of A2ARs in the pathology and treatment of PD has been analyzed based on the findings of many published studies examining the effects of A2AR modulation. Results: Blockage of A2ARs enhances the action of dopamine via D2 receptors on striatopallidal neurons, decreasing their hyperactivity, and exerts neuroprotective effect, suppressing the neuroinflammation. Conclusions: Istradefylline, being the only approved A2AR antagonist, was able to reduce total cumulative dose of levodopa, improve motor control, alleviate postural abnormalities, and provide a reduction in daily ‘off’ time experienced by patients. Recent findings suggest the effects of drinking one cup of coffee are comparable with ones obtained by the newly introduced medication, presumably via shared action mechanism by A2AR inhibition

    Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease

    Get PDF
    Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms

    An update on adenosine A2A receptors as drug target in Parkinson's disease

    Get PDF
    Adenosine receptors are G protein-coupled receptors (GPCRs) that mediate the physiological functions of adenosine. In the central nervous system adenosine A2A receptors (A2ARs) are highly enriched in striatopallidal neurons where they form functional oligomeric complexes with other GPCRs such us the dopamine D2 receptor (D2R). Furthermore, it is assumed that the formation of balanced A2AR/D2R receptor oligomers are essential for correct striatal function as the allosteric receptor-receptor interactions established within the oligomer are needed for properly sensing adenosine and dopamine. Interestingly, A2AR activation reduces the affinity of striatal D2R for dopamine and the blockade of A2AR with specific antagonists facilitates function of the D2R. Thus, it may be postulated that A2AR antagonists are pro-dopaminergic agents. Therefore, A2AR antagonists will potentially reduce the effects associated with dopamine depletion in Parkinson's disease (PD). Accordingly, this class of compounds have recently attracted considerable attention as potential therapeutic agents for PD pharmacotherapy as they have shown potential effectiveness in counteracting motor dysfunctions and also displayed neuroprotective and anti-inflammatory effects in animal models of PD. Overall, we provide here an update of the current state of the art of these A2AR-based approaches that are under clinical study as agents devoted to alleviate PD symptom

    Deuterium-L-DOPA : a novel means to improve treatment of ParkinsonÂŽs disease

    Get PDF
    L-DOPA, the precursor of dopamine, is administered to restore dopamine deficiency in ParkinsonÂŽs disease (PD) patients. L-DOPA initially provides a sustained symptomatic relief with superior efficacy as compared to other treatments, while long term treatment is complicated by the gradual emergence of troublesome motor complications i.e. fluctuations in therapeutic effect and L-DOPA-induced dyskinesia. The risk for motor complications is associated with disease duration and total L-DOPA load. While the underlying mechanisms remain to be fully elucidated, the inability of the remaining dopaminergic neurons to buffer exogenously applied L-DOPA and pulsatile stimulation of dopamine receptors resulting from the short half-life of the drug seem critical. An improved treatment strategy with similar efficacy as L-DOPA and reduced side effects is therefore highly warranted. Deuterium-L-DOPA was expected to yield dopamine more resistant to enzymatic degradation, as deuterium, heavy hydrogen, forms a stronger bond with carbon. Four isoforms of deuterium-L-DOPA, carrying different combinations of α and ÎČ carbon substitutions, were screened for isotope effects on striatal dopamine metabolism by means of in vivo microdialysis in intact rats. The triple substituted isoform, α,ÎČ,ÎČ-D3-L-DOPA (D3-L-DOPA), dramatically increased the duration of dopamine output and reduced noradrenaline output as compared to L-DOPA. These effects most likely reflect reduced activity of the dopamine metabolizing enzymes MAO and DÎČH towards the deuterium substituted α- and ÎČ- carbons, respectively. Deuterium substitutions thus increase the half-life of dopamine formed from L-DOPA, which may reduce pulsatile stimulation of dopamine receptors as well as the total L-DOPA load in PD patients. The improved central kinetics of D3-L-DOPA may thereby significantly reduce the risk for L-DOPA induced motor complications. Reduced output of noradrenaline from D3-L-DOPA may additionally contribute to reduce the side effect profile, as noradrenaline released from L-DOPA may be involved in the expression of dyskinesias. The neurochemical and behavioral effects of D3-L-DOPA were subsequently evaluated in two, well-established animal models of PD, the reserpine and the 6-OHDA-lesion model. D3-L-DOPA produced an increased dopamine output as compared to L-DOPA in the 6-OHDA-lesioned striatum; an effect which closely resembled that of L-DOPA in combination the MAO-B inhibitor selegiline; used in clinical practice to potentiate the symptomatic effect of L-DOPA and reduce motor fluctuations. Moreover, selegiline pre-treatment did not potentiate the effect of D3-L-DOPA. The enhanced output of dopamine from D3-L-DOPA and selegiline/L-DOPA may thus be attributed to decreased metabolism of dopamine at MAO-B containing sites. An acute challenge with D3-L-DOPA was shown to produce an increased motor activation as compared to L-DOPA in both models of PD, indicating an increased behavioral potency. In addition, the behavioral effect produced by D3-L-DOPA was found to be of similar magnitude as the combination of selegiline/L-DOPA. Our data hence provide experimental support for the potential clinical advantage of D3-L-DOPA and suggest that monotherapy with D3-L-DOPA may provide equal benefit as the combination of selegiline/L-DOPA.The effects of D3-L-DOPA and L-DOPA were also compared in a chronic treatment design. Significantly, a lower dose of D3-L-DOPA, 60% of the equivalent L-DOPA dose, produced similar anti-parkinsonian benefit while the expression of dyskinesias was markedly reduced. The equivalent dose of D3-L-DOPA, as compared to L-DOPA, produced a more pronounced anti-parkinsonian effect and similar expression of dyskinesia. Taken together, these findings indicate that deuterium substitutions offer the advantage of a wider therapeutic window. In conclusion, the increased half-life of dopamine formed from D3-L-DOPA may serve to protect dopamine receptors from pulsatile stimulation and the increased behavioral potency of D3-L-DOPA may allow for adequate control of parkinsonian symptoms at an overall lower dosage. Altogether, a reduced L-DOPA load and more sustained stimulation of dopamine receptors may substantially improve PD treatment by reducing the risk for motor fluctuations and dyskinesias. Our preclinical data thus provide support for the utility of deuterium-substitutions in the L-DOPA molecule as a means to improve the therapeutic effect and reduce the side effects of L-DOPA therapy

    Implication of the serotoninergic systems in Parkinson's disease and L-Dopa-induced dyskinesia

    Get PDF
    Le rĂŽle de la sĂ©rotonine (5-hydroxytryptamine, 5-HT) dans la maladie de Parkinson (MP), et dans des complications motrices induites par son traitement pharmacologique appelĂ©es dyskinĂ©sies induites par la lĂ©vodopa (DIL)s n'est pas bien compris. Cette thĂšse traite principalement de l'implication des rĂ©cepteurs 5-HT dans la MP et les DILs chez l'homme et chez le singe MPTP, le meilleur modĂšle animal de la MP, afin de dĂ©velopper de meilleurs traitements pharmacologiques. Ces recherches peuvent ĂȘtre divisĂ©es en quatre parties: 1) Evaluation du rĂ©cepteur 5-HT₂A par autoradiographie avec la [ÂłH] kĂ©tansĂ©rine chez des singes contrĂŽles, chez des singes lĂ©sĂ©s avec le MPTP, chez des singes dyskinĂ©tiques traitĂ©s avec la lĂ©vodopa et chez des singes nondyskinĂ©tiques traitĂ©s avec la LĂ©vodopa + cabergoline, un agoniste de rĂ©cepteur D₂ de longue durĂ©e d'action, ou avec CI- 1041, un antagoniste glutamatergique des sous-unitĂ© NR₁A/₂B de l'acide N-mĂ©thyle-Daspartate (NMDA). 2) Évaluation du rĂ©cepteur 5-HT₁A par autoradiographie avec le radioligand [ÂłH] 8-OH-DPAT chez des singes lĂ©sĂ©s avec le MPTP, chez des singes dyskinĂ©tiques traitĂ©s avec la lĂ©vodopa et chez des singes faiblement dyskinĂ©tiques traitĂ©s avec la LĂ©vodopa + Ro 61-8048, un inhibiteur de la kynurĂ©nine hydroxylase. 3) Évaluation des rĂ©cepteurs 5-HT₁B par autoradiographie avec le radioligand [ÂłH] GR 125743 chez les mĂȘmes groupes d'animaux que ceux utilisĂ©s dans la partie 2. 4) Évaluation des axones 5- HT et de leurs varicositĂ©s visualisĂ©es par immunohistochimie avec un anticorps dirigĂ© contre le transporteur de 5-HT (SERT) dans le noyau sous-thalamique (NST) chez des patients parkinsoniens et leurs contrĂŽles afin de caractĂ©riser l'altĂ©ration de la distribution rĂ©gionale de l'innervation 5-HT de cette composante clĂ© des ganglions de la base chez les patients parkinsoniens. Nos rĂ©sultats ont dĂ©montrĂ© que le traitement Ă  la LĂ©vodopa augmente la liaison spĂ©cifique du rĂ©cepteur 5-HT₂A dans le noyau caudĂ© et le gyrus antĂ©rieur du cortex cingulaire (AcgG), la liaison spĂ©cifique du rĂ©cepteur 5-HT₁A dans le cortex et l'hippocampe et la liaison spĂ©cifique du rĂ©cepteurs 5-HT₁B dans la substance noire pars reticulata, le noyau caudĂ©, le putamen antĂ©rieur et le globus pallidus tandis que cette augmentation n'est pas prĂ©sente chez des singes nondyskinĂ©tiques traitĂ©s Ă  la lĂ©vodopa et Ă  la cabergoline ou avec CI-1041 ou avec Ro 61-8048. Une diminution de la liaison spĂ©cifique du rĂ©cepteur 5-HT₁A dans le cortex frontal et une augmentation la liaison spĂ©cifique du rĂ©cepteur 5-HT₁B dans la substance noire pars reticulata chez des singes 11 MPTP ont Ă©tĂ© observĂ©es par rapport aux contrĂŽles. Par ailleurs, une diminution du nombre de varicositĂ©s SERT + a Ă©tĂ© observĂ©e dans le NST chez les patients parkinsoniens par rapport aux contrĂŽles et dans le NST chez le patient dyskinĂ©tique par rapport Ă  un patient nondyskinĂ©tique. Dans l'ensemble, ces rĂ©sultats fournissent la premiĂšre description dĂ©taillĂ©e de l'altĂ©ration du systĂšme sĂ©rotoninergique associĂ©e Ă  la MP et Ă  la prĂ©vention des DILs chez les primates humains et non-humains, en soutenant fortement son implication dans la MP et les DILs

    Allosteric Interactions between Adenosine A2A and Dopamine D2 Receptors in Heteromeric Complexes:Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging

    Get PDF
    Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review

    Approche expĂ©rimentale de la physiopathologie des dyskinĂ©sies L-Dopa induites dans la maladie de Parkinson : comparaison de la cible classique, le striatum avec l’ensemble du cerveau

    Get PDF
    The gold standard treatment for Parkinson’s disease (PD) remains the dopamine precursor L- 3,4-dihydroxyphenylalanine (L-Dopa). Long-term L-Dopa treatment systematically leads to abnormal involuntary movements (AIMs) called L-Dopa-induced dyskinesia (LID). These manifestations first led to investigate the neuronal dysfunctions in the motor regions of thebasal ganglia and unravelled an overexpression of ΔFosB, ARC, Zif268 and FRA2 immediate-early genes (IEG) in the dopamine-depleted striatum of dyskinetic rats. However, other several dopaminoceptive structures, likely affected by the exogenously produced dopamine, have been neglected although they might play a key role in mediating LID. Hence, we assessed the expression of ΔFosB, ARC, FRA2 and Zif268 IEGs in the whole brain of dyskinetic rats compared to non-dyskinetic ones. Such approach shed light notably upon 9 structures located outside of the basal ganglia displaying an IEG overexpression. Among them, the dorsolateral bed nucleus of the stria terminalis (dlBST) and the lateralhabenula (LHb) displayed a significant correlation between ΔFosB expression and LID severity. We therefore postulated that these structures might play a role in LID manifestation. Therefore, to assess dlBST and LHb causal roles upon LID severity, we inhibited the electrical activity of FosB/ΔFosB-expressing neurons using the selective Daun02/ÎČ- galactosidase inactivation method that we previously validated in a well known structure involve in LID: the striatum. Interestingly, the inactivation of dlBST and LHb ΔfosBexpressing neurons alleviated LID severity and increased the beneficial effect of L-Dopa in dyskinetic rats. Remarkably, BST involvement in LID was confirmed in the gold standard model of LID, the dyskinetic MPTP-lesioned macaque. Altogether, our results highlight for the first time the functional involvement of 2 structures.Le traitement de rĂ©fĂ©rence de la maladie de Parkinson (MP) reste l’utilisation du prĂ©curseurdirect de la dopamine: la L-3,4-dihydroxyphenylalanine (L-Dopa). Le traitement chroniquedes patients parkinsoniens Ă  la L-Dopa induit, en revanche, systĂ©matiquement desmouvements involontaires anormaux que l’on qualifie de dyskinĂ©sies induites par la L-Dopa(DIL). L’étude de l’expression des dyskinĂ©sies s’est essentiellement focalisĂ©e sur lesdysfonctions neuronales engendrĂ©es dans les rĂ©gions motrices des ganglions de la base et apermis de rĂ©vĂ©ler une surexpression significative de gĂšnes de rĂ©ponse prĂ©coce (GRP) tels que: ΔFosB, ARC, Zif268 et FRA2 dans le striatum de rats dyskinĂ©tiques traitĂ©s chroniquement Ă  la L–Dopa. En revanche, plusieurs autres rĂ©gions dopaminoceptives, probablement affectĂ©es par la dopamine exogĂšne nouvellement synthĂ©tisĂ©e, ont Ă©tĂ© nĂ©gligĂ©es alors qu’elles pourraient jouer un rĂŽle clĂ© dans l’expression des dyskinĂ©sies. Par consĂ©quent, nous avons quantifiĂ© l’expression de ΔFosB, ARC, FRA2 et Zif268 dans l’ensemble du cerveau de rats dyskinĂ©tiques que nous avons comparĂ©e Ă  des rats non-dyskinĂ©tiques. Cette approche nous a permis d’identifier 9 structures, localisĂ©es en dehors des ganglions de la base, prĂ©sentant une surexpression d’au moins 3 des GRPs citĂ©s ci-dessus. Parmi ces structures, le domaine dorsolatĂ©ral du « bed nucleus of the stria terminalis » (dlBST) et l’habenula latĂ©rale (LHb) montrent une corrĂ©lation significative entre l’expression de ΔFosB et la sĂ©vĂ©ritĂ© des dyskinĂ©sies. Nous avons donc fait l’hypothĂšse que ces 2 structures pouvaient ĂȘtre impliquĂ©es dans l’expression des dyskinĂ©sies. Par consĂ©quent, pour Ă©valuer le rĂŽle potentiel du dlBST et de la LHb dans les dyskinĂ©sies, nous avons inhibĂ© l’activitĂ© Ă©lectrique des neurones exprimant FosB/ΔFosB en utilisant la mĂ©thode d’inactivation sĂ©lective du Daun02/ß-galactosidase que nous avons prĂ©cĂ©demment validĂ©e dans une structure bien connue pour ĂȘtre impliquĂ©e dans les dyskinĂ©sies: le striatum. Nous avons dĂ©montrĂ© que l’inhibition de ces neurones, Ă  la fois dans le dlBST et la LHb, diminuait la sĂ©vĂ©ritĂ© des dyskinĂ©sies sans affecter l’effet bĂ©nĂ©fique de la L-Dopa chez les rats dyskinĂ©tiques. Nous avons ensuite pu confirmer l’implication du dlBST grĂące au model de rĂ©fĂ©rence des dyskinĂ©sies: le macaque dyskinĂ©tique lĂ©sĂ© au MPTP. L’ensemble de ces rĂ©sultats nous a ainsi permis de montrer, pour la premiĂšre fois, l’implication fonctionnelle de 2 structures externes aux ganglions de la base dans l’expression des dyskinĂ©sies, offrant de nouvelles perspectives thĂ©rapeutiques
    • 

    corecore