23,342 research outputs found

    Blind multiuser detection using hidden markov models theory

    Get PDF
    We present an adaptive algorithm based on the theory of hidden Markov models (HMM) which is capable of jointly detecting the users in a DS-CDMA system. The proposed technique is near-far resistant and completely blind in the sense that no knowledge of the signature sequences, channel state information or training sequences is required for any user. In addition to this, an estimate of the signature of each user convolved with its physical channel impulse response (CIR), and an estimate of the background noise variance are provided once convergence is achieved (as well as estimated data sequences). At this moment, and using that CIR estimate, we can switch to any decision-directed (DD) adaptation scheme.Peer ReviewedPostprint (published version

    Application of hidden markov models to blind channel estimation and data detection in a gsm environment

    Get PDF
    In this paper, we present an algorithm based on the Hidden Markov Models (HMM) theory to solve the problem of blind channel estimation and sequence detection in mobile digital communications. The environment in which the algorithm is tested is the Paneuropean Mobile Radio System, also known as GSM. In this system, a large part in each burst is devoted to allocate a training sequence used to obtain a channel estimate. The algorithm presented would not require this sequence, and that would imply an increase of the system capacity. Performance, evaluated for standard test channels, is close to that of non-blind algorithms.Peer ReviewedPostprint (published version

    Analysis of Second-order Statistics Based Semi-blind Channel Estimation in CDMA Channels

    Full text link
    The performance of second order statistics (SOS) based semi-blind channel estimation in long-code DS-CDMA systems is analyzed. The covariance matrix of SOS estimates is obtained in the large system limit, and is used to analyze the large-sample performance of two SOS based semi-blind channel estimation algorithms. A notion of blind estimation efficiency is also defined and is examined via simulation results.Comment: To be presented at the 2005 Conference on Information Sciences and System

    Wavelet Based Semi-blind Channel Estimation For Multiband OFDM

    Full text link
    This paper introduces an expectation-maximization (EM) algorithm within a wavelet domain Bayesian framework for semi-blind channel estimation of multiband OFDM based UWB communications. A prior distribution is chosen for the wavelet coefficients of the unknown channel impulse response in order to model a sparseness property of the wavelet representation. This prior yields, in maximum a posteriori estimation, a thresholding rule within the EM algorithm. We particularly focus on reducing the number of estimated parameters by iteratively discarding ``unsignificant'' wavelet coefficients from the estimation process. Simulation results using UWB channels issued from both models and measurements show that under sparsity conditions, the proposed algorithm outperforms pilot based channel estimation in terms of mean square error and bit error rate and enhances the estimation accuracy with less computational complexity than traditional semi-blind methods

    Joint semi-blind detection and channel estimation in space-frequency trellis coded MIMO-OFDM

    Get PDF

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    ALOHA With Collision Resolution(ALOHA-CR): Theory and Software Defined Radio Implementation

    Full text link
    A cross-layer scheme, namely ALOHA With Collision Resolution (ALOHA-CR), is proposed for high throughput wireless communications in a cellular scenario. Transmissions occur in a time-slotted ALOHA-type fashion but with an important difference: simultaneous transmissions of two users can be successful. If more than two users transmit in the same slot the collision cannot be resolved and retransmission is required. If only one user transmits, the transmitted packet is recovered with some probability, depending on the state of the channel. If two users transmit the collision is resolved and the packets are recovered by first over-sampling the collision signal and then exploiting independent information about the two users that is contained in the signal polyphase components. The ALOHA-CR throughput is derived under the infinite backlog assumption and also under the assumption of finite backlog. The contention probability is determined under these two assumptions in order to maximize the network throughput and maintain stability. Queuing delay analysis for network users is also conducted. The performance of ALOHA-CR is demonstrated on the Wireless Open Access Research Platform (WARP) test-bed containing five software defined radio nodes. Analysis and test-bed results indicate that ALOHA-CR leads to significant increase in throughput and reduction of service delays

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore