5,360 research outputs found

    Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

    Get PDF
    In the {\sc Hitting Set} problem, we are given a collection F\cal F of subsets of a ground set VV and an integer pp, and asked whether VV has a pp-element subset that intersects each set in F\cal F. We consider two parameterizations of {\sc Hitting Set} below tight upper bounds: p=mβˆ’kp=m-k and p=nβˆ’kp=n-k. In both cases kk is the parameter. We prove that the first parameterization is fixed-parameter tractable, but has no polynomial kernel unless coNPβŠ†\subseteqNP/poly. The second parameterization is W[1]-complete, but the introduction of an additional parameter, the degeneracy of the hypergraph H=(V,F)H=(V,{\cal F}), makes the problem not only fixed-parameter tractable, but also one with a linear kernel. Here the degeneracy of H=(V,F)H=(V,{\cal F}) is the minimum integer dd such that for each XβŠ‚VX\subset V the hypergraph with vertex set Vβˆ–XV\setminus X and edge set containing all edges of F\cal F without vertices in XX, has a vertex of degree at most d.d. In {\sc Nonblocker} ({\sc Directed Nonblocker}), we are given an undirected graph (a directed graph) GG on nn vertices and an integer kk, and asked whether GG has a set XX of nβˆ’kn-k vertices such that for each vertex y∉Xy\not\in X there is an edge (arc) from a vertex in XX to yy. {\sc Nonblocker} can be viewed as a special case of {\sc Directed Nonblocker} (replace an undirected graph by a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that {\sc Nonblocker} has a linear-order kernel. We obtain a linear-order kernel for {\sc Directed Nonblocker}

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    Model counting for CNF formuals of bounded module treewidth.

    Get PDF
    The modular treewidth of a graph is its treewidth after the contraction of modules. Modular treewidth properly generalizes treewidth and is itself properly generalized by clique-width. We show that the number of satisfying assignments of a CNF formula whose incidence graph has bounded modular treewidth can be computed in polynomial time. This provides new tractable classes of formulas for which #SAT is polynomial. In particular, our result generalizes known results for the treewidth of incidence graphs and is incomparable with known results for clique-width (or rank-width) of signed incidence graphs. The contraction of modules is an effective data reduction procedure. Our algorithm is the first one to harness this technique for #SAT. The order of the polynomial time bound of our algorithm depends on the modular treewidth. We show that this dependency cannot be avoided subject to an assumption from Parameterized Complexity
    • …
    corecore