66 research outputs found

    Resolvable Mendelsohn designs and finite Frobenius groups

    Full text link
    We prove the existence and give constructions of a (p(k)−1)(p(k)-1)-fold perfect resolvable (v,k,1)(v, k, 1)-Mendelsohn design for any integers v>k≥2v > k \ge 2 with v≡1mod  kv \equiv 1 \mod k such that there exists a finite Frobenius group whose kernel KK has order vv and whose complement contains an element ϕ\phi of order kk, where p(k)p(k) is the least prime factor of kk. Such a design admits K⋊⟨ϕ⟩K \rtimes \langle \phi \rangle as a group of automorphisms and is perfect when kk is a prime. As an application we prove that for any integer v=p1e1…ptet≥3v = p_{1}^{e_1} \ldots p_{t}^{e_t} \ge 3 in prime factorization, and any prime kk dividing piei−1p_{i}^{e_i} - 1 for 1≤i≤t1 \le i \le t, there exists a resolvable perfect (v,k,1)(v, k, 1)-Mendelsohn design that admits a Frobenius group as a group of automorphisms. We also prove that, if kk is even and divides pi−1p_{i} - 1 for 1≤i≤t1 \le i \le t, then there are at least φ(k)t\varphi(k)^t resolvable (v,k,1)(v, k, 1)-Mendelsohn designs that admit a Frobenius group as a group of automorphisms, where φ\varphi is Euler's totient function.Comment: Final versio

    Spectrum of Sizes for Perfect Deletion-Correcting Codes

    Full text link
    One peculiarity with deletion-correcting codes is that perfect tt-deletion-correcting codes of the same length over the same alphabet can have different numbers of codewords, because the balls of radius tt with respect to the Levenshte\u{\i}n distance may be of different sizes. There is interest, therefore, in determining all possible sizes of a perfect tt-deletion-correcting code, given the length nn and the alphabet size~qq. In this paper, we determine completely the spectrum of possible sizes for perfect qq-ary 1-deletion-correcting codes of length three for all qq, and perfect qq-ary 2-deletion-correcting codes of length four for almost all qq, leaving only a small finite number of cases in doubt.Comment: 23 page

    Existence of r-fold perfect (v,K,1)-Mendelsohn designs with K⊆{4,5,6,7}

    Get PDF
    AbstractLet v be a positive integer and let K be a set of positive integers. A (v,K,1)-Mendelsohn design, which we denote briefly by (v,K,1)-MD, is a pair (X,B) where X is a v-set (of points) and B is a collection of cyclically ordered subsets of X (called blocks) with sizes in the set K such that every ordered pair of points of X are consecutive in exactly one block of B. If for all t=1,2,…,r, every ordered pair of points of X are t-apart in exactly one block of B, then the (v,K,1)-MD is called an r-fold perfect design and denoted briefly by an r-fold perfect (v,K,1)-MD. If K={k} and r=k−1, then an r-fold perfect (v,{k},1)-MD is essentially the more familiar (v,k,1)-perfect Mendelsohn design, which is briefly denoted by (v,k,1)-PMD. In this paper, we investigate the existence of r-fold perfect (v,K,1)-Mendelsohn designs for a specified set K which is a subset of {4, 5, 6, 7} containing precisely two elements

    Uniform hypergraphs containing no grids

    Get PDF
    A hypergraph is called an r×r grid if it is isomorphic to a pattern of r horizontal and r vertical lines, i.e.,a family of sets {A1, ..., Ar, B1, ..., Br} such that Ai∩Aj=Bi∩Bj=φ for 1≤i<j≤r and {pipe}Ai∩Bj{pipe}=1 for 1≤i, j≤r. Three sets C1, C2, C3 form a triangle if they pairwise intersect in three distinct singletons, {pipe}C1∩C2{pipe}={pipe}C2∩C3{pipe}={pipe}C3∩C1{pipe}=1, C1∩C2≠C1∩C3. A hypergraph is linear, if {pipe}E∩F{pipe}≤1 holds for every pair of edges E≠F.In this paper we construct large linear r-hypergraphs which contain no grids. Moreover, a similar construction gives large linear r-hypergraphs which contain neither grids nor triangles. For r≥. 4 our constructions are almost optimal. These investigations are motivated by coding theory: we get new bounds for optimal superimposed codes and designs. © 2013 Elsevier Ltd

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Subject Index Volumes 1–200

    Get PDF
    • …
    corecore