26 research outputs found

    Higher Right Hemisphere Gamma Band Lateralization and Suggestion of a Sensitive Period for Vocal Auditory Emotional Stimuli Recognition in Unilateral Cochlear Implant Children: An EEG Study

    Get PDF
    In deaf children, huge emphasis was given to language; however, emotional cues decoding and production appear of pivotal importance for communication capabilities. Concerning neurophysiological correlates of emotional processing, the gamma band activity appears a useful tool adopted for emotion classification and related to the conscious elaboration of emotions. Starting from these considerations, the following items have been investigated: (i) whether emotional auditory stimuli processing differs between normal-hearing (NH) children and children using a cochlear implant (CI), given the non-physiological development of the auditory system in the latter group; (ii) whether the age at CI surgery influences emotion recognition capabilities; and (iii) in light of the right hemisphere hypothesis for emotional processing, whether the CI side influences the processing of emotional cues in unilateral CI (UCI) children. To answer these matters, 9 UCI (9.47 ± 2.33 years old) and 10 NH (10.95 ± 2.11 years old) children were asked to recognize nonverbal vocalizations belonging to three emotional states: positive (achievement, amusement, contentment, relief), negative (anger, disgust, fear, sadness), and neutral (neutral, surprise). Results showed better performances in NH than UCI children in emotional states recognition. The UCI group showed increased gamma activity lateralization index (LI) (relative higher right hemisphere activity) in comparison to the NH group in response to emotional auditory cues. Moreover, LI gamma values were negatively correlated with the percentage of correct responses in emotion recognition. Such observations could be explained by a deficit in UCI children in engaging the left hemisphere for more demanding emotional task, or alternatively by a higher conscious elaboration in UCI than NH children. Additionally, for the UCI group, there was no difference between the CI side and the contralateral side in gamma activity, but a higher gamma activity in the right in comparison to the left hemisphere was found. Therefore, the CI side did not appear to influence the physiologic hemispheric lateralization of emotional processing. Finally, a negative correlation was shown between the age at the CI surgery and the percentage of correct responses in emotion recognition and then suggesting the occurrence of a sensitive period for CI surgery for best emotion recognition skills development

    EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion

    Get PDF
    Variations in alpha rhythm have a significant role in perception and attention. Recently, alpha decrease has been associated with externally directed attention, especially in the visual domain, whereas alpha increase has been related to internal processing such as mental arithmetic. However, the role of alpha oscillations and how the different components of a task (processing of external stimuli, internal manipulation/representation, and task demand) interact to affect alpha power are still unclear. Here, we investigate how alpha power is differently modulated by attentional tasks depending both on task difficulty (less/more demanding task) and direction of attention (internal/external). To this aim, we designed two experiments that differently manipulated these aspects. Experiment 1, outside Virtual Reality (VR), involved two tasks both requiring internal and external attentional components (intake of visual items for their internal manipulation) but with different internal task demands (arithmetic vs. reading). Experiment 2 took advantage of the VR (mimicking an aircraft cabin interior) to manipulate attention direction: it included a condition of VR immersion only, characterized by visual external attention, and a condition of a purely mental arithmetic task during VR immersion, requiring neglect of sensory stimuli. Results show that: (1) In line with previous studies, visual external attention caused a significant alpha decrease, especially in parieto-occipital regions; (2) Alpha decrease was significantly larger during the more demanding arithmetic task, when the task was driven by external visual stimuli; (3) Alpha dramatically increased during the purely mental task in VR immersion, whereby the external stimuli had no relation with the task. Our results suggest that alpha power is crucial to isolate a subject from the environment, and move attention from external to internal cues. Moreover, they emphasize that the emerging use of VR associated with EEG may have important implications to study brain rhythms and support the design of artificial systems

    How neurophysiological measures can be used to enhance the evaluation of remote tower solutions

    Get PDF
    International audienceNew solutions in operational environments are often, among objective measurements, evaluated by using subjective assessment and judgement from experts. Anyhow, it has been demonstrated that subjective measures suffer from poor resolution due to a high intra and inter operator variability. Also, performance measures, if available, could provide just partial information, since an operator could achieve the same performance but experiencing a different workload. In this study we aimed to demonstrate i) the higher resolution of neurophysiological measures in comparison to subjective ones, and ii) how the simultaneous employment of neurophysiological measures and behavioural ones could allow a holistic assessment of operational tools. In this regard, we tested the effectiveness of an EEG-based neurophysiological index (WEEG index) in comparing two different solutions (i.e. Normal and Augmented) in terms of experienced workload. In this regard, 16 professional Air Traffic Controllers (ATCOs) have been asked to perform two operational scenarios. Galvanic Skin Response (GSR) has also been recorded to evaluate the level of arousal (i.e. operator involvement) during the two scenarios execution. NASA-TLX questionnaire has been used to evaluate the perceived workload, and an expert was asked to assess performance achieved by the ATCOs. Finally, reaction times on specific operational events relevant for the assessment of the two solutions, have also been collected. Results highlighted that the Augmented solution induced a local increase in subjects performance (Reaction times). At the same time, this solution induced an increase in the workload experienced by the participants (WEEG). Anyhow, this increase is still acceptable, since it did not negatively impact the performance and has to be intended only as a consequence of the higher engagement of the ATCOs. This behavioural effect is totally in line with physiological results obtained in terms of arousal (GSR), that increased during the scenario with augmentation. Subjective measures (NASA-TLX) did not highlight any significant variation in perceived workload. These results suggest that neurophysiological measure provide additional information than behavioural and subjective ones, even at a level of few seconds, and its employment during the pre-operational activities (e.g. design process) could allow a more holistic and accurate evaluation of new solutions

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF

    Error Signals from the Brain: 7th Mismatch Negativity Conference

    Get PDF
    The 7th Mismatch Negativity Conference presents the state of the art in methods, theory, and application (basic and clinical research) of the MMN (and related error signals of the brain). Moreover, there will be two pre-conference workshops: one on the design of MMN studies and the analysis and interpretation of MMN data, and one on the visual MMN (with 20 presentations). There will be more than 40 presentations on hot topics of MMN grouped into thirteen symposia, and about 130 poster presentations. Keynote lectures by Kimmo Alho, Angela D. Friederici, and Israel Nelken will round off the program by covering topics related to and beyond MMN
    corecore