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Preface
This book contains the work-in-progress research contributions presented at the Third
International Symposium on Human Mental Workload, models and applications. It
presents recent developments in the context of theoretical models of mental workload
and practical applications. Additionally, it aims to stimulate and encourage discussion
on mental workload, its measures, dimensions, models, applications and consequences.
It is a topic that demands a multidisciplinary approach, spanning across Human Factors,
Computer Science, Psychology, Neuroscience, Statistics and Cognitive Sciences.

From the content of these research contributions, it is clear that mental workload,
as a multidimensional and multifaceted construct, is still under definition, development,
and investigation. This is one of the reasons why mental workload is today a keyword
used and abused in life sciences, as pointed by Prof. Fabio Babiloni. However, despite
the difficulty in precisely defining and modeling it, the capacity to assess human mental
workload is a key element in designing and implementing information-based procedures
and interactive technologies that maximize human performance. Some of the articles
published in this book applied psychological subjective self-reporting measures, others
made use of primary task measures and some a combination of these. Physiological mea-
sures in general, and more specifically electroencephalography (EEG), have been gaining
a more prominent role, thanks to advances in data-gathering technology as well as a
growing availability of computational power and classification techniques offered by the
discipline of artificial intelligence. This is also reflected in the present book where half
of the chapters focus on the development of novel models of mental workload employing
data-driven techniques, borrowed from machine learning. However, one of the key issues
in modeling mental workload employing automated learning techniques is that, although
it often leads to accurate and robust models, they lack explanatory capacity. This prob-
lem is fundamental if we want to define mental workload for the fields of human factors,
human–computer interaction, and in general for human-centered designers. Thus, we
believe that future research efforts on mental workload modeling should employ a mix
of measures as well as qualitative and quantitative research methods to not only assess
mental workload but also to understand its meaning and implications on the individuals
and our approach toward work and life.

Dr. Luca Longo, Technological University Dublin
Dr. Maria Chiara Leva, Technological University Dublin
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Identifying predictive EEG features for cognitive 

overload detection in assembly workers in Industry 4.0 
 

Jessica Morton1, Pieter Vanneste2, Charlotte Larmuseau2, Bram B. Van Acker1, 

Annelies Raes2, Klaas Bombeke1, Frederik Cornillie2, Jelle Saldien1, Lieven De 
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1 imec-mict-UGent, Platteberg 11, 
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Abstract. Industry 4.0 will be characterized by far-reaching production 

automation because of recent advancements in robotics and artificial 

intelligence. As a consequence, a lot of simple, repetitive assembly tasks 

will no longer be performed by factory workers, but by machines. 

However, at the same time, consumers demand more and more 

personalized products, increasing the need for human assembly workers 

who can adapt quickly to new and more complex assembly procedures. 

This need for adaptation is most likely to increase the cognitive workload 

and potentially overload assembly workers that were already having a 
hard time during more traditional assembly work. Several studies have 

tried to identify this cognitive overload in the EEG signal, but many 

failed because of poor experimental measurement procedures, bad data 

quality and low sample sizes. In this paper, we therefore designed a 

highly controlled lab experiment to collect EEG data of a large number 

of participants (N=46) performing an assembly task under various levels 

of cognitive load (low, high, overload). This systematic approach 

allowed us to study which EEG features are particularly useful and valid 

for cognitive overload assessment in the context of assembly work. 

Keywords: Industry 4.0, assembly work, cognitive overload, EEG 

1   Introduction 

1.1   Assembly work in Industry 4.0 and cognitive load 

Industry 4.0 or “smart factories” of the future will be characterized by wide-scale 

automatization, connectivity and AI-driven technology, resulting in a manufacturing 

process that will become more and more efficient [1,2,3]. It is beyond any doubt that 

many jobs involving simple, repetitive tasks will disappear in favor of robots or at least 

cobots (i.e., machines that physically interact with human workers). However, at the 

same time, it is expected that customer demand will push the industry towards 
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increasing product variety to allow for broad product personalization [4,5,6]. For 

example, in car manufacturing, it is more common that customers have the ability to 

decide on design specifications compared to the past. 

Hence, amidst this evolution stands the human assembly worker who will need to 

operate more and more in a flexible way and will be required to constantly adjust his 

or her skills to changing job demands and technology [7,8,9]. Since it is not unlikely 

that this increasing complexity and need for flexibility will make it harder for this 
human worker to do the job in a proper way, it is highly important to accurately measure 

cognitive load and explore ways to avoid or reduce this load from a cognitive 

ergonomic point of view [10,11]. In this paper, we therefore focus on cognitive load 

detection in the context of personalized assembly work. 

Throughout the history of (cognitive) ergonomics, the construct of cognitive load 

has been playing a substantive role in the prevention of occupational error, safety 

hazard, and negative (physical) stress caused by overload [4,12]. Cognitive load is a 

multi-dimensional, rather than a unitary construct and covers working memory 

processes ranging from attention and perception to memory and decision making [13]. 

Originally, the concept of cognitive load evolved from early work in the instructional 

and educational research field, eventually coming together in a widely-applied theory 

called cognitive load theory (CLT) [14,15,16]. Resonating with the multidimensional 
nature of the cognitive load concept, cognitive load measures are equally various in 

nature. In general, the literature converges towards assessing cognitive load based on 

subjective self-reporting and psychophysiological measurements [13,17,18,19,20,21]. 

    Whereas a lot of research has been done on how to accurately question people about 

their cognitive load using questionnaires and in-depth interviews, there is still a lot of 

work to be done with respect to using psychophysiological data to assess cognitive load. 

Interestingly enough, recent innovations and advancements in wearable technology 

have led to low-cost, easy-to-wear, energy-efficient devices to measure electrical 

activity at the human scalp. Therefore, it is expected that cognitive load measurement 

based on psychophysiological EEG data will become very prominent in the future 

[11,22,23,24,25]. Being able to rather noninvasively measure brain activity in a real-
world context in a relatively cheap way has triggered the interest of both the industry 

and academic cognitive load community. As a consequence, there are already many 

studies available in which researchers looked at the relationship between cognitive load 

and changes in the EEG signal [for a review, 26,27,28]. Unfortunately, many of these 

studies do not succeed in obtaining valid and reliable conclusions because of 

methodological flaws in design, issues with poor experimental measurement 

procedures or settings, bad data quality, and low sample sizes. This is not surprising, 

since inter-individual differences in EEG recordings can be very high and signals are 

prone to artefacts caused by technical malfunctioning, facial muscle activity and static 

noise coming from other electrical sources in the assessment setting. For this reason 

and because replication is an important characteristic of scientific research, we chose 
to take one step back and study predictive EEG features for cognitive overload in a 

highly controlled lab setting instead of at the factory floor right away (although it is 

beyond any doubt that the latter should be the end goal). By choosing this approach, we 

hope to overcome the aforementioned problems.  

2



1.2   EEG and cognitive load 

    There are basically two approaches to analyze EEG data. First, spectral analysis of 

oscillatory activity can be used to convert time series data (electrical current fluctuating 

over time) to frequency domain data (the frequencies that represent these fluctuations). 

By separating the signal into different frequency "bands" (i.e., delta, theta, alpha, beta, 
and gamma, representing slower to faster signals), different cognitive and affective 

processes can be monitored [29]. The most interesting finding with respect to cognitive 

load measurements is that alpha activity suppression (decrease in power of frequencies 

oscillating between 8 and 12 Hz at parietal regions) has found to be associated with 

increasing task difficulty and load across a wide variety of tasks [30,31]. 

    The second approach to analyze EEG data is to look at the event-related potentials, 

representing the changes in mean voltage preceding or following a stimulus or action 

of interest (hearing a sound or pressing a button). By averaging over several trial 

repetitions, this analysis is focuses on the specific stimulus-related activity and 

decreases the impact of any activity that is not related or within the time window of the 

occurrence of the event (which increases the signal-to-noise (SNR) ratio) [32]. 

Interestingly enough, some ERP components can reflect the extent to which cognitive 
function and sensory processing are affected by mental workload. The amplitudes of 

ERP components such as N1, N2, P2 and P3 are expected to be reduced when a primary 

task becomes more demanding and workload increases [31,33]. An auditory oddball 

paradigm, in which sounds of different frequencies are presented, allows us to study 

the high demand on general processing resources reflected in the ERP components. 

With an irrelevant-probe technique this can be done in a non-intrusive way, without 

interference on the task flow [34,35,36]. Contrary to the standard ERP design, in this 

technique the ERP-eliciting stimuli (sounds) are presented without requiring 

participants to actively attend or respond to them, thus not co-varying with task 

demands. 

1.3   The current study 

As mentioned before, we wanted to focus on cognitive load detection in the context 

of personalized assembly work using the EEG method. More precisely, the main goal 

is the collection and in-depth analysis of both performance measures, subjective 

measures and psychophysiological measures, in a highly controlled lab context that 

overcomes some of the issues that previous studies had to deal with. The main 

difference with previous work is that next to the low and high load condition, we also 
introduced a condition in which cognitive overload was induced. In the current study, 

load was induced in an experimental setting by manipulating complexity levels of a set 

of Tangram tasks combined with working memory load (i.e., remembering visual 

stimuli). The cognitive overload condition included the most difficult Tangram puzzles 

and the greatest amount of stimuli to remember. We expected that the majority of the 

participants would not be able to succeed in these tasks and that this would be 

accompanied by feelings of despair, giving up and being discouraged in completing the 

task. Also, the manipulation with Tangram puzzles was used in order to have a 

representative task for assembly performance, which requires similar spatial 
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intelligence skills. Another additive value in this study is that all three load conditions 

have an equal length of duration, keeping the data balanced for statistical comparisons. 

All conditions lasted for 10 minutes, which is a substantial amount of time to be able 

to measure cognitive load. Additionally, baselining was carefully conducted with 4 

minute measures in rest state before and after the experimental block with load 

conditions. Finally, this study had a multimodal approach with additional sensors in 

order to explore other potential and less studied cognitive load markers (i.e., heart rate, 
skin temperature, galvanic skin response, electro-ocular activity, motion analysis, facial 

video analysis). Also, additional EEG features such as band power activity of other 

band frequencies, other event-related components, the time-frequency spectrogram, 

spectral entropy, individual alpha peak frequency, and auto-correlation can be explored 

in this dataset. All these features are beyond the scope of this manuscript and will be 

analyzed in the future.  

 

With this optimized research design, we aimed to investigate the following 

hypotheses: 

 

H1: The induced cognitive load by manipulation of complexity levels of the 

Tangram task is also reflected in subjective ratings of mental investment. The more 
complex the task, the more mental investment will be reported. 

H2: Task performance on the Tangram task will be reduced in the cognitive overload 

condition, compared to the high and low load condition. 

H3: Alpha power is decreased at parietal electrode sites when performing Tangram 

tasks that induce a cognitive overload compared to Tangram tasks that induce low or 

high load. 

H4: The auditory processing of sounds presented during the performance of the 

Tangram task that induces cognitive overload can be reflected in a decreased N2 

amplitude, when compared to the Tangram tasks that induce low or high load. 

2   Method 

2.1   Participants 

This research got the approval of the ethics committee of the Faculty of Political and 

Social Sciences at Ghent University. In addition, all participants read and agreed to sign 

an informed consent with information about the procedure, purpose, voluntary 

participation, right to decline, access and storage of data.  

In this study, 46 participants aged between 19 and 40 years old (M = 25.8, SD = 
4.19) were recruited based on a questionnaire inquiring education, hair type, and other 

requirements via different social media channels (Facebook, the channel of the public 

library and the channel of the University). 

Each session had a duration of approximately 90 minutes. We strived for a more or 

less equal number of male (N=21) and female (N=25) participants. The participants 

differed somewhat regarding their background in education: 11 participants had 

secondary education as highest degree, 6 participants completed a professional 
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bachelor, 4 participants completed an academic bachelor, 24 participants completed an 

academic master, and 1 participant owned a PhD as highest degree. 

To control for prior experience and knowledge, participants were first asked about 

their experience with Tangram puzzles. Most participants (67 percent) indicated to be 

rather inexperienced regarding the Tangram task to be conducted in the experiment, 

while 11 percent were neutral and 22 percent indicated to have had some amount of 

experience with Tangram puzzles. Additionally, a spatial ability test was conducted 
with an adapted version of the Revised Minnesota Task Load Index [37]. Only 20 of 

the total of 64 questions were included, still covering the entire difficulty range. The 

histogram in Figure 1 shows the results on the spatial ability test, indicating a desired 

variance. 

 

Fig. 1. Histogram of participants’ average score on the spatial intelligence test (max score 20). 

2.2   Research design & procedure 

Design. In this experiment, a within-subjects design was used in which each 

participant was exposed to all experimental conditions (i.e., three levels of cognitive 

load: respectively a low, high, and overload level). As mentioned before, the length of 

the Tangram task was kept equal for all experimental conditions (i.e., 10 minutes). 

Thus, the experiment consisted of three phases for which a counterbalanced design, 

with 6 possible orders, was used to exclude possible learning effects and order effects. 

Baselines were measured before the first and after the last experimental phase. The 

independent variable was the induced cognitive load. 

      
Procedure. At first, participants filled in the informed consent and the pretest 

measuring their spatial ability. Next, the testing equipment was prepared (i.e., external 

electrodes on mastoids and the EEG set). After the set-up, each participant got detailed 

instructions about the experimental procedure in a systematic way. Before starting the 

first experimental phase, a resting state measurement was conducted for the baseline. 

Participants subsequently opened and closed their eyes, each for 2 minutes. Next, the 

main experimental phase started in which participants spent 10 minutes in each 

condition. After each condition, participants completed a one-page questionnaire 

gauging perceived load, perceived affective states, and memory of visual stimuli. 

Finally, after completing all the experimental conditions, a post baseline measurement 

was conducted. The final step consisted of a participant briefing and the clean-up. 
Figure 2 shows the experimental setting when performing the Tangram task. 
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Fig. 2. Experimental setting when performing the Tangram task. 

2.3   Materials & questionnaires 

Materials. The aim of the experimental design was to induce different levels of 

cognitive load, which should allow us to identify physiological parameters that are 

explanatory for cognitive load. Because each method of inducing cognitive load may 

have different shortcomings, a combination of different methods was employed. 

The first method to induce cognitive load was by manipulating the complexity of the 
task. In the low load phase, participants assembled a Tangram puzzle of which the 

contours of each of the seven pieces were individually visible. In the high load phase, 

three pairs of two pieces touched each other, so only the surrounding contour of the pair 

was visible. In the overload phase all seven pieces touched each other, which created 

only one surrounding contour, and making it even more challenging to find the correct 

assembly. Two different versions were created for each load phase in which the order 

of the Tangram puzzles was randomly shuffled. 

In order to induce additional cognitive load, the participants’ working memory was 

addressed by asking them to remember visual stimuli simultaneously while performing 

the assembly task. Participants were asked to write down the stimuli they remembered 

after each phase. Two different kinds of stimuli were alternately presented: pictures 

representing a tool that is typically used in industry (such as a safety helmet, a conveyor 
belt or a drilling machine) or a two-digit number. The number of stimuli that had to be 

remembered differed for each phase. During the low load phase, two pictures and two 

numbers were presented. During the high load phase, three pictures and three numbers 

were presented. And finally, five pictures and five numbers had to be remembered in 

the overload phase. 

The third way to experimentally vary the level of cognitive load was to include 

background sounds and noise. For generalization to real-life assembly work, ambient 

factory floor sounds were played in the background. Additionally, two different sounds 

that differed in frequency were presented for the ERP analysis. About every 5 seconds 

(with some jitter to avoid predictability and rhythmic effects) a beep tone was played. 

80 percent of these beeps were standard sounds with a low tone, while 20 percent were 
deviant oddballs with a higher pitch. This manipulation allowed us to study sensory 

processing of the sounds under different levels of cognitive load. 
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Table 1. Methods for inducing three different levels of cognitive load. 

Low cognitive load  High cognitive load  Cognitive overload 

For each condition participants perform a series of Tangram tasks for 10 minutes, built up 
analogously as the examples below. 

The contours of all seven 
pieces are each individually 
visible (no touching sides). 

 

 

Three pairs of pieces have 
touching sides. The contour 

of the seventh piece is 
visible. 

 

 

All pieces can have multiple 
touching sides. 

 

 

 

 

Visual stimuli that are alternately shown on a computer screen in front of the participant 

have to be remembered while performing the Tangram task. 

Two pictures related to 
industry and two two-digit 

numbers. 

 

 45    94 

Three pictures related to 
industry and three two-digit 

numbers 

 

72   29  

  68 

Five pictures related to 
industry and five two-digit 

numbers. 
 

32    51    98

 46   73 

 

Performance. Tangram task performance was measured by the number and 

percentage of correctly assembled puzzles and the percentage of remembered visual 
stimuli. 

 

Questionnaires. The subjective experience of cognitive load was measured by a 

continuous scale (ranging from 0 to 100) and a Likert scale (ranging from 1 to 7). Based 

on an adapted version of the NASA TLX questionnaire task complexity and mental 

investment were inquired [38]. 

2.4   Apparatus & analysis 

The EEG was acquired with a Biosemi ActiveTwo measurement system (BioSemi, 

Amsterdam, Netherlands), using 64 Ag-AgCl scalp electrodes attached to a standard 

international 10–20 system cap. Two additional external electrodes were attached to the 

left and right mastoids, which were used for offline re-referencing. Signals were 
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amplified and digitized with a sampling rate of 1024 Hz. Triggers were sent through a 

serial port via Psychopy, an open-source application for a wide range of neuroscience, 

psychology and psychophysics experiments, written in Python language [39]. The 

recording computer received these triggers for the start of both baselines, all 

experimental conditions and every trial a standard or oddball sound was presented. 

EEG analysis was performed in Python with MNE, an open-source Python software 

for exploring, visualizing, and analyzing human neurophysiological data, and custom-
made code [40,41]. The raw EEG data preprocessing included re-referencing to the 

mastoid channels, interpolation of bad channels, and a bandpass filter with a high cut-

off frequency of 1 Hz and a low cut-off frequency of 45 Hz to eliminate movements 

and electric noise. The preprocessed data was also normalized by subtracting the 

average baseline activity, measured when participants relaxed with their eyes open for 

2 minutes. Finally, for ease of analyzing purposes and processing speed, data was 

downsampled to 100 Hz. 

Next, the pre-processed signal was transformed to the frequency domain with 

Fourier Transform for power analysis (focus on alpha oscillations). The power spectral 

density (PSD) was computed using Welch’s method [42]. The Python function 

scipy.signal.welch computed an estimate of the PSD by averaging consecutive Fourier 

transform of small windows of the signal (segments of 2 seconds) without overlapping, 
resulting in a frequency resolution of 0.50 Hz. Absolute alpha bandpower was 

calculated by taking the absolute mean of the power for the frequency band within its 

range of 8 to 12 Hz. 

Finally, the preprocessed signal was kept in the time domain for the analysis of the 

event-related component (i.e., the amplitude of the N2 component). All standard sound 

and oddball sound trials were epoched with a time window of [-200,500], and combined 

in an overall value at electrodes C3 and C4 at the central region. 

3   Results 

3.1   Self-reported cognitive load & task performance 

Task complexity. The experimental manipulation in terms of complexity was as 

desired. Participants indicated the low load condition as the least complex and the 

overload condition as the most complex, with the high load condition in between, 

F(2,84) = 172.04, p <.001, ηp
2 = .79 (see Figure 3A). No significant correlation was 

established between spatial intelligence of the participants and how complex they 

perceived the task, r = -.11, p =.19. 

 
Mental investment. The results indicate that there is a significant main effect for 

the different conditions on mental investment measured on the continuous scale, 

F(2,90) = 196.62, p <.001, ηp
2 = .81 (see Figure 3B). The more load that was induced 

in the Tangram task, the more mental investment participants reported. Also, there is 

no significant correlation between participants’ spatial intelligence and their 

experienced mental investment during the task, r = -.13, p = .13. 

8



                     
Fig. 3. A) Task complexity score (max score 7) and B) Mental investment score (max score 100) 
rated by the participants after each experimental condition. 

      

Task performance. As expected, results show that the amount of correctly 

assembled Tangram puzzles significantly differs across conditions, F(2,90) = 539, p < 

.001, ηp
2 = .92 (see Table 2, Figure 4A). A smaller amount of Tangram puzzles were 

correctly assembled with the increasing task complexity. There is a significant 

correlation between the spatial intelligence and the number of correctly assembled 

Tangram puzzles (r = .40, p <.001). In a similar way, the proportion of remembered 

stimuli decreased with increasing complexity, F(2,90) = 51.68, p < .001, ηp
2 = .54 (see 

Table 3, Figure 4B). 

Table 2. Comparison of all conditions with pairwise t-tests for performance Tangram task results  

(p-adjusted Holm). 

Cond A Cond B T p Hedges g 

low high 20.680 <.001 2.849 

low overload 34.215 <.001  7.797 

high overload 10.858 <.001  2.416 

Table 3. Comparison of all conditions with pairwise t-tests for performance Memory task results  

(p-adjusted Holm). 

Cond A Cond B T p Hedges g 

high low -3.812 <.001  -0.827 

high overload 4.596 <.001  0.894 

low overload 10.652 <.001  1.881 

 

 

A B 
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Fig. 4. A) Amount of correctly assembled Tangram puzzles and B) percentage of remembered 

visual stimuli in experimental load conditions. 

3.2   Alpha power 

Absolute mean power. As expected, alpha activity in the region of interest (i.e., the 

four selected electrodes in the parietal region: Pz, POz, P1 and P2) differed between 

conditions in a one-way ANOVA repeated measures test, F(4,176) = 45.12 , p < .001, 

ηp
2 = .51. Table 4 summarizes the pairwise t-tests and Holm adjusted p-values. Both 

baseline conditions showed more alpha power activity compared to the cognitive load 

conditions. More importantly, alpha power differed between load conditions, F(2,88) = 

4.70, p = 0.01, ηp
2 = .07. A lower amount of alpha power in parietal electrodes was 

found for the overload condition when compared to the high load condition, and 

similarly when compared to the low load condition. High load condition also showed a 

lower amount of alpha power when compared to the low load condition (see Figure 5). 

 
Table 4. Comparison of all conditions with pairwise t-tests for alpha activity results (p-adjusted 
Holm). 

Cond A Cond B T p Hedges g 

base post base pre 10.997 <.001  0.217 

base post overload 16.359 <.001  1.289 

base post low 14.386 <.001  1.176 

base post high 16.246 <.001  1.220 

base pre overload 11.962 <.001  0.995 

A B 
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base pre low 10.227 <.001 0.886 

base pre high 11.724 <.001  0.933 

overload low -5.473 <.001  -0.140 

overload high -2.695 0.008 -0.057 

low high 3.499 0.001 0.080 

 

 

Fig. 5. A) Alpha log power activity results for all conditions and B) experimental load conditions 
only. 

 

Differences in alpha activity power were also observed when looking closer at the 

separate electrodes, F(3,132) = 38.59 , p = 0.00, ηp
2 = .47 (see Table 5 and Figure 6). 

Especially the POz electrode showed to have greater alpha power overall, without 

taking load conditions into account. There were no differences between electrodes in 

predicting the decreased alpha power effect in the different conditions, F(6,264) = 1.25, 

p = 0.28. 

 

Table 5. Comparison of all electrodes with pairwise t-tests for alpha activity results (p-adjusted 
Holm). 

Electr A Electr B T p Hedges g 

P1 P2 -1.715 0.089 -0.071 

P1 POz -24.151 <.001  -0.587 

P1 Pz -11.141 <.001 -0.135 

P2 POz -10.936 <.001 -0.488 

P2 Pz -1.315 0.191 -0.057 

POz Pz 17.729 <.001 0.462 

      

A B 
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Fig. 6. Alpha log power activity results for experimental load conditions at four selected electrode 
sites in the parietal region (Pz, POz, P1, P2). 

3.3   Auditory event-related potentials 

The auditory processing of standard and oddball sounds is measured by the N2 

component, averaged at central electrode sites C3 and C4. There were no significant 

differences found between the three load conditions, F(2,84) = 0.50 , p = 0.61 (see 

Figure 7 and Figure 8). 

 
Fig. 7. ERP plot for experimental load conditions averaged for two electrodes at the central region 
(C3+C4). 
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Fig. 8. ERP amplitude results for experimental load conditions averaged for two electrodes at the 
central region (C3+C4). 

3.4   Additional correlation analysis 

Correlation analysis indicated that no correlation was found between Tangram 

performance and alpha log power activity in load conditions. But percentage of memory 

performance and alpha log power activity were significantly correlated, only in the high 
load condition, r = -.37, p = .01. This indicated that only in the high load condition, 

reduced alpha power activity is correlated with a greater amount of visual stimuli 

participants could remember (see Table 6). 

Table 6. Correlation analysis results for two performance features (amount of correctly 
assembled Tangram puzzles and percentage of visual stimuli remembered) with alpha log power 

activity in all experimental load conditions. Values in brackets indicate p value for each 
correlation. 

Performance feature Low High Overload 

Tangram -0,13 (.41) -0,16 (.28) -0,11 (.49) 

Memory (%) -0,17 (.25) -0,37 (.01) 0,01 (.93) 

 

4   Discussion 

   The current study focused on the detection of cognitive load and overload in the 

context of personalized assembly work with psychophysiological sensors, performance 

measures, and subjective measures. We manipulated cognitive load in three conditions 

(i.e., low, high, overload) by creating different complexity levels of a dual task, which 

included a Tangram puzzle task and a working memory load (i.e., remembering visual 

stimuli). This task was performed with a large sample size and in a highly controlled 

lab context to overcome some of the methodological issues that previous studies had to 
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deal with. The experimental design also allowed us to conduct considerable baseline 

measures and compare load conditions that lasted for an equal and substantial length of 

time. Finally, while this manuscript only focuses on EEG features, other sensors (i.e., 

heart rate, skin temperature, galvanic skin response, electro-ocular activity, motion 

analysis, facial video analysis) were implemented in the current study and will also be 

explored as potential cognitive load markers in the future. 

   Our successful manipulation of cognitive load was reflected in task performance and 
subjective rating results. First, the majority of the participants were not able to succeed 

on the dual task in the overload condition, assembling almost none of the puzzles and 

remembering only a small amount of the presented visual stimuli. Second, on subjective 

ratings they indicated that the task in the overload condition was the most complex and 

required the greatest amount of mental investment. 

   More importantly, results for the EEG features alpha power activity and auditory 

response (i.e., N2 amplitude) are partially in line with expectations. A greater amount 

of cognitive load was indicated by reduced alpha power activity at parietal electrodes, 

especially at the POz electrode. On the contrary, no significant effect was found on the 

auditory response. The reduced alpha power effect found in the current study validates 

this EEG feature as a marker for estimating cognitive load, in line with previous 

research [10,11,31,43,44]. However, we expected there would be a greater effect on 
alpha power in the overload condition when compared to the other load conditions. This 

could be due to the task being too complex and overwhelming, making participants give 

up and not staying motivated to invest mental effort and resources anymore. 

Participants confirmed that these puzzles were too difficult and some believed they 

were actually unsolvable, which was reflected in the nervous laughs and freeze 

reactions. Regarding the assembly work context, this could be reflected in dropout, bad 

quality and errors because operators are becoming apathetic to the task performance 

[19,45]. Motion analysis of the videos or additional EEG features that study the EEG 

signal over time (i.e., time frequency spectrogram, auto-correlation) could provide 

more insights. 

   Also, the small effect size in these findings indicates that the alpha power may be not 
sensitive enough for differentiating between different levels of cognitive load. The 

differentiation between conditions in resting state (i.e., pre and post baselines) and 

conditions that require mental effort (i.e., experimental load conditions) was more 

pronounced than the comparison amidst only load conditions. The baselines had a 

distinctly lower amount of alpha power when compared to the load conditions. 

Consequently, the real-time differentiation between cognitive load versus overload in 

an assembly work context is challenging, especially when using alpha power activity 

as a deciding marker. 

   The results regarding the sensory processing with ERP analysis could not validate the 

N2 amplitude as a marker for estimating cognitive load. The sensory processing of the 

presented sounds was similar in all load conditions. First of all, factory noise and the 
ERP-eliciting sounds were presented in order to create additional cognitive load and 

reflect the ambience of assembly work for all conditions. Because a dual task was 

already created for manipulation of cognitive load, also attending to these sounds would 

have been too difficult. That way we would not have been able to create a low load 

condition. Consequently, in this ERP paradigm participants did not have to actively 

attend to the standard and oddball sounds. The N2 amplitude was possibly not sensitive 
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enough as a marker of cognitive load because it was not part of the task flow. Another 

possible feature for measuring the sensory processing without overt action or attention 

to the presented sensory stimuli is the mismatch negativity (MMN) component and 

could be explored in the future [34]. The MMN indicates the event-related response to 

sudden changes in auditory stimuli. Finally, the low amount of trial repetitions is 

another possible confound in our ERP paradigm. Even though conditions lasted for 10 

minutes, presenting a sound every second would have been too interfering with the 
primary task. Additionally, because an ERP design requires enough repetitive trials for 

filtering out noise and obtaining reliable conclusions, it may even be unsuitable in real-

time assessment of cognitive load [11]. 

   With regard to the finding that alpha power activity did not correlate with 

performance measures, we can remark that this spectral power feature may not be 

sensitive enough to discriminate on an aggregated level. A lot of information is lost 

because values for alpha power activity are averaged for the whole duration of the 

condition. The investigation of lower (8-10Hz) and upper (10-12Hz) alpha bands could 

give more detailed insights on specific frequency effects that are not distinct when only 

looking at the broad alpha range [44, 46]. 

   As previously mentioned, we would like to explore other potential markers for 

cognitive load in our EEG dataset. Exploring the power activity in time and auto-
correlation analysis of the raw data could possibly unravel more in-depth insights about 

fluctuations or recurring patterns in the signal, especially when synchronized with video 

motion analysis. Future research will also focus on other aggregated EEG features such 

as the alpha peak power frequency, the frequency bin where maximum power (i.e., local 

peak) is found within the 8-12 Hz range [44, 47]. We expect to find lower peak 

frequency values in the overload condition, indicating “less integrated and 

interconnected feedback loops among brain areas” [47, p.419] compared to lower load 

conditions. This is also reflected in the deteriorated task performance results. Another 

approach for a more nuanced analysis of our results is the use of advanced machine 

learning techniques in order to classify ‘overload’ within conditions based on the data 

from multiple sensors. 
   We can conclude that our results encourage to measure and evaluate EEG features 

for estimating cognitive load in a highly controlled lab setting with experimental 

design. The results from the current study validated alpha power activity as a potential 

marker for estimating cognitive load, while the auditory N2 response failed to 

differentiate between load conditions. Our future research focusing on the real-time 

measurement of cognitive load will aim to validate these findings with a wearable EEG 

headset that is applicable in the assembly work context. Especially alpha power activity 

at the POz electrode will be considered as a potential marker of load. However, 

researchers should be aware that aggregated EEG features (i.e., alpha power and N2 

amplitude) at group level are not sensitive enough for detecting cognitive overload. 

Other features analyzed over time, the use of a longitudinal design and training a 
statistical load model with data from several individual sessions may be preferred for a 

more nuanced approach in the exploration of other potential markers for estimating 

cognitive (over)load. 
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Abstract. Cognitive effort has been studied for a long time with the
purpose of integrating this measure in human-machine/robot interac-
tion by modulating the system behaviour and simplifying the interaction
tasks. To this end, the question is whether standard wearable devices are
reliable enough to be adopted in this regard. The purpose of the present
paper is to analyze the accuracy in detection of cognitive effort of some
commercial wearable devices, such as armbands, wristbands and chest
straps. In an experiment setting, thirty participants were exposed to an
increase in their cognitive effort by means of some common stressors.
Two wearable devices, of the above mentioned categories, were used all
together to evaluate a change in the participants’ heart activity. The
trend of heart rate variability (HRV) reflected the change of subjects’
cognitive effort. In particular, we found that the analysis of HRV mea-
sured by the chest strap provides the most accurate detection of cognitive
effort. Nevertheless, also measurements by the smartwatch are slightly
sensitive to cognitive effort.

1 INTRODUCTION

This paper studies the problem of monitoring a subject’s cognitive effort while
interacting with a complex robotic system. The ultimate aim is that of detecting
when the user is overwhelmed, simplifying the interaction task when it gets too
complex, accordingly.

Recent advances in robotics have determined the introduction of service
robots in everyday life scenarios and the use of collaborative robots working
close and together with human operators in industries [20]. In particular, collab-
oration between workers and collaborative robots on the factory shop is becom-
ing the new frontier in industrial robotics [12]. This has the positive outcome
that human capabilities and skills are enhanced and complemented by those of
the robot. However, as a drawback, it implies that non-expert users (i.e., users
without expertise focused on robotics) are requested to use complex systems.
In order to guarantee an effective use of robots in such contexts, it is, then, of
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paramount importance that a smooth interaction is enabled that allows ease of
use, efficiency and user’s satisfaction.

To this end, approaches based on affective robotics have been proposed. Af-
fective robotics consists in enhancing the interaction of a human with a robot
by recognizing her/his affect. Monitoring and interpreting nonverbal communi-
cation can provide important insights about a human interacting with the robot
and, thus, implicit feedback about the interaction can be achieved. Accordingly,
the aim of affective robotics is relieving users cognitive burden when the task
to accomplish overloads her/his mental capabilities, adapting the behaviour of
the robot and implementing a sufficient level of autonomy. While approaches
based on affective robotics are largely considered for socially interacting robots,
they are still unexplored in the case of service and industrial robots, where the
interaction task and the environmental conditions, such as noise, stress, time
constraints, overload the cognitive and emotional burder of the user. In this con-
text, methodologies for affective interaction with service and industrial robots
are needed. These aim at increasing the safety and efficiency of the interaction
system by tuning the level of autonomy of the robotic system, in order to assist
the human operator. Furthermore, it would be useful to achieve this goal by
using non-dedicated multi-purpose devices, such as smartwatches or wristbands
for activity tracking, which are easy to be worn and used by the operator and
do not interfere with the interaction task.

Moving along these lines, in this paper, we address the problem of monitoring
a subject’s cognitive workload in approaches of affective robotics. We aim at
detecting cognitive workload by means of quantitative measurement of subject’s
physiological parameters. In particular, we consider the assessment of user’s
cognitive effort by means of commercial non-invasive wearable devices that do
not limit the freedom of movement, and, hence, could be truly used in real
operative scenarios. Specifically, cognitive effort is estimated from the analysis
of cardiac activity, measured by a smartwatch and a chest strap.

The results of this study have been applied to the industrial use case ad-
dressed in the COMPLEMANT experiment [1], which is part of the EU H2020
HORSE project [2]. The use case refers to a robotized injection moulding pro-
duction activity, characterized by such a high production pace that forces the
operator to work under an external, and very fast, pace determinant with con-
sequent effects on the cognitive demand and on the quality of the output.

The paper is organized as follows. In Sec. 2 we discuss the background of
cognitive workload estimation by means of the analysis of cardiac activity and
related works with respect to the use wearable devices for this purpose. Therein,
the contribution of this paper with respect to the state of the art is highlighted.
Then, in Sec. 3 the experimental analysis we performed is introduced and the
achieved results are discussed in Sec. 4. Finally, Sec. 5 follows with some con-
cluding remarks.
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2 BACKGROUND AND CONTRIBUTION

Physiological signals have been widely used to estimate human affective state,
focus, attention and intent. Among them, hear rate (HR) is the most suited to be
considered in real operational environments since it can easily be measured by
commercial portable and non-invasive wearable devices, such as smartwatches
and wristbands or chest straps for activity tracking.

From HR, heart rate variability (HRV), which is the variation over time of
the interval between consecutive heart beats, can be derived. It is an established
quantitative index for the non-invasive assessment of autonomic nervous system
function. It has been widely shown that cognitive processing influences HRV
[3, 9, 15]. The effect of stress on HRV is due to the fact that cognitive effort is
one of the factors contributing to sympathetic stimulation, which is associated
with the low frequency range of HR.

To quantify HRV, several metrics are computed from the analysis of RR
interval time series [4, 17]. Such metrics are typically extracted from the time
and frequency domain. In particular, the most common statistical time domain
metrics are: the mean value and the standard deviation, denoted by mean RR
and SDRR in the following, of the RR series, the root mean square of successive
differences (RMSSD), and the percentage number of consecutive (normal) inter-
vals differing by more than 50 ms in the entire recording (pNN50 ). As regards
the frequency domain metrics, the most used ones are the power in the low fre-
quency band (LF, 0.04 − 0.15Hz), the power in the high frequency band (HF,
0.15 − 0.40Hz) and their ratio (LF/HF ratio).

Unfortunately, RR interval time series are seldom provided as output by
commercial wearable devices: HR, expressed in terms of averaged number of
beats per minute (BPM), is the only output of most inexpensive devices for the
recording of cardiac activity. Some studies in the literature have proved that HR
is sufficient to discriminate a variation in cardiac activity during moderate and
intense cognitive load [6, 8, 10]. However, information about cardiac activity is
largely lost in the BPM measure due to the moving window averaging that lies
under its construction.

To this end, in this paper we aim at assessing the accuracy in detecting the
physiological response to cognitive effort from HRV analysis through the use
of wearable commercial devices. In particular, we consider a chest strap and a
smartwatch in order to a assess how the recording location (chest and wrist) and
the technology (electrodes or photoplethysmography-derived) of measurements
affects the accuracy of cognitive effort detection.

3 MATERIALS AND METHODS

The aim of our experiments was to assess how accurately cognitive effort can be
detected when using commercial wearable devices worn at the chest and wrist.
To this end, test participants were exposed to cognitive effort and their cardiac
activity was recorded and analyzed.
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3.1 Test subjects

A total of N = 30 users (8 females, 22 males, age 26.58±5.11 y.o.) were enrolled
in the experiment. Participants are researchers working at our engineering de-
partment, in different research fields. All of them were completely new to the
experimental task and goals. Compliance to participate in the study was ob-
tained from written informed consent during the description of the experiment.
All the data were analyzed and reported anonymously. No participant reported
to have any cardiovascular problems that may have influenced the procedures
carried out.

3.2 Measurement devices

We used the following devices: a Polar H10 (Polar Electro Inc., Bethpage, NY,
USA) as chest strap and a Samsung Gear S1 (Samsung, South Korea) as a
smartwatch.

Polar H10 is an electrode based chest strap that replaced the discontinued
H7. These chest straps have been reported as trustworthy devices to detect BPM
and RR data [6,10,11]. The smartwatch uses photoplethysmography technology,
but, being a wrist-worn device, is more susceptible to motion artifacts [16].

The two devices were used simultaneously during the experimental sessions.
The chest strap was connected through Bluetooth to a laptop PC running
Ubuntu 16.04.5, while the smartwatch was connected over Wi-Fi socket to the
same PC.

3.3 Test protocol

The tests were conducted in a laboratory environment in which light and temper-
ature were kept constant during the entire test. Participants were asked to seat
on a height-adjustable chair in front of a 19” monitor’s screen. Before recordings,
participants were asked to wear the two sensors previously sanitized with alco-
hol. The Polar H10 was applied with the addition of an ECG gel on the strap as
suggested on the manual. After sensors placement, participants were introduced
to the test by reading the instructions that described the types of quizzes at
which they where asked to respond. The experimenter was seated next to the
participants to help them with the instructions.

The experimental protocol consisted of two phases, during which participants
were exposed to rest and cognitive effort, for an overall duration of 12 minutes.
In the following, the two conditions are denoted by rest and stress, for ease of
notation. During the rest phase, each participant was asked to relax while data
were recorded. Then, the study design implied that the stress phase had both
a cognitive aspect (mental effort) and an emotionally stressful aspect (annoying
music, presence of the experimenter and performance related stress elicited by
the fact that the answers collected to establish a ranking among participants).
To induce cognitive effort, a combination of memory tasks, mathematics tasks
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and visual tasks were used1: Stroop test, fast counting, math calculation and
the 2-back test. These stressors are well known in the literature and customarily
used for assessment of cognitive effort [3,14,15,18]. Quizzes were presented in the
order depicted in Fig. 1. Every session was presented for one minute including 3
seconds of interval between each one.

After the presentation of quizzes, at the end of the stress phase, participants
were asked to answer the NASA Task Load Index [7]. The questionnaire investi-
gated subject’s perception of cognitive effort, physical fatigue, temporal demand,
performance, effort and frustration during the test, in a rating scale from 1 to
10.

Fig. 1: Experimental protocol. RR were acquired during both rest and stress
phases. The stress phase consisted of six different quizzes organized as depicted.

3.4 Data processing

Firstly, raw HRV data were pre-processed using the detrending tool presented
in [19]. Secondly, each RR series was visually inspected to verify the absence
of acquisition noise or by ectopic beats. Ectopic beats were replaced with in-
terpolated intervals (five intervals) calculated between the previous and next
validated RR intervals [5]. Following the visual inspection of the obtained RR
series, some participants’ data were discarded due to the presence of movement
artifacts caused by the worn location. For the data coming from Samsung Gear
S1, 6/30 participants were removed from the analysis while, for Polar H10, 2/30
participants were discarded. Participants were not asked to repeat the test to
avoid familiarization with the test itself.

As regards HRV analysis, the Welch’s periodogram was considered for fre-
quency domain parameters.

3.5 Statistical analysis

Recorded data were analyzed using MATLAB Statistics and Machine Learning
Toolbox. The tools presented in [13,21] were also used.

1 A video of the tests presented to study participants can be found at https://drive.
google.com/file/d/1d2pPdWYV1icRLV9ejYRklpPUCdkfWgYv/view?usp=sharing.
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First, normal distribution and homogeneity of variance was assessed with
Fisher’s test. In order to investigate whether subjects response during the stress
phase differs from the one during the rest phase we ran a paired-samples t-test.

Moreover, one-way multivariate analysis of variance (ANOVA) was consid-
ered to explore possible between-subject differences on the cardiovascular metrics
of HRV (dependent variables) between rest and different stages of stress (i.e.,
after 3 minutes and at the end of the stress phase) (independent variables).

Possible sex differences in cardiovascular activity were not considered. Bon-
ferroni’s Post-hoc-test was used to explore further significant differences between
the two phases. The significance level was set at p < 0.05.

4 RESULTS AND DISCUSSION

The answers given by the study participants to the NASA TLX questionnaire
confirmed that the devised test shown in Fig. 1 succeeded in eliciting cognitive
effort. Specifically, the arithmetic mean of the NASA TLX answers showed high
values in a scale from 0 to 10 for all those questions concerning cognitive effort of
the experiment: mental demand 7.10, temporal demand 7.43, effort 7.13. Phys-
ical fatigue was rated low (average value 3.37), as expected, whereas subjective
perception of performance was rated 5.67 on average.

Building upon this result, in the following we report the results of statistical
analyses of RR data, aimed at detecting the different conditions of cognitive
effort.

4.1 HRV analysis

The general trend of the RR intervals for the smartwatch Samsung Gear S1 and
the chest strap Polar H10 is depicted in Fig. 2.

Results of the HRV analysis are reported in Table 1 and in Table 2. In partic-
ular, Table 1 reports the results of the ANOVA considering three conditions: rest
(R), the first 3 minutes of the stress phase (S1) and the second 3 minutes of the
stress phase (S2). In Table 2 the results of the t-test regarding the comparison
between the rest (R) and the whole stress (S) phases are reported.

Most of the cardiovascular metrics we considered exhibited a trend between
the rest and stress phases that is in accordance with the literature review pre-
sented in [3]. Specifically, in the case of the chest strap, all the time domain
metrics, namely mean RR, SDNN, rMSSD, pNN50, decreased when stress was
increased. This trend was not confirmed for some metrics of the smartwatch:
both rMSSD and SDNN increased with stress. Regarding the frequency domain
metrics it can be noted that in general HF, LF and LF/HF decreased dur-
ing stress. This behavior is consistent with that reported in [3] for HF while it
disagrees with the trend expected for LF and LF/HF (an increase in values).
However, as argued in [3] there is not a generalized consensus about the trends of
these two metrics. For example, 3 out of 8 studies considered in [3] reported a de-
creasing value of LF during stress, according with our trend. This difference was
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Fig. 2: Simultaneous RR acquisition during the entire test (12 mins) (smartwatch
Samsung Gear S1 in blue and chest strap Polar H10 in red). Data are averaged
over all the study participants, considering intervals of 10 s duration. Standard
deviation is shown in thin dashed lines.

attributed in [3] to the fact that the type of tasks required the user to interact
with the mouse; this may have activated a cortical area (associated with physical
activity) causing a shift in the autonomic nervous system, which is reflected in a
change in the balance between both sympathetic and parasympathetic nervous
systems. As a consequence the ratio (LF/HF ) was also affected.

The one-way ANOVA with the cardiovascular metrics for HRV analysis as
the dependent variables showed some significant changes across conditions from
rest (R) to stress (S1 and S2) phases. Mean and standard deviation for the
HRV metrics are reported in Table 1. As regards the chest strap Polar H10,
the statistical analysis revealed a significant difference between the three phases:
SDNN : F (2, 81) = 4.422, p = .015, RMSSD : F (2, 81) = 4.072, p = .021, LF :
F (2, 81) = 7.159, p = .001. Furthermore, the pairwise comparison with the Bon-
ferroni corrected Post-hoc-test revealed a significant difference for the SDNN
between R and S1 (pR,S1 = .043) and R and S2 (pR,S2 = .029), for the RMSSD
between R and S1 (pR,S1 = .046) and R and S2 (pR,S2 = .047) and for LF
between R and S1 (pR,S1 = .002) and R and S2 (pR,S2 = .009). Statistical anal-
ysis for the smartwatch Samsung Gear S1 revealed no significant differences.
Despite this result, a further Post-hoc-test with Bonferroni correction showed a
significant difference for the LF between R and S1 (pR,S1 = .039) that was not
reflected in S2.

Beside the one-way ANOVA, this result was confirmed also by the paired-
samples t-test. In Table 2 we report the significant differences between the dis-
tribution of different metrics. The analysis of the HRV metrics for the Polar
H10 showed a significant difference for all the studied cardiovascular metrics
(p < .001) except for the LF/HF ratio. On the contrary, no significant difference
was found for the Samsung Gear S1.
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Table 1: ANOVA - Mean values (standard deviation) of different HRV metrics
obtained from the chest strap Polar H10 (top) and from the smartwatch the
Samsung Gear S1 (bottom) along the three conditions, rest (R), first part of
stress (S1) and second part of stress (S2) (independent values).

Chest strap

Mean (SD) R S1 S2

Mean RR (ms) 766.97(149.88) 697.67(141.12) 694.68(140.05)

SDNN (ms) 60.65(17.72) 49.02(17.08)∗ 48.34(17.43)∗
rMSSD (ms) 48.60(21.70) 36.38(16.81)∗ 36.44(16.37)∗
pNN50 (%) 23.02(15.88) 15.44(13.01) 15.24(12.16)

LF/HF 3.73(1.85) 3.54(2.59) 3.97(3.69)

LF (ms2) 1881.33(927.93) 977.18(916.19)∗ 1085.67(1076.62)∗
HF (ms2) 776.23(801.78) 416.79(555.17) 458.28(644.79)

Smartwatch

Mean (SD) R S1 S2

Mean RR (ms) 818.35(114.91) 809.12(144.34) 805.77(145.06)

SDNN (ms) 119.61(23.17) 120.58(33.06) 120.22(34.51)

rMSSD (ms) 139.88(27.98) 144.47(43.85) 140.52(42.51)

pNN50 (%) 68.70(5.36) 68.82(8.69) 66.90(7.71)

LF/HF 0.90(0.28) 0.71(0.32) 0.99(0.69)

LF (ms2) 7559(12078.11) 4031.29(2473.53)∗ 4881.65(3387.19)

HF (ms2) 8738.23(12792.08) 6800.88(4270.98) 5931.03(3302.72)

∗ Significantly different from R (p < 0.05)
Significantly different from S1 (p < 0.05)
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Table 2: t-TEST - Mean values (standard deviation) of different HRV metrics
obtained from the chest strap the Polar H10 (top) and from the smartwatch
Samsung Gear S1 (bottom) along the two phases, rest (R) and stress (S).

Chest strap

Mean (SD) R S p

Mean RR (ms) 766.97(149.88) 696.17(140.57) p < 0.01

SDNN (ms) 60.65(17.72) 49.06(16.36) p < 0.01

rMSSD (ms) 48.60(21.7) 36.70(16.08) p < 0.01

pNN50 (%) 23.02(15.88) 15.34(12.31) p < 0.01

LF/HF 3.73(1.85) 3.46(2.56) NS

LF (ms2) 1881.33(927.93) 1096.30(942.00) p < 0.01

HF (ms2) 776.23(801.78) 454.11(547.14) p < 0.01

Smartwatch

Mean (SD) R S p

Mean RR (ms) 818.35(114.91) 807.40(144.59) NS

SDNN (ms) 119.61(23.17) 120.73(31.88) NS

rMSSD (ms) 139.88(27.98) 142.51(41.65) NS

pNN50 (%) 68.70(5.36) 67.82(7.81) NS

LF/HF 0.90(0.28) 0.88(0.46) NS

LF (ms2) 7559.00(12078.11) 4595.41(2490.94) NS

HF (ms2) 8738.23(12792.08) 6211.15(3584.39) NS
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4.2 Discussion

The results presented above have shown that the smartwatch is not robust
enough to artifacts and, hence, cannot detect the occurrence of cognitive effort.
On the contrary, the chest strap proved capable to discriminate the two main
phases of our experiment (R and S), although it failed to discriminate between
the sub-phases S1 and S2. This result is confirmed by other studies involving the
use of the same chest strap, for example [10] where participants were asked to
perform a mental arithmetic task. The chest strap was capable to discriminate
between the rest phase and the stress phase. However, it is worthwhile noting
that the metrics that showed significant difference are different to the ones of
the present study (i.e., SDNN and RMSSD were not significant).

As regards the smartwatch, the results reported in Tables 1 and 2 are in con-
trast with our previous finding reported in [18], where a statistically significant
difference was found, on the t-test, for HRV analysis on mean RR values between
the two conditions of rest and stress. We can argue that this result might be due
to the movement artifacts caused by the body location where the device is worn.
In [18] the smartwatch was accurately put on by the experimenter avoiding areas
close to bones and other tissues, while, in this study, participants were asked to
wear the device by themselves, in order to simulate a more realistic procedure.
Moreover, the accuracy of the photoplethysmography sensor readings strictly
depend on how tight is the smartwatch bracelet.

5 CONCLUSIONS

In this paper we considered the problem of estimating subject’s cognitive effort
by means of commercial non-invasive wearable devices that measure cardiac
activity. The ultimate goal is that exploiting information about user’s status
when interacting with a robot, in order to adapt the behaviour of the robot
when it becomes too complex for the user. In this regard, the aim of the study
presented in this paper was to investigate the accuracy of different wearable
devices to discriminate between different levels of cognitive effort compared to a
baseline. Moreover, we were interested in assessing how, both, the body location
and the technology of these devices may have an influence on the detection of
the HRV on subjects involved in cognitive tasks. A commercial smartwatch and
a commercial chest strap were compared to this end.

The results suggest that the adopted mental tasks successfully induced a
cognitive load on participants with a variation of their cardiac status during the
experiment. The chest band Polar H10 was able to detect this change: a much
greater accuracy, compared to the smartwatch, was shown by the chest band, as
expected, given the fact that it relies on a more reliable measurement technology
and it is intrinsically less sensitive to motion artifacts.

As future studies, we will assess whether HR information, i.e., averaged BPM
data, is a reliable estimator for subject’s cognitive effort. Indeed, this information
is provided by commercial wearable devices more frequently than RR time inter-
val series. Moreover, we are interested in using these devices for on-line detection

29



of mental fatigue during interaction tasks, in order to use them in applications
of affective robotics.
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Abstract. In the land forces, dismounted soldiers, in particular squad and 

platoon leaders, are often subject to significant subjective mental load as they 

have to manage their subordinates in dynamic and risky situations. However, 

during their training, they are taught procedures to help limit the mental load 

during a mission. The aim of this study was to assess the subjective mental load 

associated with each of these procedures. Twenty participants (10 squad leaders 

and 10 platoon leaders) were asked to evaluate mental load on a 6-point Likert-

type scale (0 to 5) for each of 21 established procedures. The analysis found 

differences for three procedures. Knowing when a procedure becomes more 

mentally costly could help researchers to identify equipment that could help 

both squad and platoon leaders carry out their missions.  

Keywords: subjective mental load, dismounted soldiers, platoon leader, squad 

leader. 

1   Introduction 

The missions undertaken by French infantry soldiers, in particular platoon and squad 

leaders, are highly complex. A platoon leader has to manage more subordinates than a 

squad leader (23 to 30, compared to 6 or 7, depending on the mission), and has to 

develop higher-level tactical maneuvers. A platoon leader commands three or four 

squad leaders and is responsible for the whole section, while a squad leader only 

commands two fireteams. Nevertheless, at each level, these soldiers have to 

communicate with their hierarchy, manage their subordinates, develop tactical 

maneuvers, make decisions, etc. The mental load can increase rapidly and potentially 

become excessive. Mental load is a function of task characteristics and individual 

abilities [1] [2] [4]. Although the tasks carried out by platoon leaders can be assumed 

to be more demanding than those of squad leaders, this group should be better-able to 

cope, due to their knowledge and training. 

The French army has put in place measures that are designed to help. During their 

training, soldiers practice procedures known as REFLEX ACTIONS (e.g., moving 

forward), ELEMENTARY ACTIONS (e.g., positioning oneself), and ORDER FRAMEWORK 
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(e.g., DPIF for Direction, Point to be reached, Itinerary, Formation) until they become 

automatic. These standard procedures are written in an official doctrine manual and 

are usually followed in real combat situations. According to the model of Meister [6], 

in low and high demanding situations, the level of workload is high. Indeed, in low 

demanding situations, the individual has to make an effort to struggle against his 

decrease of vigilance, while in high demanding situations the effort is made to process 

all the information. In moderately situations, compensatory strategies are set up to 

decrease the level of workload. We therefore assume that during a military mission, 

the application of the standard procedures could be a strategy to decrease the mental 

load. However, in a complex and difficult situation, under significant time pressure 

and exposed to imminent danger, are these procedures still effective?  

To the best of our knowledge, the mental load of platoon and squad leaders has 

been little studied in the literature, although it could help to improve training 

programs by focusing on highly-demanding tasks. One of the few examples is an 

American study of platoon and squad leaders. Participants had an exercise that 

consisted of attacking and securing a command and control installation near to a 

village. They were then asked to rate their subjective mental effort for various 

subscales of the MARS scale (Mission Awareness Rating Scale) [5], which are 

identifying, understanding, predicting, and deciding. The study found that identifying 

required a similar mental effort for platoon and squad leaders, while understanding, 

predicting and deciding required more effort for squad leaders than platoon leaders 

(Matthews & Beal, 2002). The authors argued that platoon leaders had a broader 

picture of the mission. However, this study only focused on mental effort, which is a 

voluntary process that is under the control of the individual [1] [3]. 

The present paper is an exploratory study which aimed to identify the mental load 

that squad and platoon leaders associate with various procedures, and understand the 

reasons why some differences could appear. Our hypothesis is that, whatever the 

procedure, the mental load should be relatively similar for platoon and squad leaders, 

as their training should have equipped them in the same way. However, in nonroutine 

and difficult situations, following certain procedures will be more mentally costly for 

either squad leaders or platoon leaders. The results of this exploratory study will help 

us to build scenarios of combat situations that should bring the most costly procedures 

and therefore a high mental load. 

2   Methods 

2.1   Participants  

Twenty soldiers from several French infantry regiments participated: ten platoon 

leaders (PL) and ten squad leaders (SL). They were all men with an average age of 

30.65 years (PL: M = 33.50, SD = 5.87; SL: M = 27.80, SD = 4.92), average 

experience in the Army of 8.58 years (PL: M = 10.86, SD = 5.89; SL: M = 6.30, SD = 

4.24), and average experience in their current position of 2.47 years (PL: M = 2.09, 

SD = 1.20; SL: M = 2.85, SD = 0.91). Once the heads of the infantry regiments agreed 
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to their participation, they asked squad and platoon leaders to participate and the 

volunteers have been retained. All participants signed an informed consent form and 

prior permission was given by the head of each infantry regiment. 

2.2   Materials and procedure 

Before individual interviews in a quiet office at their base, a pre-briefing was done in 

order to explain that the aim of the study was to assess the mental load of squad and 

platoon leaders in their missions in order to identify the difficulties that they could 

have and to find solutions to help them. The definition of mental load was explained 

to them in scientific and in common language.  During the interviews, participants 

were asked to associate a subjective score for mental load on a 6-point Likert-type 

scale (ranging from 0 to 5) for each of the following 21 procedures they had been 

trained to apply during a mission as a dismounted soldier: 1) reflex actions: orienting 

oneself, observing, moving forward, communicating, protecting oneself, camouflaging 

oneself, estimating a distance, designating a target, preparing the weapon, reporting, 

maintaining contact; 2) elementary actions: moving, positioning oneself, using his 

weapon, 3) order framework: MOIAP (Mission, Objective, Itinerary, Action to take, 

Place of the squad leader), DPIF  and , FAFS (in Front of this direction, At a certain 

location, Formation, Stop), IMA (Installation area, Mission, Action to take), IMAPAP 

(Installation area, Mission, Area of oversight and fire, Particular points, Action to 

take, Place of the squad leader), COFF/RCOFF (Consumption, Objective, Flow, 

Fire/Rear sight, Consumption, Objective, Flow, Fire), and KDNOF (Kind, Distance, 

Number and kind of grenade, Objective, Fire). It should be noted that the study was 

carried out in France, and that these acronyms do not exist in the armies of 

Anglophone countries. Participants were also asked to explain why they attributed 

their scores. A thematic content analysis was realized on these justifications that have 

been classified in two main themes drawn by the results: endogenous factors and 

exogenous factors. 

2.3   Statistical analyses  

Parametric analyses were applied to the data. A general linear mixed effects ANOVA 

model tested the main effect of position; the 21 procedures; and the interaction 

between position and procedure, with respect to subjective mental load. Post-hoc 

analyses were followed by Fisher’s Least Significant Difference test. 

When subjective mental load scores significantly differed as a function of position 

and procedure, Chi-square tests were applied on the number of scores justifications, 

for each concerned procedure. When the Chi-square test was significant, the z-score 

contribution of each justification was calculated. 

For all analyses, significance was set at p ≤ .05. 
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3   Results 

3.1   Effects of position and procedures on subjective mental load 

Position had no significant impact on subjective mental load (F(1,10) = 0.14, n.s). 

However, a significant effect was found for procedure (F(20,200) = 2.56, p < .001) 

and the interaction between position and procedure (F(20,200) = 1.70, p < .05) on 

subjective mental load. Post-hoc comparisons of subjective mental load for platoon 

and squad leaders for individual procedures revealed that scores were significantly 

higher for squad leaders than platoon leaders for DPIF (respectively: M = 1.90, SD = 

1.29; M = 1.13, SD = 1.55) and estimating a distance (respectively: M = 2.10, SD = 

1.10; M = 1.10, SD = 1.07), and a marginal effect was found for protecting oneself  

with higer scores for platoon leaders than squad leaders (respectively: M = 2.80, SD = 

1.70; M = 1.60, SD = 0.52). For brevity, non-significant results are not given here (see 

Figure 1). 

 

 

Fig. 1. Subjective mental load (Mean ± Error-Type) for squad and platoon leaders, for each 

procedure. 

3.2   Justifications of subjective mental load scores 

As the subjective mental load significantly varied between platoon and squad leaders 

for DPIF, estimating a distance and protecting oneself, the scores justifications were 

analyzed for these three procedures. The evocated themes of justifications were 

divided into three endogenous factors and five exogenous factors, which are 
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respectively: i) level of experience, skills mobilization, confidence in equipment, ii) 

equipment help, failure or lack of equipment, lack of grenadiers’ skills, problematic 

environment, helping environment. 

For DPIF, both platoon and squad leaders significantly more justified their 

subjective mental load by their skills mobilization than by the other types of 

justification (PL: z-score = 2.84, p < .01; SL: z-score = 2.33, p < .05). 

For estimating a distance, there was no justification significantly more expressed 

than another one. For platoon leaders, they equally justified their mental load by their 

level of experience, skills mobilization, and equipment help. For squad leaders, they 

equally justified their mental load by all the justifications except from “confidence in 

equipment”. 

For protecting oneself, platoon leaders more justified their mental load by 

“problematic environment” than by the other types of justification (marginal effect: z-

score = 1.90, p = .07). Squad leaders significantly more justified their mental load by 

their skills mobilization than by the other types of justification (z-score = 2.41, p < 

.05). 

4   Discussion 

The results highlight that, overall, subjective mental load was mainly similar for 

squad and platoon leaders, while all scores were relatively low. This finding could be 

explained by their experience. Soldiers who have risen through the ranks have gained 

extensive experience. During their training they have automated most of the 

procedures they have to follow during a mission. Those who are direct entrants, and 

lack prior military experience are likely to have the intellectual capacity to apply 

procedures without making a high mental effort. Furthermore, although platoon 

leaders have to manage more soldiers than squad leaders, the latter have to give more 

detailed orders. 

It is interesting to note that for protecting oneself, platoon leaders tended to have a 

higher subjective mental load than squad leaders. This could be due to the fact that 

platoon leaders have more soldiers under their responsibility and they have to think 

about how to manage the situation, with many tasks to perform. They justified their 

level of subjective mental load by a problematic environment while squad leaders 

justified their mental load by their skills mobilization, suggesting that protecting 

oneself requires a personal involvement. This is interesting to note that platoon 

leaders gave an external cause while squad leaders gave an internal cause. This refers 

to the attributional theory of achievement motivation and emotion [7] which describes 

a causal attribution bias, meaning a trend to explain the causes of our success by 

internal characteristics (e.g., I am clever) and the causes of our failure by external 

characteristics (e.g., the task was too hard).  Squad leaders reported a higher mental 

load than platoon leaders for estimating a distance and giving the DPIF order. 

Typically, these two procedures are used more by squad leaders, and this group is 

more likely to use them in complex and difficult situations. For DPIF, both of them 

justified their mental load by their skills mobilization, probably due to the necessity of 

having a reflection to prepare the order framework without forgetting anything and by 
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being as brief as possible. This is probably more difficult for squad leaders who often 

have to give this order in complex situations. Indeed, we know that high demanding 

situations enhance the level of mental load [6]. Furthermore, with respect to 

estimating a distance, platoon leaders are equipped with long-range multifunction 

binoculars that can display the exact distance to a far-off target, while squad leaders 

are only equipped with medium-range, infrared binoculars. For this procedure, 

platoon leaders justified their mental load by two endogenous factors (their level of 

experience, skills mobilization), and one extraneous factor (equipment help), while 

squad leaders justified their mental load by two endogenous factors (their level of 

experience, skills mobilization), and five extraneous factors (equipment help, failure 

or lack of equipment, lack of grenadiers’ skills, problematic environment, helping 

environment). Again, the attributional theory of achievement motivation and emotion 

[7] could explain these results. 

Although the results are interesting, there are some limitations. First, the study only 

focuses on mandatory procedures while, in practice, soldiers undertake many other 

tasks. It would be interesting to evaluate the subjective mental load associated with 

these other tasks but this is challenging because, for the analyses to be robust, there 

needs to be a sufficient number of participants who carry out the same tasks. 

Moreover, subjective mental load scores are highly dependent on the situation in 

which procedures are executed. For instance, orienting oneself in a calm situation is 

very different to orienting oneself in a complex and dynamic situation, potentially 

under fire and with other tasks that must also be completed. A further limitation 

concerns social desirability. Participants may underestimate their scores in order to 

maintain a good self-image. It seems likely that this phenomenon is widespread 

among military personnel. Nevertheless, the analysis makes it possible to compare the 

behavior of groups within the army, in other words, it highlights if, by nature and 

independent of the situation, mental loads differ. 

Finally, the results of this exploratory study allow targeting the building of 

simulation scenarios on the elements that can lead to several procedures and 

particularly to the most mentally costly ones, i.e. estimating a distance and giving the 

DPIF order for squad leaders, and protecting oneself for platoon leaders. During the 

simulation scenarios, it would be interesting to objectively assess mental load while 

actually executing procedures using comprehensive measures (i.e. subjective, 

objective and physiological) and performance. Physiological measurements could, for 

instance, identify whether or not mental load is, in fact, underestimated, depending on 

the procedure. Moreover, these results would also help instructors to target the 

training on the procedures that are found to be difficult to follow in certain situations. 
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ABSTRACT 

 

Unforeseen events are an integral part of military pilots’ workload. An analysis of how pilots deal with 

the unforeseen increases knowledge of the Human Factor and provides information about the subjective 

factors of resilience. 

Our work presents an analysis of the experiences of a sample of military pilots, who were asked to tell 

the most significant, unexpected events of their career. We analysed their subjective perceptions as well 

as the professional and interpersonal resources they used to face these unexpected events, which 

occurred during air force operations.  

To master the unexpected, military pilots use three main resources: 1) Training, which must be 

considered the main resource in terms of Technical Skills; 2) Crew Resource Management (CRM), 

which combines technical training and relational factors in terms of Non-Technical Skills; 3) the 

individual psychological factor (IPF) that allows the pilots to integrate and put together the conditions 

met in the field.  

The analysis of unforeseen events and the pilots’ managing the outcomes of these events allowed us to 

explore, on the one hand, the specific weight of Operating Pressure (OP) and “Get-Home-Itis 

Syndrome" (GHS), both of which, if present, complicate the execution of the military task. On the other 

hand, we observed the importance of the interpersonal factors that are always involved. We have 

observed that CRM can be explored both as a resource and as a complication. Three emblematic cases 

will be presented. Resilience can and must be considered the royal road that helps us learn from the 

unexpected. The psychoanalytical point of view is the one that most emphasizes the arduous and inevitable 

work of the resilient Ego. 

 

 

Keywords: Unforeseen events, Mental Workload, Resilience, Psychoanalysis 
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«Ab esse ad posse valet consequentia» 

From the fact that something exists, it follows that it is possible 

(Oxford Dictionary of Philosophy) 

 

 «I wouldn’t say that fear is an unknown emotion to us. Rather, fear results when we are conscious of 

the fact that something unexpected and potentially impossible to deal with, might happen. 

Nevertheless, with all the training we have done, none of us approaches this flight with fear because 

we have been prepared to face every possible scenario and we are ready» 

(Neil Armstrong)1 

 

 

 

1. Learning from unforeseen events: hints at previous studies 

 

As we reported in the conclusions of our paper on a sample of firefighters and military pilots last year: 

«we wished to approach and study the psychic reality - thoughts and affections - of professionals who, 

in their work, are not only able to face events that present themselves as dangers and threats for 

themselves and for the whole community and get out unharmed, but show that they do all this with 

personal satisfaction. And this is something that cannot be imposed by anyone. Therein lies an 

additional resource and teaching that both these professional categories can offer us.» (Pediconi, Genga, 

2018, p. 89) Following the same train of thought (i.e. to deepen our knowledge of the Human Factor 

(HF) and the factors involved in resilience), in this new article we have examined the different ways in 

which military pilots deal with unforeseen events in the course of their profession.2 

We are aware that providing an accurate definition of "unforeseen event" is not always easy. However, 

attitude and conduct in facing the unexpected remains a sensitive and very important issue for anyone 

who wants to deal with flight safety or has some responsibility in the aviation world. (Fornette et Al, 

2015) We are convinced that psychoanalysis increases knowledge about errors as well as HF, 

delineating the Ego as a resource, even when managing Human Workload  

A premise is first necessary: the profession of aviation pilot is a “young” and recent one, that dates back 

to a little more than a century (Tiberi, 2011). 

Although technological advances have brought flight to previously unthinkable levels, it has been 

shown that human error is still the main factor responsible for civil and military air accidents (70-80%). 

(Shappell, Wiegmann, 2000; Hooper, O’ Hare, 2013) Numerous studies aimed at ensuring the 

indispensable protection of lives involved in flight were multiplying, including the introduction of basic 

personality profiles (Helmreich, 1984) and an increasing attention to Human Mental Workload (Longo, 

Leva, 2017; Hancock, 2017; Moustafa, Luz, Longo, 2017). 

Most researchers agree that, although Mental Workload (MW) is a concept that has intuitive meaning, 

it is difficult to define. Wickens (2017) suggests that the concept of effort or Mental Workload can be 

examined from three perspectives: those of measurement, prediction and consequences, even in a 

subjective way.  

Furthermore, we saw that the resilient Ego never works alone, but is always part of a team. Resilience 

shows, in a very impressive way, the role of the Ego as an adaptive resource. Our paper sought to 

 
1 These are the words with which Neil Armstrong answered the journalist who asked him if the three astronauts were afraid. 

(July 15, 1969, eve of the launch of Apollo 11, during the press conference of NASA, youtube.com/watch?v=r_Ct6z9tm0M). 
2 We would like to thank the Chief of Institute of Aerospace Medicine of Milan Dr. Gen. Giuseppe Ciniglio Appiani and 

Dr. Col. Alessandro Randolfi, Chief of Psychiatric Section, for having hosted this research from the beginning. Furthermore, 

our thanks go to Col. Riccardo Ferraresi for the precise explanations and kind constant advice on this paper. 
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strengthen the concept of resilience thanks to the Freudian doctrine. This year we will try to show new 

connections between the MW, understood as demanding tasks and emergency situations, and resilience 

in coping unforeseen situations. 

 

 

2. Unforeseen events and solutions    

 

Mental Workload affects human performance in terms of the amount of mental capacity required to 

perform a given task. In general, Mental Workload is considered a multidimensional construct involving 

interactions between task and system demands, the operator (including mental and emotional skills) and 

the environment. Subjective Mental Workload is multidimensional, and its consistency is the result of 

interactions between the human, the task, and the environment. (Estes, 2015; Cullen, Cahill, Gaynor, 

2017; Longo, Leva, 2018)) Recent works take into account the relationship between the concepts of 

Mental Workload, situation awareness and operative performance that can support the success of 

operations even in the case of variations due to circumstances beyond an individual’s control. (Borghini 

et al, 2014) 

To master the unexpected, military pilots use three main resources:  

1) Training, which must be considered the main resource in terms of Technical Skills;  

2) The Crew Resource Management (CRM), which combines technical training and interpersonal 

factors as far as Non-Technical Skills go; (Helmreich et al., 1999, 2000; Kanki, Helmreich, Anca, 2010) 

3) The Individual Psychological Factor (IPF), that consists of the pilots’ faculty to integrate and put 

together conditions met in the field.  

Pilots undergo regular check-ups, to insure so that they are operational only on condition that they do 

not present clinical signs of pathology, including psychopathology. Piloting requires a high level of 

professionalism, together with the ability to establish and maintain solid interpersonal relationships, in 

which the competence and reliability of each person plays a leading role.3 Thanks to the knowledge 

acquired through training, military pilots become capable of operating in conditions that must be 

considered “unordinary”, i.e. in hostile environments as part of complex, highly automated systems. 

(Hays, 2002) Military pilots are distinguished by a higher level of risk tolerance than civilian pilots 

(Sicard at. al. 2003), and unexpected events provide them with a high degree of stress and thus increase 

their workload. Training pilots to better deal with unforeseen circumstances has become increasingly 

necessary. (Bourgy 2012, Casner et al. 2013; AAE, 2013).  

Several researchers have argued that claim that the performing in surprise situations represents an 

additional competence area that requires special practice focused on pilots’ attentional behavior and 

sensemaking. (Landman et al., 2017) 

 

In our research, we have identified three types of contingencies, attributable to:  

1) Problems with the operation of aircraft;  

2) Problems external to the aircraft (meteorological and environmental in a broad sense) 

3) Problems due to human error (expressions of HF).  

In each of these three types of contingencies, we recognize factors that may play a causal, or more often 

con-causal, role in influencing the pilots’ reactions to contingency. 

 
3 In Italy, the body responsible for civil aviation safety is the ANSV (Agenzia Nazionale per la Sicurezza del Volo). The 

Italian Air Force, on the other hand, has an Inspectorate for Flight Safety: since 1991, it is responsible for studying problems 

related to flight safety and issuing directives concerning the prevention, investigation and legal aspects of accidents involving 

military aircraft. In addition, the Air Force «has for many years established the Department of Aeronautical and Space 

Medicine within the Experimental Flight Centre at Pratica di Mare. Its particular task is the aero-physiological training of 

all personnel in critical flight situations». (Ciniglio Appiani, 2010). 
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Assuming a typical situation (trained pilot = perfection), we must recognize that there are some factors 

that limit judgment and consequently interfere with their decision-making process. Training plays a 

prominent role in determining the level of flight safety, while its lack is a source of error that can prove 

extremely dangerous. Training contains at least two factors: 

CRM: Crew Resource Management  

CC:  Crew Cooperation 

For decades airline pilots had previous military experience, often in single-seater fighter planes. 

Therefore, the captain was considered to be one who always knew what to do. (Brischetto, 2019) No 

co-pilot used to dare make comments on the work of the captain. In the early 1980s, however, as a result 

of serious flight accidents due to lack of cooperation between crew members, things changed 

dramatically. CRM soon became a means of handling errors.4 (Helmreich, 1999)  

Dealing with the error in a correct way involves accepting it and understanding its causes and effects. 

Pilots must maintain Situational Awareness, i.e. a constant idea of themselves and the aircraft in relation 

to the flight environment, external threats and the mission. (Brischetto, 2019)   

There are two main factors that have a negative impact on the pilot’s performance:  

- Operational Pressure (Cain, B., 2007; Kanki, B., Helmreich, R., Anca, J., 2010; Academie de l’Aire 

et de l’Espace, 2013; Cahill, Cullen, Gaynor, 2018) 

- Get Home-Itis Syndrome (Causse, Dehais, Pastor, 2011; Causse et al., 2013) 

 

 

3. The resilient Ego at work in mastering the unforeseen situations: data and findings 

 

From the theoretical background to the research data 

As we have already said, it has been found that at least 70% of all air accidents involve human error. 

Causes of error include fatigue, workload size, and fear as well as cognitive overload, poor interpersonal 

communication, imperfect processing of information, and flawed decision making. (Ciniglio Appiani, 

2013; Weidlich, Ugarriza, 2015)    

On the other hand, we consider Mental Workload affects human performance in terms of the amount of 

mental capacity, both emotional and cognitive, required to perform a given task. Recent works take in 

account the relationship between the concepts of MW, situation awareness and operative performance 

that can support the success of operations even in the case of variations due to circumstances beyond 

an individual’s control. (Borghini et al, 2014) 

Although the quantitative methods remain privileged in this field (Bakker&al., 2007; Herbst&al., 2014; 

Estes, 2015), we will analyze the resilience as the subjective mental resource in facing unexpected 

events and Mental Workload from a qualitative research perspective. This is the best way to describe 

the resilience of military pilots in terms of the subjective perception of unexpected tasks in the case of 

unforeseen events. Focusing on the mental content allow us to discover which subjective factors 

promote success in the management of unforeseen situations. 

The pilot remains the undisputed protagonist of the analysis, evaluation and management of risks, both 

in the case of single operations, complex activities and interactions. The interactions need to be managed 

with: (a) machinery and equipment, (b) context and (c) social group (O'Connor et al., 2002). The 

effectiveness of the process of mastering unforeseen events depends on the HF activated in everyone’s 

 
4 In the USA’s civil field, it was United Airlines that started a specific training, which took the name of Crew Resource 

Management (CRM). Initially (1980), the program was called Cockpit Resource Management (also CRM). It was in fact 

focused on the Human Factor in the cockpit. Only later, it was extended to the entire crew. The reason for the acronym’s 

change from cockpit to crew was the extension in training to flight attendants, mechanics and anyone responsible for flight 

safety, not only to pilots. 
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evaluation. 

 

Methods. A qualitative analysis of subjective testimonies about the most representative, unforeseen 

events met during one’s military career 

Our research aims to lead a qualitative analysis of professional experience in terms of subjective 

perceptions. In their job, the pilots’ strength of the Ego is very important for the success of operations 

and for their personal safety. We will therefore explore the kind of mental content that accompanies 

specialized performance during unforeseen situations. 

Actually, «no one else is more prepared to provide an accurate judgment on workload experienced than 

oneself». (Pereira da Silva, 2014, p. 314) However, it can become difficult to discriminate between 

physical workload and Mental Workload. Indeed, the person may consider the demands of external 

tasks and the experienced mental effort as both sources of perception, and jointly quantify the invested 

mental effort. 

Among researchers, not only psychologists, attention to foundational knowledge of qualitative research 

methods in social sciences is increasing in order to gain clearer access to human experience, attitudes 

and resources (Wertz et al., 2011; Cahill, Cullen, Gaynor, 2018) 

Our research involved 40 Italian military pilots (aged between 29 and 54 years). Specifically, the pilots 

interviewed came from: The Air Force (17), the Land Army (10), the Carabinieri (3), the Navy (5), the 

Financial Guard (3), the Firefighters (2).5 

The aircraft on board which they operate (generally for several years, since they are officers in SPE 

(Permanent Effective Service) are fixed-wing (10) or rotating-wing (30). Both planes and helicopters 

are used for different purposes: from transport to reconnaissance, training, rescue or combat. It is not 

possible for us to specifically refer here to the aircraft models, because they are currently in use by the 

Italian Armed Forces, which treat this information as confidential. 

The pilots were interviewed during the periodical check-up visits they must undergo at the Institute of 

Aerospace Medicine Angelo Mosso in Milan. More precisely, our sample was composed of Official 

Pilots intercepted during their “ordinary visits”, or “routine visits”, i.e. without the object of the visit 

being the emergency of a symptomatology or anything else that could affect suitability.  

Each of them were asked to consent to the collection of data, specifying that their anonymity would be 

preserved. In all cases, they gladly accepted the invitation and responded without any problems or 

hesitation to our question, which we report here: 

«Please, could you describe briefly the most significant unexpected event that you have had to face 

during your career as a pilot? We would like to know what it was about and what resources you had to 

activate in order to overcome it. » 

 

In the table on page 7 we have summarized the descriptive data extracted from the testimonies of the 

40 pilots we met. The data provide an overview of the main factors that can be detected in the 

management of unforeseen events and that contribute to creating resilience. We briefly illustrate the 

main findings: 

• The kinds of unforeseen events that pilots had to face can be divided in three categories, as they are 

related: 1) to the machine; 2) to the weather conditions or external conditions of the aircraft (birds, lack 

of visibility, high voltage wires, brown out): 3) to a human error (HE), their own or those of others (such 

as: wrong manoeuvre, uncoordinated manoeuvre, physical indisposition; forgetfulness of a passage of 

the procedure, avalanche induced by the blades, bang to the trolley, sheared cable, etc.) 

• We have indicated extra-workload the presence of additional workloads in terms of perceived 

 
5 To be precise, since 1961, the Italian Firefighters has been organised into a civilian, non-military National Corps. 
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operating pressure as it is always possible to trace its link with the conditions of the flight during which 

the unexpected was experienced; the operating pressure is perceived in most cases; 

• The type of perceived surprise, when the unexpected was detected, i.e. the subjective condition of 

situational awareness recorded by the pilot. We grouped these data in: surprise of type A if the shock 

perceived is immediately attributed to a mechanical cause or in any case to the machine («Oh, God! 

the engine went out!», or «Oh, s…t, the engine went out!»). Surprise of type B, when the shock 

perceived is immediately attributed to a human error («Oh, God, what have I done! »). Not only: A+B 

collects the cases in which the pilot perceives a shock that first seems attributable to a breakdown of 

the machine, and immediately later to an error of the pilot or flight partner. The perceived surprise can 

be traced back to three main affections: 1) a feeling of impotence due to an emergency resulting from 

technical failure or external conditions of the aircraft; 2) remorse or guilt in the case of unforeseen 

events caused by human error; 3) anger if the perceived danger seems due to mechanical damage but 

is caused by a human error. 

• The contribution of others is perceived by the subject as favourable when others of the crew or on 

the ground have supported and favoured positive resolution of the critical event. It can be an obstacle 

(adverse) if others are perceived as a problem, a factor that contributed to produce or aggravate the 

critical event. Hierarchy comes into play when the presence of the other, known for his institutional 

role, has helped to make the critical event more complex 

• The professional resource used to deal with the unexpected:  

1) we indicated with expertise the technical and procedural competence that pilots have learned and 

internalized through training and experience. This concept is linked to the concept of the four stages 

of competence, studied by authors in several fields, «with novices moving from unconscious 

incompetence, conscious incompetence, conscious competence and finally unconscious competence». 

(Byrne, 2017, p. 193) 

2) we called CRM the resolution procedure in which the contribution of crew cooperation has assumed 

a predominant importance with respect to the inevitable technical competence. 

 
 

LEGEND 

1 Aircraft:  

- FWA = Fixed Wing Aircraft (Combat Aircraft or Transport/Cargo/Multiengine Aircraft) 

- RWA = Rotary Wing Aircraft (Helicopter) 

2 Role, or position: 

The specific role of the pilot during the mission in which the unexpected occurred: pilot, navigator, co-

pilot, aircrew member. 

3 Kind of Unforeseen Event:  

Flight incident, Serious Flight Incident; Flight Accident; Serious Flight Accident 

4 Flight Type: 

Mission; Training; Search and Rescue (SAR) Flight; Combat Flight; Transport Flight. 

5 Event: 

The event can be due to: Aircraft malfunctioning; Weather conditions; Human Error 

6 Extra-workload: 

Operative Pressure 

7 Kind of surprise 

The surprise is different as it can be attributed to a mechanical cause (A) or to a Human error (B) 

8 Other’s Presence:  

It can be perceived as favourable or adverse. Sometimes the subject does not make any reference to it 

9 Professional Resource 

It can be of two types: the expertise due to training and experience; the contribution of the Other (CRM 

or CC) 
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1 

AIRCRAFT 

2 

POSITION 

3 

KIND 

UNFORESEEN 

4 

FLIGHT TYPE 

5 

EVENT 

6 

EXTRA-

WORKLOAD 

7 

KIND OF 

SURPRISE 

8 

OTHER’S 

PRESENCE 

9 

PROFESS. 

RESOURCE 

RWA Aircrew FI Mission Aircraft  A Favourable Expert. 

RWA Pilot FI Mission Aircraft Op. Press. A  Expert. 

RWA Pilot FI Mission Aircraft Op. Press. A Hierarchy Expert. 

RWA Pilot FI Combat Aircraft Op. Press. B  Expert. 

RWA Pilot FI Combat Aircraft Op. Press. A Hierarchy Expert. 

RWA Pilot FI Mission Aircraft Op. Press. A  Expert. 

RWA Pilot FI Mission Aircraft Op. Press. A  Expert. 

RWA Pilot FI Mission Aircraft Op. Press. A Favourable Expert. 

FWA Pilot FI Training H.E.  A + B Adverse Expert. 

RWA Pilot FA Mission Weather Op. Press. A Adverse Expert. 

RWA Pilot FI SAR H.E. Op. Press. A Adverse Expert. 

RWA Pilot FI Training Weather Op. Press. A + B  Adverse Expert. 

RWA Pilot FI Mission H.E. Op. Press. B Adverse Expert. 

FWA Pilot FI Training Aircraft  A  Expert. 

RWA Pilot FA Mission Aircraft  A  Expert. 

RWA Pilot FI SAR H.E. Op. Press. B Adverse Expert. 

RWA Copilot FA Training H.E. Op. Press. B Hierarchy Expert. 

RWA Pilot FI Transport Weather Op. Press. A Favourable Expert. 

RWA Copilot FI Mission Aircraft Op. Press. A Favourable Expert. 

RWA Pilot FI Training Aircraft Op. Press. A Adverse Expert. 

RWA Pilot FI Training H.E. Op. Press. A+B Hierarchy CRM 

RWA Pilot FI Transport H.E. Op. Press. A+B Hierarchy CRM 

FWA Pilot FI Mission Weather Op. Press. B Favourable CRM 

FWA Navigator FI Training Aircraft Op. Press. A Favourable CRM 

FWA Navigator FI Training H.E. Op. Press. A  CRM 

FWA Navigator FA Mission Aircraft Op. Press. A Favourable CRM 

RWA Copilot FI Mission Aircraft Op. Press. A Adverse CRM 

RWA Pilot FI SAR H.E. Op. Press. B Adverse CRM 

FWA Pilot FI Training H.E. Op. Press. A Favourable CRM 

FWA Pilot FI Mission Aircraft  A Favourable CRM 

RWA Pilot FI SAR Aircraft Op. Press. A Favourable CRM 

FWA Pilot FI Mission Weather  A Favourable CRM 

RWA Copilot FI Mission Aircraft Op. Press. A+B Hierarchy CRM 

RWA Pilot FI Training H.E. Op. Press. B Favourable CRM 

RWA Aircrew FI Training H.E. Op. Press. B Adverse CRM 

RWA Pilot FI SAR Weather Op. Press. A Favourable CRM 

RWA Pilot FA Training H.E. Op. Press. B Hierarchy CRM 

RWA Pilot FI Transport Weather Op. Press. A + B Hierarchy CRM 

FWA Pilot Serious FA Training Aircraft Op. Press. A+B Adverse No Act 

RWA Pilot FA Training H.E. Op. Press. B Hierarchy Luck 
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The Individual Psychological Factor (IPF) is the skill that brings together the three aspects analyzed 

above in terms of extra-workload, perceived surprise and contribution of the Other (place of the Other), 

preparing the individual to be conducive to the success of the operation, despite the danger to one’s life. 

The IPF is at the same time: 1) an analytical factor, as it allows the subject to distinguish in a matter of 

seconds what is happening, how the operating pressure is changing, if there is an error or a technical 

failure, and how the contribution of the other can be used; 2) a synthetic factor, because thanks to the 

processing of contingent data, the subject will develop the resolutive conduct. Since this resolutive 

conduct will have served not only to return to the ground safe and sound, but also to increase personal 

experience on the flight, we can call it resilient. 

In the brief testimony, each pilot told the most representative, unexpected event of his career, giving 

voice to the technical-professional as well as psychological-personal work that allowed him to manage 

it successfully. It is very interesting that each of the short interviews, together with the unexpected event 

and its perceived causes, illustrate the moment of the surprise we commented on above. 

 

 

4. Analysis of three emblematic cases 

 

We will now present three examples: three cases chosen from the forty pilots’ testimonies collected. 

The question we asked each of them was: «Please, describe briefly the most significant unexpected 

event that you had to face during your career as a pilot: what it was about and what resources you had 

to activate in order to overcome it.» 
 

A) By surprise, a prompt resolution (Military Helicopter Pilot). 

«Years ago, also because of my long absence for missions, I went through a difficult period with my 

family. I had been flying for many years. I remember that once I happened to carry a General, who had 

also been operating as a helicopter pilot years before, but on a different machine. At a certain point he 

asks me for the controls. I give it to him. But I realized that he was not flying well: there was no 

agreement between the main rotor and the tail rotor. So, I intervened in turn on the controls (they are 

identical, there is no device that makes one of the two leader: it depends on the muscle strength with 

which you operate). At that point, the General, not noticing anything, obviously made a small force, but 

I forced, that is, I played by surprise. He didn't even notice it, but the other crew members did! At the 

debriefing I didn't say anything: why complicate things and set myself against a superior? » 

Analyses.  The unexpected is not due to a malfunction of the machine, except as an effect of the 

inexperience of the superior, who in the past "had also been operational". Thanks to the training, the 

subject was able to correct the flight attitude and "trap the error", which had been committed by those 

who had asked him for the commands. The mistake of the Senior Officer is therefore due to the 

overestimation of his skills in piloting, but there is also a share of error due to the "weight" of the 

hierarchy in the narration. The general may not have noticed anything, and the pilot, in fact, preferred 

not to report anything for reasons certainly understandable, but questionable. 
 

B) Get-Home-Itis Syndrome (Air Force Pilot) 

«We were returning from a long mission abroad, when we were asked to make an additional operational 

stopover. I was the commander, and I immediately asked the crew: okay, we all agreed. But we were 

also all tired, plaffed, and had passed the sixteen consecutive hours of flight! Upon arrival in Pisa, the 

weather conditions were disastrous, the heavy rain, you could not see anything. I thought: "If I don’t 

see the runway in a few minutes, I have to get up, and go to another airport! We had enough fuel: the 

problem was not that, but the tiredness of all of us. On board there was a silence of lead. Fortunately, at 

a certain moment I saw the runway and we landed. Everyone else, then, complimented me: big pats on 

the back, and go!» 
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Analysis.  In this case, the unforeseen event comes from the request to make an additional stopover. 

There are two sources of the problem: the adverse weather conditions and the fatigue of the entire crew. 

The difficulties experienced by the pilot are: operating pressure and GH-itis syndrome. It is really good 

that the Commander immediately resorted to Crew-Cooperation, as is demonstrated by the fact that he 

then received compliments from the whole team. 
 

C) Ground resonance (Financial Guard, Helicopter Pilot) 

«I was still on the ground, ready for take-off. Suddenly, I noticed that the helicopter had resonated with 

the ground (Ground Resonance). It’s a bit like what happens when a tenor makes a high note and the 

windows break. I knew in that case you must immediately move or raise the helicopter, even a little, or 

immediately increase the speed of the rotor, otherwise the device will break, literally. It's something 

we're prepared for, in the sense that we're taught what it is and what to do, but you can't simulate it, 

because it would be too dangerous. I was able to get up from the ground. It all lasted 15 seconds. » 

Analysis. The unforeseen event is entirely attributable to the machine. The pilot identified it correctly, 

he knew the possible procedures to remedy it, he was aware that the occurrence of Ground Resonance 

could not be simulated in practice. He worked accordingly, resolving the problem without structural or 

personal damage. 
 

Finally, we are reporting in note a fine example of storytelling taken from the magazine “Sicurezza del 

Volo” (Flight Safety), published by the Inspectorate of Flight Safety of the Italian Air Force.6 

 

 

4. Conclusions   

 

In this last paragraph we would like to briefly summarize the main findings obtained with this work and 

show how they are enlightened and interpretable through the Freudian psychoanalytic point of view. 
 

The surprise (see column 7) 

The Ego, in processing what happens in external reality, as well as in its own thoughts, uses not only 

perception or representation, but also affection and verbal memories. For Freud, «(…) becoming 

conscious is no mere act of perception, but (...) a further advance in psychical organization.» (Freud, 

1915, SE XIV, p.194). And again: «All perceptions which are received from without (sense-

 
6 «During the final portion of a training mission flown by two Flight Instructors (training recurrency mission) the crew 

decided to practice some OEI (OEI - one engine inoperative) approaches. The OEI training consists in simulating single 

engine flight emergency conditions (…) During the second simulated engine failure approach the “ENG mode selector” was 

set involuntary to “idle” instead of “OEI training” causing the helicopter to be in a real single engine emergency operation. 

(…) In fact, one of the two pilots misconfigured the “ENG mode selector” instead of the “OEI training selector” during the 

second approach and the subsequent take-off. The pilot monitoring, instead of running the simulator switch, performed the 

actions usually accomplished during normal ground power check. In addition, both pilots did not realize through the 

“onboard instruments” indications of the erroneous procedure in place: (…) The incident has highlighted the threat that can 

be concealed in routine errors during flying activity. In the specific case the incident was generated by the co-pilot performing 

routine actions rather than focusing on the one required by the procedure; the “ENG mode selector”, instead of the “OEI 

training” selector, was actuated. It is worth remembering that slips and lapses are related to “skill-based errors” that is 

unplanned actions during the execution of routine acts (check list, step of a procedure, unintentional use of commands). 

Generally, they occur when there is excessive workload, task fixation, distraction from foreign elements, or excessive relying 

on automation. Therefore, in order to avoid similar mistakes, it is recommended to analyze similar events with the help of 

the flight simulator where possible, to carry out more accurate and thorough briefings that define in detail all the procedures 

to be performed during the flight, to take full advantage of the CRM this way avoiding to run a command that is not pertinent 

to the action required by the current procedure, and to use the challenge and response check list technique, especially when 

training for unrecurrent particular maneuvers.» (M. Boveri, Anatomy of Flight Inconvenience UH-139, Sicurezza del Volo, 

332/2017). 
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perceptions) and from within – what we call sensations and feelings – are Cs. [conscious] from the 

start.» (Freud, 1923, SE XIX, p. 19) This process of thought underway in the experience of surprise is 

not only cognitive, but aimed at judgement, which consists in knowing immediately if what happened 

concerns me or if it concerns an external element (the weather or the aircraft, in this case). 
 

The place of the Other (see column 8) 

We have recorded a tripartition: a) the Other exercises a positive influence on the subject; b) the Other 

exercises an adverse one; c) the influence must be attributed to the hierarchy. This third case illuminates 

a part of the subject, which concerns itself with dealing with authority. This relationship with authority 

is always demanding and is configured in a different way than that of a relationship with a friend or 

with the enemy. In the well-known Freudian study on the group psychology, Freud describes the 

“artificial group” of the army: «The Commander-in-Chief is a father who loves all soldiers equally, and 

for that reason they are comrades among themselves (...) Every captain is, as it were, the Commander-

in-Chief and the father of his company, and so is every non-commissioned officer of his section.» 

(Freud, 1921, SE XVIII, p. 94). 
 

Professional resources (see column 9) 

We asked each pilot what he had thought up to quickly find the solution at the time of the unexpected 

challenge. In the reply, some of the pilots testified to the support they received from the training 

(expertise). Others, on the other hand, recognised the important or even decisive role of the Other (CRM 

or CC). In both cases, this is emotional (affective) recognition. 
 

Further research could lead to an investigation 

1) Whether or not human error produces a change not only in the type of surprise, as we have seen, but 

also in the characteristics of resilience; 

2) Are there significant differences between those (few) whose narrative does not include operational 

pressure and their (many) colleagues who have reported such pressure? 

3) Why do some subjects not describe or mention the quality of the presence of the Other? In all cases 

(airplane or helicopter, training or operational mission or other) each pilot never acted in isolation, so 

the presence of the Other is to be considered ubiquitous. 

4) Possible extensions of our research also in the medical field, where the use of error management 

strategies is equally useful and already studied. (Helmreich, 2000) 
 

A comment on the method 

We know that new quantitative methods of measuring the Mental Workload are developed every year, 

so it would have been useful to mention the prejudices that "a brief testimony and its analysis" represent 

(lack of memory, for example). However, even in the case of a memory deficit that had erased part of 

the experience while keeping only the reported data, this would have been sufficient to outline the 

thinking that worked in the face of the unexpected. We hope that the development of our study will 

contribute to a better understanding of the subjective fundamentals of MW in unforeseen situations and 

of why some people can cope better than others with unforeseen difficulties. 
 

Surprise, Mental Workload, Resilience: a very articulated network 

Recent researches (Cantoni, 2014, Fornette et al, 2015) include determination, challenge desire, 

obstinacy, auto-efficacy among psychological constituents of resilience. Our research confirms these 

constituents as factors of the resilient Ego, which helps to manage external reality with the aim of 

finding good solutions even in facing dangerous situations. The analysis of unforeseen events, and the 

pilots’ managing of the outcomes, allowed us, on the one hand, to explore the specific weight of 

Operating Pressure (OP) and “Get-Home-Itis Syndrome" (GHS), both of which, if present, complicate 

the execution of the military task. On the other hand, we were able to observe the importance of the 
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interpersonal factors that are always involved. We noticed that CRM can be explored both as a resource 

and as a complication. The first -positive- case is represented by the perceived others’ support during 

the air force operations. The second -negative or problematic- case can be represented by the other 

perceived as an obstacle during the operation or by the not always comfortable relationship with 

hierarchy.  

Resilience can and must be considered the royal road that helps us learn from the unexpected. The 

psychoanalytical point of view is the one that most emphasizes the arduous and inevitable work of the 

resilient Ego. Our findings show that pilots master unforeseen events based on technical skills 

(expertise) and non-technical skills (CRM) composing the safety system. If it is true that error 

management is a concept to constantly update, we need to improve knowledge about individual 

perception and resources in order to highlight the Human Factor. 
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Abstract. Food product experiences have already been studied from different phases interaction and 
by different measures. However, the measurement of the mental workload during the interaction with 
food products in a tasting experience has not been deeply investigated in literature. The aim of this 
study is to investigate such reactions using the Electroencephalography (EEG): brain signals have been 
recorded with a 6-channel system (EEG frontal theta) in order to test the interaction across two foreign 
food products and two local ones. Furthermore, participants were asked to evaluate familiarity with the 
products at first sight and after having tasted it. The EEG was processed in order to obtain a mental 

workload index, while the familiarity index was obtained as an average value on the declared 
judgments. A higher mental effort and less familiar perception was found during the tasting interaction 
with foreign products than with local ones. Results could deepen the knowledge on the cognitive 
response to food products tasting experiences characterized by their different origin in terms of 
familiarity. 

Keywords: Mental workload, tasting experience, food, familiarity, EEG. 

1 Introduction 

In recent years the food and beverage sectors have been taken advantage of neuroscientific techniques for 

consumers’ studies. Researchers and companies apply those methods to the study of products on its 

extrinsic features such as packaging, price, colour or shape and on its intrinsic features, such as taste and 

aroma. In particular, the term neurogastronomy has grown up in the last years [1] [2], and within it the 

interest in the cognitive processes related to the taste sense. The studies carried out so far in the perception 

of consumers towards food and beverages have determined the importance of the perception of products in 

their final choice and acceptance in the market[3]–[5]. The hedonic perception of taste can be modulated 
by diverse factors, including consumption habits or the subconscious associations of products. A factor that 

could influence on the perception of food is the familiarity with it. Product familiarity is defined as “the 

evaluated judgment of consumers regarding their subjective knowledge about the product” [6]. Unfamiliar 

foods generate less positive expectations towards the product [7] and their absence of previous taste 

experiences are linked to low hedonic consumer perception[8]. So, the familiarity with a product is 

important for cross-cultural researches as products that are consumed in one culture could not be accepted 

or easily to perceive for different cultures consumptions[9].  Generally traditional likings’ ratings are used 

to measure how acceptable is a product in cross-cultural researches. However, as described above, rational 

responses may not represent consumer preferences totally. Thanks to neuroscientific studies these aspects 

can be deeply understood. Particularly, the gustatory system and its human brain processing information 

has been deeply examined using techniques like functional Magnetic Resonance Imaging (fMRI) and 
magnetoencephalography (MEG)[10]. The initial sensory processing of taste is associated with the insula 

[11], which is considered the primary taste area. Instead, the secondary taste area is associate with the 

orbitofrontal cortex and pre-frontal cortex, as they are related to the taste hedonics’ recognition [12]. 

Several studies employing the Electroencephalography(EEG) focused on the Pre-Frontal brain areas  

confirmed the relationship between prefrontal brain activity and the taste processing information [13], [14]. 

The possibility of the application of a non-invasive technique like EEG allows to investigate brain processes 

not only in laboratories, but also during daily activities in life. Particularly in the food and beverage sector, 

several studies imply EEG technique to analyse the extrinsic products features [5][15] and also intrinsic 

ones[16], [17]. Most of these researches are focused on understanding brain processes when an experience 

is pleasant or unpleasant by the imputation of an Approach-Withdrawal Index[5], [18], calculated by means 
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of motivational processes in terms of alpha band (8-12 Hz), towards the stimuli based on which an 

increasing left hemisphere activity is associated with approach attitude to the stimulus, while an increasing 

right hemisphere activity is associated with withdrawal attitude[19]. On the other hand, changes in the EEG 

spectral power over the frontal scalp areas in theta frequency band (4-7Hz) have been connected to higher 

levels of task difficulty[20], its increase has been observed when the required mental workload increases 

[21]. Particularly the term “mental workload” can be defined as the proportion of information processing 

capability used to perform a task[22][23] and it involves neurophysiologic, perceptual and cognitive 

processes[24]. A high level of mental workload reflects not only task specificities, but also performer 
features[25]. It is applied in different research fields: neuro-aesthetics[26], for the detection of the effort 

employed during avionic and car driving tasks [27][28], during different challenging listening conditions 

[29], during human–computer interaction studies[30]. It is considered a very relevant mental concept in 

cognitive neuroscience applied to those fields where human decision-making is crucial, such as 

neuroeconomics and neuromarketing because of its close relationship between human performance[31]. 

Despite this evidence, the mental workload has not yet been studied in taste research. Therefore, the aim of 

this paper is to investigate the cognitive reactions of a group of local (Italian) people to the cross-sensory 

interaction with an intrinsic feature(taste) of products belonging to different countries (foreign and local). 

We estimated such cognitive reactions by using the mental workload index mentioned above. We 

investigated the influence of the familiarity with the products on these brain processes in order to predict if 

the external factors such as the origin of the products can influence on its decoding information processes 
during its tasting experience. Results will shed light on business applications for food companies/marketers 

and in academic researches on the brain circuits during a taste experience. Based on the aforementioned 

literature, the following research hypothesis was posed: 

 
H1: Foreign products which are unfamiliar for consumers before and after the taste experience have higher 

mental workload values than local products during the tasting experience. 

 

2 Materials and methods  

2.1 Experimental protocol 

Eight healthy volunteers (four female) all of Italian nationality have been involved in the study. None of 

them consumed Chinese food in their daily routine. Informed consent was obtained from each participant 

after the explanation of the study, which conformed to the revised Declaration of Helsinki and was approved 

by the local institutional ethics committee. The experiment consisted in the comparison of two different 

typologies of food products: a foreign group with Chinese products and the local one with Italian products. 
The foreign group consists of four different products, where the two most unfamiliar ones were chosen for 

the study; and the local group of two different products. Products were randomized and the same portion 

of food was given to all participants. During the study, participants interacted with the products during three 

different phases: 

1. Observation of an empty plate as baseline (30 s) 

2. Product observation (30 s)  
3. Product tasting of variable duration.  

Participants were asked to evaluate their level of familiarity with the products on a scale from 0 to 10 before 

and after the taste of each one. The question was: “How familiar are you with the (aspect/taste) of this 

product?”. Thanks to the interview it was possible to choose the two foreign products that were less familiar 

to consumers in order to be compared with the two local products, both in terms of aspect (before taste 

question) and taste (after taste question). Figure 1 shows the four products tested. 
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Local Product 1 Local Product 2 

  
Foreign Product 1 Foreign Product 2 

2.2 Signal processing 

The frontal brain activity has been recorded by means of 6 dry electrodes (Fpz, AF3, AF4, AFz, F3, F4) 
using the LiveAmp system (BrainProducts) with a sampling frequency of 250 Hz. All the electrodes were 

referred to both earlobes and their impedances were kept below 10 kΩ. The EEG signals were firstly band-

pass filtered with a fifth-order Butterworth filter between 1 and 30 Hz and then segmented into epochs of 

1 s. The Fpz signal has been used to correct eyes-blink artifacts from the EEG data by means of the Reblinca 

algorithm[32]. Each EEG epoch with amplitude higher than ±80 μV or the slope trend higher than 3 was 

removed in order to have an artifact-free EEG dataset.  

2.3 Mental workload Computation 

From the artifact-free EEG dataset, the Power Spectral Density (PSD) was calculated for each EEG epoch 

using a Hanning window of 2 seconds with a buffer of 125 ms. Then, the EEG frequency bands were 

defined accordingly with the Individual Alpha Frequency (IAF) value estimated for each subject. The alpha 

peak has been obtained before starting with the experiment asking to the subject to keep his eyes closed for 

one minute, because the alpha peak is maximum during this condition. In particular, the theta (IAF-6 ÷ 
IAF-2) band has been defined. The Mental workload has been computed as the average of the PSD in theta 

band over the frontal electrodes. The difference respect to the baseline has been considered.  

2.4 Performed Analysis 

Wilcoxon signed-rank test [33] has been performed to assess the difference between the total average of 
the familiarity of both Foreign and Local products, and to compare the experienced mental workload during 

the tasting of both Foreign and Local products.  

Two different Pearson correlation analysis[34] has been performed between the average mental workload 

during the taste experience and the declared average familiarity towards the products before (during the 

products’ observation) and after the tasting. 

Figure 1. Foreign and local products tested. 
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3 Results and discussion  

3.1 Declared results 

In figure 2 the results on the declared judgments of participants before the taste experience-during the 

observation- showed a significant less familiarity for foreign products than local ones (p=0,0156) in the 

sight perception.  

 
 

 
Figure 2. The graph shows the average declared familiarity values reported participants 

before the taste of the products. Error bars represent standard error. 

 

Results on the declared judgments of participants after the taste experience in figure 3 showed a significant 

less familiarity for foreign products than local ones (p=0,0156) in the taste perception.  

 

 
Figure 3. The graph shows the average declared familiarity values reported by the 

participants after the taste of the products. Error bars represent standard error. 
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3.2 Mental workload results 

Results on the mental workload of participants during the taste of foreign products reported a significant 

higher mental workload than for the local ones (p=0,0156) (Fig. 4).  

 
 

 
Figure 4. The graph shows the average mental workload during the taste of the products. 

Error bars represent standard error. 

3.3 Mental workload and declared correlation results 

The results showed a considerable negative correlation of the mental workload during the taste of products 

and their familiarity consumer perception before and after the taste. Figure 5 shows the significant negative 

correlation between the familiarity with the product before the taste (sight) and the mental workload during 

the taste (R= -0.6408; p= 0.0135). Figure 6 shows the significant negative correlation between the 

familiarity with the product after the taste (taste) and the mental workload during the taste (R= -0.5502; 

p=0.0415). 

 

 
Figure 5. Correlation between Mental Workload and Familiarity before the taste. 
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Figure 6. Correlation between Mental Workload and Familiarity after the taste. 

3.4 Discussion 

The selected foreign products of the study had very different extrinsic features, such as color and shape, 

from the traditional Italy food. It enables consumers to recognize on a first contact with products their 

unfamiliarity, as the visual aspects were not recognized by previous models. This first impression could be 

considered as an expectative to the flavor. In fact, after the tasting experience, the difference between the 

declared familiarity of both groups of products (foreign and local) was also significative. This fact confirms 

that not only the sight but also the taste was not recognized. In the measurement of the brain activity during 

the taste interaction with the products, participants knew that after the taste they would be asked some 
questions. Therefore, during the taste experience they tried to recognize the flavor that they were tasting. 

On the one hand, the results of the declared familiarity after the taste show the unfamiliarity with foreign 

products. On the other hand, the results of the mental workload index show that this process requires higher 

frontal brain activity. These results confirm what previous literature says about the relationship of an 

unfamiliarity product with the consumer mental workload[5] and about the perception of the aesthetic 

experience (in this case considered as the observation before the taste): it is significantly modulated by the 

previous specific knowledge experienced by the participants[26]. The added value of this study lies in the 

innovation of the application of this cognitive index during a taste experience. Moreover, the correlation of 
the mental workload index and the familiarity shed light for food practitioners and different fields 

researchers. The insertion of products in new markets requires a high investment for companies, therefore 

a correct understanding of the consumers’ brain processes against unfamiliar products could shed light on 

how to design the products based on the market where companies want to enter. Also, when chefs create 

new products, they should be aware that unfamiliar foods will elicit different brain responses in consumers. 

In the academic field, these results can be applied to different topics, such as the multisensory(sight-taste) 

interaction with products; the mental workload index application on a taste experience and the (un)familiar 

relation with mental workload. Finally, further research should be done with a group of participants that 
usually consume foreign products (considered as experts), in order to test if the workload index is still 

modulated as in this study with “non experts”.  
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Abstract. Directive 2006/126/EC of the European Parliament and of the
Council of the European Union details the minimum requirements for driving
examiners and the test that needs to be taken before the issue of a driving
license in member countries. However, there in no directive concerning the
training of learner drivers or of driver trainers/instructors. Consequently, there
are different systems of training carried out in every EU country and there is no
scientific evidence to show that one training system is more effective than
another. This means that training systems are judged depending on the number
of lessons students need to pass their driving test in each country and the pass
rate for tests in that country. A research project was devised in Italy involving
272 driving instructors. These instructors were provided with a bespoke training
course aimed at reducing the pressure on their students and on themselves. The
research demonstrated that the adoption of the specially designed training
program was more effective in facilitating the learning of practical driving skills
and was also less stressful for the driver trainer and the learner driver. The
report below details this new and innovative training procedure and the results
of this exercise.

Keywords: workload, simulators, driving school, driving training, progressive
access training

1. Introduction

Car driving is considered a very complex activity, consisting of different
concomitant tasks and subtasks that require a very high mental and physical
coordination [1], [2] and moreover the surrounding environment is very unpredictable
and out of control [3]. Within human factors research, a distinction has been made
between driver performance, which reflects what a driver can do, based on his or her
physical and mental capabilities, and driver behavior, which involves what a driver
actually does and is influenced by social factors and self-motivations [4]. Despite the
conceptual difference, it is often hard to distinguish driver behavior and performance,
because of a strong inter-relation.

This conflict is already present while learning to drive. Most people who register
for a driving school do so in order to obtain a driving license, not to learn how to
drive properly and safely. The resulting situation, aiming exclusively at achieving that
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goal, generates a very high level of performance stress, because of a mismatching
between students expectation and real actions.

The first hours of driving are, in my experience and according to anecdotal
evidence, often the most complicated and frustrating for the students who are not used
to the length of time required to learn a discipline as complex as driving. People could
feel anxious before their driving lesson and sometimes they could also fail in their
performance. This feeling people have before a trial is called “performance anxiety”,
and it's a state of tension and fear felt when someone has to face an assessment
situation of his capacity as a driving lesson or a driving test [5]. Starting from the
hypothesis that emotions could impact cognitive processes [6] anxiety can have
negative effects on people’s behavior during a demanding task, for instance
profoundly affect the cognitive performance and so the learning process. This is the
reason why performance anxiety is demonstrated to affect the driving behavior [7].

A progressive access training system used in the first few driving lessons should
allow students to focus on each step of learning the different skills required
individually, as often happens in many sports where motor coordination is required.

The first driving lessons are stressful for the driving instructors who have to
manage the anxieties and sudden movements of the students. Thanks to the active use
of the dual controls (in Italy clutch, brake and accelerator), the instructor manages the
driving of the vehicle in a smoother way and focuses the attention on the dynamics of
the traffic from the first few lessons. However, it is hard to check at the same time the
quality of each movement performed by the students over the car commands. At the
same time, the student has to learn and perform different movements and actions
simultaneously, at a cost of a high workload, even resulting in a poor training.
Experimental studies already highlighted how the execution of multiple instructional
sequences appears to be much more complex and multilayered than what is suggested
by the traditional description of instruction in terms of Initiation–Response–
Evaluation (IRE) sequences [8].

In this context, the study aimed to evaluate how an innovative method of training
based on a progressive access training protocol would improve driving training
effectiveness reducing at the same time the cognitive workload level requested to the
students and the instructors.

2. Materials and Methods

With the aim of reducing the cognitive workload, in accordance with experience
gained in driver training in Switzerland [9], it was decided to use a progressive
approach teaching method with the following characteristics

1. Create and consolidate the basic motor schemes;
2. Create and consolidate the coordination skills necessary for training
3. Optimize the ministerial time available to the candidate for training
4. Check the actual learning times of the exercises proposed in the individual

driving lessons
5. Create a team of specialized instructors able to carry out specific lessons
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6. Help the driving instructors to create the necessary skills for the students to
be autonomous in the shortest possible time, without generating further
workload.

2.1 The proposed method

The method used during the first few driving lessons consists of four separate
training units. The application of the individual training units simplifies the workload
for each student, since the student will face separately each single fundamental
movement, i.e. observation and steering wheel control, right foot use for accelerator
and brake pedals, right foot use for the gearbox.

The first training unit consists in learning the correct use of the steering wheel and
the importance of all-round observation and control (Figure 1), considering the 70 %
to be allocated for car direction, 15 % for infrastructure observation and the remaining
15 % for local scanning (check).

FIRST UNIT

Figure 1. On the left, a graphical representation regarding how to distribute the all-
round observation while driving. On the right, the symbol of the steering wheel,
representing the fundamental control practiced during the first session.

In the second unit (Figure 2) the student, while putting into practice what they
learned in the first unit, learns to use the right foot in the management of the
accelerator and the brake.
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SECOND UNIT

Figure 2. The symbol of the pedals managing through the right foot, representing the
fundamental control practiced during the second session.

The third unit (Figure 3) introduces the use of the left foot and the right hand (gear
lever) in addition to the commands previously learned.

THIRD UNIT

Figure 3. The symbol of the gear lever and the involved limbs, representing the
fundamental control practiced during the third session.

In the last unit (Figure 4), the total coordination of the student is managed, and the
commands are completely passed to him.
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FOURTH UNIT

Figure 4. During the fourth session the student will have the full control of the car.

2.2 The study

From 2015 to 2017, voluntary training courses were held for about 300 driving
instructors between 30 and 55 years of age, lasting 40 hours. In June 2019 the course
participants were asked to answer a short questionnaire on the effectiveness of the
progressive access training methodology during the first driving lessons.

The aim of the questionnaire was to understand the real effectiveness of the system
in carrying out daily training activities, or if the application of the progressive access
instruction methodology had:

- Reduced the cognitive workload of the students through the separation of the
commands given by the Instructor;

- Reduced the time needed to assimilate the driving skills of the students, thus
being able to dedicate more resources to focusing on the problems associated with
circulation;

- Decreased the level of workload by the Instructor in the management of the first
driving lessons.

In particular, the subjects were asked to indicate their level of agreement (Not at
all – full disagreement -, Little, Enough, High) with the following 6 items by means
of a 4-way Likert Scale [10]:

Question 1: Did the gradual explanation of the controls reduce the workload of the
students during the first driving lessons?
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Question 2: Did the gradual explanation of the commands speed up the learning of
automatisms by the students during the first driving lessons?

Question 3: Has the gradual distribution of the controls contributed to raising
awareness among students of road traffic issues since the first driving lessons?
Question 4: Do you apply the progressive access instruction methodology during

the first driving lessons of your students?

Question 5: Has the use of the techniques provided by the progressive method
reduced its workload as an Instructor during the first driving lessons?

Question 6: Overall, the use of the progressive methodology during the first
driving lessons has changed the quality of your work?

3. Results

Below are the results obtained for each item:
Question 1: Did the gradual explanation of the controls reduce the workload of the

students during the first driving lessons?

Not at all 0.4

Little 0.7

Enough 9.6

High 89.3

Question 2: Did the gradual explanation of the commands speed up the learning of
automatisms by the students during the first driving lessons?

Not at all 0.4

Little 0.4

Enough 13.2

High 86
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Question 3: Has the gradual distribution of the controls contributed to raising
awareness among students of road traffic issues since the first driving lessons?

Not at all 0.7

Little 3.3

Enough 16.2

High 79.8

Question 4: Do you apply the progressive access instruction methodology during
the first driving lessons of your students?

Not at all 0.7

Little 0.7

Enough 5.5

High 93

Question 5: Has the use of the techniques provided by the progressive method
reduced its workload as an Instructor during the first driving lessons?

Not at all 0.4

Little 1.8

Enough 11.8

High 86
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Question 6: Overall, the use of the progressive methodology during the first
driving lessons has changed the quality of your work?

Not at all 1.1

Little 0.4

Enough 11.4

High 87.1

4. Discussions & Conclusion

In Europe, initial and periodic training for driver trainers is fragmented, in many
cases un-regulated and is not always mandatory. A survey was carried out in 22
countries. Only in 14 there is an initial training course which can vary from 2 months
to 2 years of attendance. For example, in Italy the course is mandatory and consists in
120 hours of theoretical and practical lesson [11].

The situation of periodic training is much more serious, in fact across 22 countries,
only in 9 of them a periodic training course aimed to maintain skills is taken into
consideration. The mandatory introduction of a progressive access training
methodology through an EU Directive would be well received in the world of driving
training. The results of the questionnaire show a very high approval rating for those
who have voluntarily submitted to the course for improving their skills.

The professional driving training activity has undergone profound changes in
recent years. The significant increase in the level of traffic in European metropolises
[12], associated with a lower motivation of the population residing in large urban
areas to obtain a driving licence [13], has led to greater difficulty in providing driving
training. The introduction of a system that can reduce the cognitive workload for
students, guaranteeing them less time and less effort to generate the motor
coordination automatisms necessary to be able to drive safely, was highlighted by the
results obtained from the proposed questionnaire.

The result associated with the reduction in the workload achieved by the students
during the driving lessons is significant (89.3%), as is the result obtained in reducing
the time required to complete the automation process of the basic controls, associated
to motor coordination (86%). Although still exceptional, despite being lower than the
other results obtained, the figure associated with raising awareness of the other
problems associated with road traffic (79.8%). The results associated with the daily
application frequency of the training system (93%) are also very interesting,
undoubtedly due to the considerable reduction in workload for the driving instructor
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(86%). Overall the use of a progressive approach methodology is judged more than
positively (87%) by the driving instructors who participated in the study.

The result obtained from this work highlights the need for new research in the field
of driving training, taking advantage of the theme of progressive learning to drive, so
that further applicable solutions can be found, globally, able to further reduce the load
of work for the people involved in the delicate educational path in question.
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Abstract. The identification of measurable indices of cerebral functions to be 

applied in clinical settings is ever more felt as necessary for a more thorough 

and objective evaluation of patients cognitive performance. In the present 

paper, the electroencephalographic-based indices of mental workload (WL = 

frontal θ/parietal α) and of mental engagement (ME = β/(α+θ)), calculated 

along the brain midline, have been employed to characterize the eventual 

specific patterns of cerebral activations during a speech in noise perception task 

in normal hearing (NH) and unilateral hearing loss (UHL) children. Results 

showed no differences between the groups for the frontal bilateral noise 

condition (in which both signal and noise were emitted by two loudspeakers 

placed +45° and -45° in relation to the participant), while in lateralized noise 

conditions the UHL group showed higher parietal ME values for the Noise to 

the Deaf Ear condition). Finally, the NH group showed a different distribution 

of ME values among frontal, central and parietal electrodes, with higher ME 

values in the central and parietal ones in correspondence of the Noise to the 

Left Ear condition. The WL index analysis did not provide any significant 

differences. Results suggest the relevance of including the analysis of the beta 

rhythm in the neurophysiological assessment of the neural processing of speech 

in noise stimuli in normal hearing and hearing impaired participants.  

Keywords: workload, engagement, EEG, deafness, unilateral hearing, speech 

in noise perception 

1. Introduction 

The current need of the identification of objective measures of cerebral processing 

functions such as the listening effort in clinical (audiological) settings is witnessed by 

recent articles mentioning in the title words like “objective assessment”, “objective 
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measures” e.g. [1], [2]. In the scientific literature, well-known 

electroencephalographic (EEG) indices of cerebral processing have been successfully 

applied to various fields. In particular, in the present study two EEG-based indices 

have been selected for the neurophysiological characterization of normal hearing 

(NH) and unilateral hearing loss (UHL) children: the Mental Workload index (WL) 

and the Mental Engagement index (ME) [3], [4], [5]. The selected protocol for the 

application of such indices investigation was the word-in-noise recognition task, since 

it allows to elicit the effort necessary to discriminate the speech from the background 

noise [6]. The preliminary hypothesis is that this task should be characterized by a 

certain workload, but it is still debated if an eventual partial, i.e. unilateral, deafness 

would impact mental workload and engagement in performing the same task [28]. 

The ME index was developed in the framework of cognitive tasks assessment by Pope 

and colleagues [5]. The background for the development of such index was 

constituted by evidences that increases in beta activity would reflect a higher degree 

of alertness and greater engagement in the task, while increases in alpha and/or theta 

activity would reflect less alertness and decreased task engagement/information 

processing [5], [7], [8]. ME index was employed for the assessment of  performance 

improvements during a vigilance task [9], or it has been applied to an educational 

setting for the assessment of the modulation exerted by emotions on learning, 

resulting to be predictive of the performances [10]. The WL index has been validated 

in several operative environments, such as in aircraft pilots, air traffic controllers, and 

car drivers [5], [11]-[13]. Such studies described that an increase of the frontal EEG 

power spectra in the theta band (4-7 Hz) and a simultaneous decrease in the parietal 

EEG power spectra in the alpha band (8-12 Hz) have been observed when the mental 

workload demand increases. Furthermore, WL index has been already calculated in 

adult deaf adult patients using a cochlear implant, for the comparison among sound 

processors and noise reduction filters use during a word in noise recognition task, 

evidencing that WL values were lower when the noise reduction filter function was 

employed [14], [15]. In addition, during the same word in noise recognition protocol 

as the one adopted in the present paper, WL index has been previously employed in 

hearing impaired children, but in patients presenting an asymmetric hearing loss in the 

two ears [16]. Expected results will show specific patterns describing the two 

experimental groups, possibly reflecting different neural strategies developed as a 

consequence of the neuroplasticity that coped with the naturally lateralized condition 

of the UHL group’s auditory system. In the light of such intrinsic lateralization, it has 

been chosen to investigate only midline electrodes, in order to avoid any potential 

cerebral activity lateralization influence. 

2. Materials and Methods 

2.1 Participants 

Participants were divided in two groups: UHL children (n=13; 6f, 7m; age: 10 ± 

2,2), characterized by profound deafness in one ear (average threshold for pure tone 
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frequencies 250-4000 Hz ≥ 90 dB HL) and normal hearing in the controlateral ear 

(average threshold for pure tone frequencies 250-4000 Hz ≤ 20 dB HL), and NH 

children (n=12; 6f, 6m; age: 12 ± 2,5). Detailed information about the study were 

given to all participants and participants’ parents were given and signed an informed 

consent. Participants were volunteers, who did not receive any compensation from 

taking part in the study. The experiment was performed in accordance to the 

principles outlined in the Declaration of Helsinki of 1975, as revised in 2000, and it 

was approved by the institutional Ethic Committee. 

2.2 Protocol 

The protocol has already been employed in previous studies concerning cochlear 

implant candidates [16] and cochlear implant users [17], [18] and consisted in a 

forced-choice word recognition task, with four conditions: Quiet, frontal Bilateral 

Noise (2 loudspeakers placed at +45° and -45° emitting both noise and signal), Noise 

emitted from a loudspeaker at +90° and frontal signal, Noise emitted from a 

loudspeaker at -90°. Stimuli were Italian disyllabic words from “Audiometria Vocale 

GNResound” [19], delivered free-field at 65 dB SPL. The background noise was 

emitted continuously with a signal-to-noise-ratio of 10 and was a babble noise. Before 

the beginning of the experimental tasks, participants were asked to look at a black 

screen for 60 seconds, and the corresponding EEG activity was used for the 

Individual Alpha Frequency (IAF) estimation [20]. Each experimental condition 

(Quiet and noise conditions) was constituted by 20 trials. Trials corresponded to 20 

words randomly delivered, and after listening to each word (information processing 

phase), participants had to indicate the correct word-stimulus among four options 

(decision making phase), each of them appearing in a different box on the screen. The 

target word had 25% probability of appearing in one of the four positions on the 

screen (top left, bottom left, top right, bottom right). The information processing 

phase lasted about 2 seconds and the decision making phase lasted up to 5 seconds, 

depending on the individual response time, resulting in a trial of up to 8-second total 

length. 

2.3 EEG recording and processing 

A digital medical EEG system (Bemicro EBNeuro, Italy) was used to record the 

brain activity from 19 channels (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, Pz, 

P3, P4, T5, T6, O1, O2), with a sampling frequency of 256 (Hz). Impedances were 

kept below 10 kΩ, and a 50- Hz notch filter was applied to remove the power 

interference. A ground and a reference electrode were placed on the forehead. EEG 

recordings were filtered with a 4th order Butterworth band pass filter (1-40 Hz), so to 

reject continuous components as well as high-frequencies interferences, such as 

muscular artifacts. The Fp1 channel has been used to remove eye-blink contributions 

from each channel of the EEG signal by using the REBLINCA algorithm [21]. In 

order to remove other kinds of artifacts, specific procedures of the EEGLAB toolbox 

[22] have been employed. Firstly, the EEG signal was segmented into epochs of 2 
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seconds (Epoch length) shifted of 0.125 seconds (Shift). The present windowing was 

chosen so to obtain a high number of observations in comparison to the number of 

variables, and to respect the stationarity condition of the EEG signal [23]. EEG 

epochs with signal amplitude exceeding ±100 μV (Threshold criterion) were 

considered artifacts. After that, the EEG signal within each epoch was interpolated to 

estimate the slope within the considered epoch (Trend estimation). If such a slope was 

higher than 10 (μV/s), the considered epoch was marked as artifact. Then, the signal 

sample-to-sample difference (Sample-to-sample criterion) was analysed: wherever a 

difference in the absolute amplitude was higher than 25 (μV) (i.e. an abrupt non-

physiological variation) the EEG epoch was considered an artifact. Finally, all the 

EEG epochs labeled as “artifact” were removed so to obtain an artifact-free EEG 

dataset from which estimate the parameters for the analysis. For each participant the 

IAF was computed on the 60-seconds-long Open Eyes segment [20], so to define the 

EEG bands of interest specifically for each participant. [4]. In particular, the 

considered EEG bands and their corresponding definition using the IAF were the 

following: theta [IAF-6 ÷ IAF-2 Hz], alpha [IAF-2 ÷ IAF+2 Hz] and beta [IAF+2 ÷ 

+IAF+16 Hz]. Finally, EEG recordings were segmented into trials, corresponding to 

each word of each experimental condition (Quiet, Bilateral Noise, Noise +90°, Noise 

-90°). The Power Spectrum Density (PSD) was calculated in correspondence of the 

different conditions with a frequency resolution of 0.5 Hz. For the purposes of the 

present study, only the brain midline has been considered (i.e. Fz, Cz and Pz EEG 

channels), and their corresponding PSDs normalized by using the z-score formula 

[24] by using the Quiet condition as reference condition. 

Mental Workload index (WL). The WL index was defined as the ratio between the 

EEG PSD in theta band over the midline frontal electrode (Fz) and the EEG PSD in 

alpha band over the midline parietal electrode (Pz) (Equation 1) [5], [11]. 
 

WL = PSD θFz / PSD αPz                                  (1) 

Mental Engagement index (ME). The ME index has been defined as the ratio 

between the activity in the beta band and the sum of alpha and theta activity (Equation 

2), as defined by Pope and colleagues [3]. 

 
ME = PSD βx / (PSD αx + PSD βx)       (2) 

The ME was calculated for each x electrode, calculating the ratio between the PSD 

filtered in β band and the sum of the PSD filtered in α and θ band for each of the 

considered electrodes. 

 

2.4 Statistical analysis 

For both the EEG indices (WL and ME), non-parametric statistical analysis was 

performed on data since the absence of a normal distribution for all the data. For the 

comparison between groups (UHL and NH) it was used the Mann-Whitney U test; 
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while the Wilcoxon Matched pairs test was used for the comparison within each 

group, in order to compare the different lateralized noise conditions (respectively: 

Noise to the Deaf Ear and Noise to the Hearing Ear for the UHL group; Noise to the 

Right Ear and Noise to the Left Ear for the NH group). Finally, Friedman ANOVA 

was used in the comparison among electrodes (Fz, Cz, Pz) among noise conditions 

within each group. 

3. Results 

Behavioural results showed that both groups (UHL and NH) reported the highest 

percentages of correct responses in correspondence of the Bilateral Noise condition. 

Furthermore, the UHL group performed better in the Noise-to-the-Deaf-Ear condition 

than in the Noise-to-the-Hearing-Ear condition. In particular, in the latter condition 

they reached percentages below the commonly adopted clinical threshold of 80% 

words-recognition for attesting good performances. In contrast, NH group performed 

similarly in the two lateralized noise conditions (Fig.1). 

 

 
Figure 1. Graph showing the percentages of correct responses in the NH and UHL 

group in correspondence of the three background noise conditions (Bilateral noise, 

Noise emitted +90° from the participant and Noise emitted -90° from the participant). 

Concerning the ME index, there were no statistically significant differences 

between the NH and UHL group in the Bilateral-Noise condition in none of the 

investigated electrodes (all p>0.05). Focusing separately on the two experimental 

groups, main statistical significances have been found in the parietal brain area. In 

particular, the UHL group showed higher levels of the ME index in the Noise-to-the-

Deaf-Ear condition in comparison with the Noise-to-the-Hearing-Ear condition 

(T=8.000, Z=2.621, p=0.009), in the Pz channel (Fig.2). Moreover, concerning the 

NH group (Fig.3), the ME index in the Noise-to-the-Left-Ear condition resulted 
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higher moving throughout the brain midline areas, that is from the frontal (Fz) to the 

central (Cz) and parietal (Pz) electrodes (ANOVA Chi Sqr. (N=12, df=2)=7.167; 

p=0.028). Concerning the WL index, it did not exhibit any significant difference 

neither between nor within the UHL and NH groups. 

 

 
Figure 2. Graph showing the comparison between lateralized noise conditions in the 

UHL group in Pz electrode, evidencing higher average ME levels in the Noise to the 

Deaf Ear condition in comparison to the Noise to the Hearing Ear condition 

(p=0.009). 

 
Figure 3. Graph showing the average ME index values among the midline electrodes 

(Fz, Cz, Pz) in the NH group, evidencing higher ME levels from the frontal toward 

the central and parietal electrodes (p=0.028). 

79



4. Discussions 

The present results suggest that ME index appears to be more sensitive than WL 

index to highlight differences of brain activations between the NH and the UHL 

group. It is interesting to note that according to previous studies [16], the hearing 

impaired group reported a higher level of cognitive processing, as indexed by the ME 

levels in Pz in the present paper, in the noise to the ear with the worse hearing 

capability (“Noise-to-the-Deaf-Ear” in the present study) condition than in the noise 

to the ear with the better hearing capability (“Noise-to-the-Hearing-Ear” in the present 

study) condition. 

This result is also supported by a previous study involving asymmetrical hearing 

loss children, where the levels of parietal alpha power was employed as index of 

listening effort [24]. The sum of these evidences supports the hypothesis that such 

lateralized background noise condition is suitable to highlight different neural patterns 

adopted by asymmetrical hearing impaired patients (both UHL and asymmetric 

hearing loss children populations) producing different information processing and 

decision making indices levels in response to the varying background noise 

lateralization. In addition, it is worth to underline that between the lateralized noise 

conditions, the highest percentage of correct responses was obtained in the Noise-to-

the-Deaf-Ear condition. This could be explained by the fact that in such condition a 

higher cognitive demand enabled better performances than the opposite condition. 

Concerning results obtained for the NH group, the higher ME levels estimated in the 

Cz and Pz electrodes in comparison to Fz, could be linked to the involvement of 

midline central and parietal areas in listening effort-related processes [25]. The 

Noise–to-the-Left-Ear condition, in which the ME levels difference was revealed, 

could be likely linked to the presence of the core language network mainly in the left 

brain hemisphere [26], and the presence of noise directed toward the ipsilateral ear to 

such network would affect it [27]. Finally, both NH and UHL children achieved the 

highest percentage of correct responses in the Bilateral Noise condition, showing no 

differences between the groups in terms of ME and WL in such condition. 

5. Conclusion 

Present results support the presence of specific neural strategies adopted by UHL 

population in order to cope with words-processing tasks, despite apparently next- to- 

normal hearing behavioral performances. Further investigations are needed for the 

validation of such hypothesis. 
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Purpose and methodology 

In 2004, the PSA Group, a French automotive manufacturer, developed the 
PSA Excellent System. This organizational system is based on the Lean 
Manufacturing principles and aims at optimizing vehicle production. One of the 
pillars of this system is the follow up of a "work standards" designed by the 
methods engineers [1]. In theory, work standards allow for the balancing of 

shifts, i.e. the organization of tasks that can be performed by operators within a 
given time period. It also contributes to the elimination of waste by limiting 
process variability and providing the operator with the right amount of time to 
perform his tasks and to reduce unnecessary resource consumption [1]. Another 
way of reducing the risk of assembly errors has been to develop a “kitting” 
activity in order to prepare in advance the parts to be assembled by the 
operators. Kitting is a process often used in mixed model assembly, in which 
different objects demanding different component are assembled, in alternative 

to continuous supply (also known as line stocking). In this process, the operator 
(called the ‘picker’) takes components in stores and sorts them in a ‘kit’ driven 
by an Automated Guided Vehicle (AGV). A kit is defined as ‘a specific 
collection of components and/or subassemblies that together (i.e. in the same 
container) support one or more assembly operations for a given product or shop 
order’ [6]. That is to say, one kit contains just the components that the operators 
need to assemble one object or, in our case, one part of an object. Each picker 
follows one AGV, which can drive several kits (in our case, 4 kits) and each 
part is put in a dedicated location on the kits. A light system, called ‘pick to 

light’ assists the operator in choosing the right components in the stores and 
storing this component in the right kit (kits are differentiated by colors). Even if 
this process seems simple and straightforward since it does not involve any 
complex task (to see the light and the color, to take the component, and to put 
the component in the corresponding kit), many errors occur. For example, from 
March to April 2018, 324 errors due to kitting were reported on a door 
assembly lines in Sochaux (France). Those errors create disruptions in assembly 
lines since operators often have to stop their tasks and leave their workstations 

to look for the right parts in the kitting area. This questions the major benefits 
put forward for the use of kitting over line stocking: time efficiency and low 
risk of error [7,8].  
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In order to understand these errors, we carried out a detailed analysis of two 
operators' activity in the kitting area associated to a door assembly line in 
Sochaux. This kitting area is characterized by 352 parts organized in a 75 

meters long hallway in which 7 operators have to go back and forth to prepare 3 
different vehicles. This organization is not specifically guided by any rule 
except from logistic and storage constraints. Each kit contains an average of 40 
door components. Each AGV tracks 4 kits differing in terms of color which are 
only presented on the pick to light (meaning that operators have to know that 
the first kits on the AGV will receive parts identified by the green color on the 
store, the second parts indicated by the color purple, the third blue and the 
fourth yellow). The parts identified by the green and purple colors concern the 

front doors of the vehicles while the parts identified by the blue and yellow 
colors concern the back doors. AGV speed varies from 12 to 19 meters per 
minute. Thus, each operator prepares on the average 160 components in a round 
of 10 minutes. For the data collection, we combined several methodologies: 
hierarchical analysis of the prescribed and actual operators’ tasks, operators 
were filmed for two hours and the video recordings were analyze using a 
behavioral coding system (The Observer XT[2,3])[4,5]. This approach has been 
used and described in a previous study [6,7]. 

Findings  

The analyses of the data revealed discrepancies between work standards and 
actual tasks. As described previously, according to standards, pickers must 
follow the AGV and the pick to light which implies: (1) to identify the parts to 
be picked based on the state of the lights (switched on), (2) as well as the 
number of pieces (written on a digit located near the light), (3) to pair the color 
of the light with the corresponding kit (as described above), (3) to pick the 
part(s), (4) to switch the light off and (5) to place the part(s) on the kit. 
However, when the number of components to kit or the speed of the AGV 

increases, pickers tent to stop it. Similarly, when the number of components to 
kit or the speed of the AGV decreases, pickers tent to run in front of the AGV. 
Then, we noted that pickers often change the prescribed order of the 
components to kit, sorting them by colors (thus by kits) and types of 
components instead of following the order prescribed by the pick to light. At 
last, we observed that pickers tent to pick some components a few seconds 
before the lights are on. The strategy pickers choose aims at keeping ahead of 
the AGV so as to be able to cope with hazards, to keep up the pace and 

maintain performance.  

These strategies are costly for the pickers because they involve operations, 
steps, reasoning, that are not taken into account in the design of the 
workstations. This adds time pressure and forces them to walk and kit faster, 
leading them to errors. This also requires them to constantly interrupt their 
work and memorize the color of the kits they have to put the parts in. In these 
situations, operators’ workload increases as well as the risk to make errors. 
During our observations, we reported 6 situations in which the pickers forgot 

one or more components and had to stop the AGV to pick them up. We also 
counted 22 errors that had an impact on production such as the fall of an object, 
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the omission of a task or any error representing a waste of time or a risk to 
damage the parts. 

Differences between prescribed and real tasks may be accounted for by 

‘anticipated regulations’, or strategies used collectively by operators to cope 
with production constraints, i.e. to deliver parts on the assembly lines on time. 
As we demonstrated in a previous study [6], these regulations seem to appear to 
compensate flaws in workstations design. In other words, pickers do not kit the 
way engineers would like them to kit. More precisely, considering time 
pressure and the level of efficiency expected on workstations, pickers’ action 
have to be automated to gain time and lower cognitive load [5]. This could 
explain how they are able to select some parts before their light goes on. That’s 

also probably why they tent to ritualize the order of the components they kit by 
sorting them by colors and types. However, to do so, they need a stable and 
repetitive environment. Yet, we find that the color of the kit, the number of 
components to kit and AGV speed change constantly and randomly making 
task intensity impossible to predict. Furthermore, we identified other 
interruptions in pickers’ work caused by: empty containers (they have to 
remove), other pickers (when one of them make a mistake, everyone is 
disturbed) or the pick to light (when the lights don’t switch on or off fast 
enough).  

In other words, each time pickers’ work pace tends to change or each time they 
are disturbed, they find strategies to cope with the situation. Thus, we make the 
assumptions that reducing the sources of work variability will allow the 
operators to perform their tasks automatically and, at the same time, increase 
their performance and reduce the need for regulations. Consequently, it would 
confirm that regulations are a symptom of constraints (among which we find 
mental workload) that are not taken into account during the design of 
workstations. We identified several sources of variation that we could lower 

while reorganizing workstations layout: (1) the number of kits to prepare 
simultaneously, (2) the number of parts to kit by area and (3) the speed of the 
AGV.   

Intervention 

Thanks to these analyses, we were able to prescribe a new way of storing 
components so as to stabilize pickers’ activity. First, we proposed to store parts 
according to the color of the kit they were to be put in. Hence, when kitters go 
up to the stores on the first part of the round, they only have to pick the parts 

that have to be put in the first two kits. Then, when they go down, they only 
have to pick the parts that have to be put in the last two kits. This way, they 
have less information to process at one time. In addition, we sorted components 
according to their ‘type’ (for example, all locks are put next to each other), their 
‘product type’ (locks for one type of vehicle are put next to each other) and their 
characteristics (right locks for one type of vehicle are put next to each other). 
This way, we were able to predict and balance the number of parts pickers had 
to pick in one specific area. Finally, since we were able to lower the variations 
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of task intensity and we set AGV speed according to the numbers of 
components to kit and reduced the speed range. 

Validation 

We conducted the same analyses than previously several months after our 
intervention. Results showed a decrease in errors that had an impact on the 
production (from 22 to 10) and we recorded only one situation where pickers 
had to stop their AGV (versus 6 previously). Similarly, the teamwork we 
studied reported only 47 errors between February and March 2019 (versus 324 
before from March to April 2018). Furthermore, we recorded less situations 
where pickers walked in front of and behind their AGV, suggesting that 
anticipated regulations on those workstations had become less essential for 

pickers to succeed in their tasks. At last, we asked every picker which layout 
they preferred and 21 over 24 chose the new layout.  

Conclusion  

Observations on workstations and intervention allowed us to demonstrate that 
the workstation design was responsible for the differences between prescribed 
tasks and real actions as well as operators’ strategies. These differences should 
be interpreted as symptoms of workload that can be reduced by redesigning the 
work situation. In this way, we attempt to help engineers creating environments 

where operator’s mental workload is optimized, so that operators can 
automatically accomplish their tasks without putting their health and 
performance at risk. 

Keywords: Mental Workload; Cognitive processes; Variations of activity; 
Automated actions; Performance; Prevention of error. 
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Abstract. We are focusing on working environments with an increasing role of 

AI for solving problems involving detection and classification of patterns and 

events, optimization, predictions or providing other services that generally are 

associated with human intelligence such as reasoning and learning. Such AI 

transformed working environments raise new requirements and challenges in 

terms of mental workload. We discuss these challenges in the context of Human-

AI teaming. 

Keywords: Artificial Intelligence, Human Centered AI, Machine Learning, 

Knowledge Graph, Human-AI Teaming 

1 Introduction 

Recent advances in AI, above all machine and deep learning, have brought about 

unprecedented possibilities in automation, prediction and problem solving with impact 

on our way of working. Among recent research on the topic of AI, there is unanimity 

that this new technology increases the efficiency, flexibility, and productivity of 

operations in the industrial and service sector but, at the same time, there is justified 

scepticism towards its implementation due to its unforeseen consequences at various 

levels, see [2]. Clearly, companies face the challenge of integrating AI into their 

operations and have to take measures in order to increase the acceptance for AI 

accordingly, see [1]. However, scientific research remains silent when it comes to 

fostering the acceptance of AI within organizations. So far, research is centred around 

increasing consumer’s acceptance of AI, see [2, 4], or studies that quantitatively 

examine the consumer’s acceptance of AI in consideration of different fields of 

application [3, 5]. Therefore, it is about now time to consider the user’s side from an 

employees’ point of view in order to foster AI in a human-technology relationship. 
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1.1 Example “Smart Maintenance” 

Smart maintenance relies on accurate predictive analytic models for both prediction and 

optimization. While most machine learning techniques analyze (streams of) numeric 

sensor data, process mining analyzes streams of events. These events can originate 

directly from system logs, but can also be generated by machine learning algorithms 

analyzing the sensor data streams. Although sensor data allow predicting some basic 

events, more complex events are often the result of a complex process of heterogeneous 

events, which necessitates human input to the AI system for refining the event analysis 

capabilities of the AI system. Additionally, the algorithms need to be able to cope with 

the ever-changing dynamics of the systems and the environment, and therefore be self-

adaptive. This process usually takes place in iterative loops including steps of 

interpretable hypothesis generation from the AI system and the integration of human 

observations and context knowledge in combination with support by application 

domain experts. 

1.2 Example “Chat-bot based Customer Service” 

AI-based dialogue systems, commonly referred to as chat-bots, are now an integral part 

of customer relations in many industries, including, but not limited to, online retail, 

banking, insurance, recruiting, etc. With AI handling the most trivial types of 

interactions, such as mechanically answering the most common types of questions or 

following a script to record customer data, humans should be able to focus fully on the 

more demanding aspects of customer relationships. To make this possible it is 

important to take into account additional context information such as existing business 

processes and user intention as starting point for designing new user experiences that 

are best suited for deploying conversational AI that enhances, rather than disrupts, day-

to-day customer relation activities. 

2 Discussion of Mental Workload Challenges  

Our research interest is motivated by questions related to the acceptance problem of 

AI in the world of working with focus on operational users such as technicians, 

operators or implementers in the industrial and the customer service sector. 

What influences human-system interaction and how can individuals’ expectations be 

shaped to foster AI acceptance? 

 Are there cognitive stress factors: How easy understandable and 

unambiguous is the AI system’s output? How relevant?  What is about the 

statistical nature of the output? 

 Personalized relevance, granularity of information etc.  

 Are there additional stress factors: ambient noise, pressure to perform?  

 How much critical questioning is required? 
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 What is about responsibility aspects: duty of care versus information 

overload? 

 Psychological aspects: Are there any imagined or perceived threats, e.g., 

in terms of violated privacy (“big-brother-is-watching you”-feeling)? 

Which factors are specifically relevant in different work contexts?  

 Stability of working and process conditions, e.g., shift in data 

characteristics due to changing or specific process or working conditions;  

 Type and intensity of dependency of human actions and decisions on AI 

system;  

 Degree of integration and system complexity; 

 Impact of potential incorrect decisions: compensation of wrong decisions 

and possibilities of discharge; 

How can user acceptance of AI be fostered and what are the implications for AI 

systems? 

 Performance measures of the AI system: What about the accuracy and 

generalization capabilities?  

 Trustworthiness: Are there stability guarantees? What is about security 

against manipulations and data integrity? Is a recommendation provided 

by the AI system underpinned by sufficiently enough evidence based on 

training data or is it the result of an interpolation or extrapolation? Is the 

AI system operating in the designed working range? What is about 

changing conditions? 

 Meaningfulness: How understandable and relevant are the 

recommendations provided by the AI system?  

 Transparency: Are there conclusive arguments for a provided 

recommendation? 

2.1 Challenges for Human-AI Interface 

At the core of these questions, we identify human-AI interface problems and 

challenges as follows: 

 

AI-to-human (“the AI system’s output is meaningful and understandable”): 

 Tackle the information overload problem, e.g.,  by exploiting attention 

mechanisms; 

 Tackle the trust problem, e.g., by providing additional meta information 

in terms of confidence measures;  

 Tackle the comprehensibility problem by increasing the AI system’s 

capability to explain the system’s output in terms of the user’s language 

(that is extracted from log files, comments etc.); 
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 Improve the (psychological) user experience by taking the user’s 

qualification and social aspects into account, e.g., by adopting the level 

of abstraction, and if the set-up allows, by empowering the AI to give 

precise visual feedback, e.g., by utilizing Spatial Augmented Reality 

techniques; 

Human-to-AI (“human artifacts are meaningful to the AI system”): 

 Make the AI system’s input channels and formats more flexible, e.g., by 

exploiting weakly supervised learning approaches in combination with 

knowledge graphs;  

 Extend the AI system’s interaction possibilities from standard mouse and 

keyboard use to natural interaction techniques, e.g. by integrating vision-

based human gaze and pose detection;  

 Enhance the AI system’s situation understanding capabilities e.g. by 

Visual Grounding of natural language queries; 

3. Towards integrating mental workload context in Human-AI 

Teaming Systems Challenges  

Our envisioned technological conception relies on an innovative integration of 

various building blocks including mental workload models for designing a Human-AI 

Teaming framework. This view leads to an enhanced learning loop taking operational 

as well as mental workload context into account as illustrated by Fig. 1. 

 

 
Fig. 1: Enhanced learning loop integrating mental workload context 

 

At the core of our approach there is the idea for a “learning by listening and 

observation” concept that allows the AI system to adopt its (detection, classification 

etc.) capabilities in terms of expressiveness, explainability and relevance. The 

“listening and observation” part refers to extracting context-tags for an enhanced event 

analysis based on parsing system logs, interpretation of human interactions with the 
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machine (resp. process, system) and additional workload as well as operational context 

information.  

This approach is tackled by the recently granted Austrian exploratory project 

"AI@Work: Human Centered AI in Digitized Working Environments". 

 

Acknowledgments. This work is supported by the Austrian FFG project nr. 25122825. 
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Netherlands Railways has developed several DAS-applications (route context information         
and coasting information) to support the train driver in his task. Before implementing these              
innovations, we want to assess what the impact is on workload, attention allocation and risk               
level of hazards. To assess the impact of innovations a quantitative analysis based on eye               
tracker, simulator data and workload surveys is used. Overall the findings suggest that             
experienced workload isn’t statistically significant different when driving with the          
DAS-applications (route context information application and route context and coasting          
information application), compared to driving with a basic paper time table. Also the attention              
allocation of train drivers doesn’t statistically significant differ in the three conditions. Finally,             
for several identified hazards (i.e. SPADs) we also found no statistical significant difference             
in risk levels for the three conditions. The assessed innovations don’t have a negative impact               
on workload, attention allocation and risk level of hazards. 
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Abstract. WorkingAge (WA) will use innovative HCI methods to measure  

emotional, cognitive and physical strain of users. At the same time, with the use 

of Internet of Things (IoTs), sensors will be able to detect environmental 

conditions. The purpose is to promote healthy habits of users in their working 

environment and daily living activities in order to improve their working and 

living conditions. By studying the profile of elderly workers and the working 

place requirements in three different working environments (Office, Driving 

and Manufacturing), both profiles (user and environment) will be considered. 

Information obtained will be used for the creation of interventions that will lead 

to healthy aging inside and outside the working environment. WA will test and 

validate an integrated solution that learns the user's behaviour, health data and 

preferences and naturally interacts with the user through continuous data 

collection and analysis, with data protection always being a first concern. 

Keywords: Emotive, Health, Mental States, Human-Machine-Interaction, 

Mental Workload, Multi-modal approach, Ontology, Strain, Stress, Worker 
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Abstract. Performing cognitive tasks is becoming important for an increasing 

part of workers who, at times, have to perform tasks under physical and mental 

load, or combinations of these. Effects of different stressors on performance 

have been studied in isolation, but little is known about the combined effects of 

two or more stressors. This study examined how a combination of two stressors 

influence working memory, reported effort and stress, as well as physiological 

indicators of mental state (arousal, attention and load). Skipping a meal is used 

as physiological stressor and noise burst as a mental stressor. 21 participants 

came to the lab twice, once after skipping a meal and once after eating a meal in 

the morning. They performed blocks of 2-back tasks, which were alternately 

presented with and without noise bursts. We found no main effect of skipping a 

meal on any of the variables. While noise did not affect reaction time and 

accuracy, it appeared to generate arousal and overall increased attention (higher 

EDA and P300) that was experienced as higher load and stress. Our results 

illustrate that physiological variables may help to reveal and understand the 

effects of stressors on individuals, besides measures of performance and 

reported experience. 

Keywords: cognition; workload; noise; skipping a meal; psychophysiology 

1   Introduction 

Performing cognitive tasks is becoming important for an increasing part of workers 

who, at times, have to perform these tasks when under physical and mental load or a 

combination of these [1]. The effects of different stressors on performance have been 

studied in isolation [4] [5], but little is known about the combined effects of two or 

more stressors. This study examined the effects of a combination of two stressors on 

working memory performance, with skipping a meal as physiological stressor and 

noise bursts as a mental stressor. Given the flexibility of humans to adapt to changing 

circumstances, effects of stressors may not always be obvious when examining 

performance. For instance, additional invested effort may keep performance 

unaffected [2]. To get insight in the effect of the stressors on the required effort we 

used a wide range of measures and markers, including subjective effort and stress, and 

physiological indicators of mental state (arousal, attention and load).  
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2   Method 

Twenty-one participants took part in this study. They were recruited through the TNO 

participant pool or acquainted with one of the test leaders. The present study was 

approved by the TNO Internal Review Board. All participants gave written informed 

consent. Participants were aged between 18 and 55 years (mean age 39.9 years) and 

11 of the participants were male. Participants came to the lab twice, once after 

skipping a meal, and once after eating a meal in the morning. They performed a series 

of 2-minute blocks of a 2-back task. This task required participants to watch a 

sequence of letters on a computer monitor, where they had to indicate whether or not 

a letter was the same as the letter presented two positions earlier. Blocks were 

alternately presented with and without white noise bursts at random center 

frequencies (85 decibel), played through speakers. After each 2-minute block the 

participants rated their subjective mental effort on the Rating Scale of Mental Effort 

(RSME [3]) and their self-reported stress on a visual analogue scale (VAS, 0 = not at 

all, 100= extremely). During the 2-back task electrodermal activity (EDA), 

electroencephalography (EEG) and electrocardiography (ECG) were collected. After 

pre-processing the data, variables were tested with two-way repeated measures 

analysis of variance (SPSS: General Linear Model/Repeated Measures). 

3   Results & Discussion 

We found no effect of skipping a meal on any of the dependent variables. There was 

also no effect of white noise on the reaction time and accuracy of the 2-back task. 

However, the white noise stressor did significantly affect the number of missed trials 

(more missed trials in the no-noise); the reported mental effort (more effort in the 

noise condition); and the reported stress (more stress in the noise condition). Heart 

rate and heart rate variability were not affected by the stressors. However, EDA (both 

slow and fast response) was higher for noise than no-noise, indicating higher arousal 

for noisy conditions. In addition, EEG P300 brain response following letters in the 

noise condition indicated higher general attention, though it differentiated less well 

between target letters and non-target letters. Finally, an interaction effect between 

noise and meal on EEG alpha activity suggested that under no-noise conditions, when 

a meal was skipped, participants were investing little effort. 

Our results illustrate that physiological variables may help to reveal and understand 

the effects of stressors on individuals, besides measures of performance and reported 

experience. Specifically, while noise did not affect reaction time and accuracy, it 

appeared to generate arousal and overall increased attention (higher EDA and P300) 

that was experienced as higher load and stress (subjective reports). Besides this, a 

more aroused state (high EDA) caused by noise can have beneficial effects (less 

skipped answers). The alpha results indicate that this may especially be important 

when participants skipped a meal. 
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Abstract. The introduction of technology into the work context has been and is 

still one of the most studied topics in the field of Human factors, Computer 

sciences and Psychology, due to the main advantages and disadvantages that may 

appear after its implementation and use. The current research aims to understand 

what and how important is the impact of digital technology on the mental health 

of employees. This study will be based on two main axes: The first one is oriented 

to evaluate and understand how (and to what extent) the mental workload of 

employees is influenced by the use of digital technology at work and the second 

one is focused on understanding how this technology impacts the employee’s 

stress level. This article will describe in a synthetic way the purpose of the study, 

the research questions and the planned contributions to carry out this study. 

Keywords: Human Mental Workload, Technostress, Human–Computer 

interaction, Human Factors. 

1   Introduction 

The introduction of technology into the work context has been and is still one of the 

widely studied topics by different disciplines such as Human Factors or Cognitive 

Psychology. This is reflected in the fact that more and more researchers are interested 

in the study of the relationship between the digital interfaces or tools and the assessment 

of concepts like Human mental workload [4] or Technostress [1,5]. Nowadays, Digital 

Technologies are becoming increasingly important in all types of organizations, 

examples of this are the Sentiment analysis with Text Mining and the Turnover 

prediction with Neural Networks. Both are new tendencies that Human Resources are 

adopting thanks to the massive application of artificial intelligence [6] or the utilization 

for employees of smartphones to access online education and training materials anytime 

from their own companies, all of that provided by ubiquitous computing [2]. 

 

The concept of technostress was triggered by the high labor demands, as well as the 

lack of technological or social resources related to ICTs. The possible consequences of 

technostress are psychosomatic complaints; sleep, headaches, muscle aches, 
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gastrointestinal disorders, as well as organizational damage; absenteeism and reduced 

performance due to non-use or misuse of ICTs in the workplace [5]. It is for this reason, 

that it is important to continue the study and evaluation of this disorder that affects more 

and more collaborators.  

 

The present study will follow two axes: The first one, focusing on assessing the 

influence of digital technologies on the mental workload and the second one, on 

assessing how these technologies are impacting the employee’s stress. We will also 

study the impact of the mental workload of the employees on their stress level. Both 

studies will be carried out after an understanding of the context of the work and the use 

of new digital technologies.  

 

This research will be based on the IWA (Individual - Workload - Activity) model [3], 

because this model fosters an integrative approach to understanding the cognitive 

evaluation of employees. The IWA model consists in taking into consideration the three 

components to understand the mental workload borne by workers: The first corresponds 

to individual characteristics, the second corresponds to the activity and the third 

component represents the mental workload with three dimensions (intrinsic load, 

extraneous and germane load). The latter was taken and adapted from Sweller's theory 

of cognitive load [7,8]. It is expected to identify which are the factors that are directly 

related to technologies such as utility and usability levels, individual factors such as 

skill level or level of computer literacy, and, finally the contextual factors of the use of 

digital technologies such as constraints related to use or frequency of use. 

2   Research Questions 

- What are the main characteristics of digital technologies, applied in the context 

of work, that can influence (increase or decrease) the levels of workers’ mental 

load and stress? 

- How can the experience of a mental overload in the work context, caused by 

the use of digital technology, impact the worker's stress? 

3   Expected Contributions of the Research 

- This research project will ultimately make more recommendations for the 

improvement and design of interfaces than those that exist today, considering 

the context and the individual; 

- Propose individualized action plans within companies to facilitate the day-to-

day work of managers and their teams in an increasingly digital context; 

- This project can serve as a basis for human resources departments to set up 

specific training actions for individuals most sensitive to stress. 
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1   Introduction 

Urban air mobility (UAM) is receiving increased attention in the aviation literature 
as a traffic management system for the operation of passenger and cargo-carrying new 
entrants in urban airspace [1, 2]. UAM has been defined by the National Aeronautics 
and Space Administration (NASA) ATM-X project as “a safe and efficient system for 
air passenger and cargo transportation within an urban area” [3, p.3366). The roles 
and responsibilities of ATCOs and other human operators in relation to UAM traffic 
management remain undefined. Exploration of the human operator role in UAM is an 
essential element of the progression of UAM concept development. Identifying and 
exploring human factors issues such as task demand, associated workload, and 
performance, during an early stage of concept development, affords the opportunity to 
identify capabilities, as well as potential risks and associated mitigations, of human 
operator roles. The research reported in this paper aimed to contribute further 
understanding of human factors considerations, specifically workload, for near-term 
UAM operations. 

2   Method 

A human in the loop simulation was conducted, centered on low-altitude tower 
control sectors in the North Texas Metroplex area. Three within-measures variables 
were utilized. Task demand was manipulated to create three simulation scenarios, 
consisting of low, medium and high density UAM traffic. Two forms of 
communication procedure were utilized as the second variable, specifically, current 
day communication procedures and reduced verbal communications procedure 
implemented via a letter- of-agreement (LOA). Finally, the routes available to UAM 
consisted of two levels – the use of current day helicopter routes and modified routes 
that were optimized for UAM vehicles. Participants were six recently-retired 
controllers who had previously worked in tower control. Self-reported workload was 
measured throughout each simulation at 4-minute intervals using a modified uni-
dimensional Instantaneous Self-Assessment scale (ISA). Each simulation session 
lasted for 40 minutes. A total of six retired controllers took part in the simulation, 
consisting of 4 males and 2 females. 

 
 

109



3   Results 

Subjective ratings of workload were considered in relation to UAM vehicle density. 
Inferential statistics were conducted to explore whether differences in average 
workload ratings between traffic densities were significant. A significant main effect 
of UAM traffic density was found on self-reported workload (F(2,10) = 4.65, p<0.05). 
A significant main effect of UAM traffic density on self-reported workload was 
identified (F(2,10) = 9.31, p<0.01). Pairwise comparisons revealed that average 
workload ratings were significantly lower in low density traffic compared to medium 
density traffic (p=0.01) and  high-density traffic (p<0.05). 

When considering the low UAM density condition, there appear to be differences 
between C (current day route, no LOA) CL (current day routes, LOA) and M 
(modified routes, LOA) conditions. No significant differences were found between 
average workload ratings in C, CL, and M conditions for the low, medium or high  
UAM traffic scenario.  

4   Discussion and conclusion 

It is acknowledged that the findings presented in this paper are provisional and need 
to be interpreted with caution. The small number of participants in the study may have 
influenced inferential statistics, resulting in the possibility of a type II error. The 
findings presented in this paper suggest that under current day operating procedures, 
using current day routes, UAM operations would be significantly restricted if actively 
controlled by human operators. Reduction of workload using a LOA did appear to 
support an increase in capacity of controlled traffic, as did optimization of routes. 
However, even with these adjustments, the scalability of UAM operations would 
remain restricted relative to the envisaged mid and far-term operations. The critical 
focus of future research therefore moves to supporting the development of an UAM 
system that is scalable, whilst maintaining, and even improving, the exceptional 
aviation safety standards.  
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