10 research outputs found

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    A Novel Workload Allocation Strategy for Batch Jobs

    Get PDF
    The distribution of computational tasks across a diverse set of geographically distributed heterogeneous resources is a critical issue in the realisation of true computational grids. Conventionally, workload allocation algorithms are divided into static and dynamic approaches. Whilst dynamic approaches frequently outperform static schemes, they usually require the collection and processing of detailed system information at frequent intervals - a task that can be both time consuming and unreliable in the real-world. This paper introduces a novel workload allocation algorithm for optimally distributing the workload produced by the arrival of batches of jobs. Results show that, for the arrival of batches of jobs, this workload allocation algorithm outperforms other commonly used algorithms in the static case. A hybrid scheduling approach (using this workload allocation algorithm), where information about the speed of computational resources is inferred from previously completed jobs, is then introduced and the efficiency of this approach demonstrated using a real world computational grid. These results are compared to the same workload allocation algorithm used in the static case and it can be seen that this hybrid approach comprehensively outperforms the static approach

    A novel approach to allocating QoS-constrained workflow-based jobs in a multi-cluster grid

    No full text
    Clusters are increasingly interconnected to form multi-cluster systems, which are becoming popular for scientific computation. Grid users often submit their applications in the form of workflows with certain Quality of Service (QoS) requirements imposed on the workflows. These workflows detail the composition of Grid services and the level of service required from the Grid. This paper addresses workload allocation techniques for Grid workflows. We model a resource within a cluster as a G/G/1 queue and minimise failures (QoS requirement violation) of jobs by solving a mixed-integer non-linear program (MINLP). The novel approach is evaluated through an experimental simulation and the results confirm that the proposed workload allocation strategy not only provides QoS guarantee but also performs considerably better in terms of satisfying QoS requirements of Grid workflows than reservation-based scheduling algorithms. © 2006 ACM

    Allocating non-real-time and soft real-time jobs in multiclusters

    Get PDF
    This paper addresses workload allocation techniques for two types of sequential jobs that might be found in multicluster systems, namely, non-real-time jobs and soft real-time jobs. Two workload allocation strategies, the Optimized mean Response Time (ORT) and the Optimized mean Miss Rate (OMR), are developed by establishing and numerically solving two optimization equation sets. The ORT strategy achieves an optimized mean response time for non-real-time jobs, while the OMR strategy obtains an optimized mean miss rate for soft real-time jobs over multiple clusters. Both strategies take into account average system behaviors (such as the mean arrival rate of jobs) in calculating the workload proportions for individual clusters and the workload allocation is updated dynamically when the change in the mean arrival rate reaches a certain threshold. The effectiveness of both strategies is demonstrated through theoretical analysis. These strategies are also evaluated through extensive experimental studies and the results show that when compared with traditional strategies, the proposed workload allocation schemes significantly improve the performance of job scheduling in multiclusters, both in terms of the mean response time (for non-real-time jobs) and the mean miss rate (for soft real-time jobs)

    Allocating Non-real-time and Soft Real-time Jobs in Multiclusters

    Get PDF
    This paper addresses workload allocation techniques for two types of sequential jobs that might be found in multicluster systems, namely non-real-time jobs and soft real-time jobs. Two workload allocation strategies, the Optimized mean Response Time (ORT) and the Optimized mean Miss Rate (OMR), are developed by establishing and numerically solving two optimization equation sets. The ORT strategy achieves an optimized mean response time for non-real-time jobs; while the OMR strategy obtains an optimized mean miss rate for soft real-time jobs over multiple clusters. Both strategies take into account average system behav-iours (such as the mean arrival rate of jobs) in calculating the workload proportions for indi-vidual clusters and the workload allocation is updated dynamically when the change in the mean arrival rate reaches a certain threshold. The effectiveness of both strategies is demon-strated through theoretical analysis. These strategies are also evaluated through extensive ex-perimental studies and the results show that when compared with traditional strategies, the proposed workload allocation schemes significantly improve the performance of job schedul-ing in multiclusters, both in terms of the mean response time (for non-real-time jobs) and the mean miss rate (for soft real-time jobs)

    Optimizing performance of workflow executions under authorization control

    Get PDF
    “Business processes or workflows are often used to model enterprise or scientific applications. It has received considerable attention to automate workflow executions on computing resources. However, many workflow scenarios still involve human activities and consist of a mixture of human tasks and computing tasks. Human involvement introduces security and authorization concerns, requiring restrictions on who is allowed to perform which tasks at what time. Role- Based Access Control (RBAC) is a popular authorization mechanism. In RBAC, the authorization concepts such as roles and permissions are defined, and various authorization constraints are supported, including separation of duty, temporal constraints, etc. Under RBAC, users are assigned to certain roles, while the roles are associated with prescribed permissions. When we assess resource capacities, or evaluate the performance of workflow executions on supporting platforms, it is often assumed that when a task is allocated to a resource, the resource will accept the task and start the execution once a processor becomes available. However, when the authorization policies are taken into account,” this assumption may not be true and the situation becomes more complex. For example, when a task arrives, a valid and activated role has to be assigned to a task before the task can start execution. The deployed authorization constraints may delay the workflow execution due to the roles’ availability, or other restrictions on the role assignments, which will consequently have negative impact on application performance. When the authorization constraints are present to restrict the workflow executions, it entails new research issues that have not been studied yet in conventional workflow management. This thesis aims to investigate these new research issues. First, it is important to know whether a feasible authorization solution can be found to enable the executions of all tasks in a workflow, i.e., check the feasibility of the deployed authorization constraints. This thesis studies the issue of the feasibility checking and models the feasibility checking problem as a constraints satisfaction problem. Second, it is useful to know when the performance of workflow executions will not be affected by the given authorization constraints. This thesis proposes the methods to determine the time durations when the given authorization constraints do not have impact. Third, when the authorization constraints do have the performance impact, how can we quantitatively analyse and determine the impact? When there are multiple choices to assign the roles to the tasks, will different choices lead to the different performance impact? If so, can we find an optimal way to conduct the task-role assignments so that the performance impact is minimized? This thesis proposes the method to analyze the delay caused by the authorization constraints if the workflow arrives beyond the non-impact time duration calculated above. Through the analysis of the delay, we realize that the authorization method, i.e., the method to select the roles to assign to the tasks affects the length of the delay caused by the authorization constraints. Based on this finding, we propose an optimal authorization method, called the Global Authorization Aware (GAA) method. Fourth, a key reason why authorization constraints may have impact on performance is because the authorization control directs the tasks to some particular roles. Then how to determine the level of workload directed to each role given a set of authorization constraints? This thesis conducts the theoretical analysis about how the authorization constraints direct the workload to the roles, and proposes the methods to calculate the arriving rate of the requests directed to each role under the role, temporal and cardinality constraints. Finally, the amount of resources allocated to support each individual role may have impact on the execution performance of the workflows. Therefore, it is desired to develop the strategies to determine the adequate amount of resources when the authorization control is present in the system. This thesis presents the methods to allocate the appropriate quantity for resources, including both human resources and computing resources. Different features of human resources and computing resources are taken into account. For human resources, the objective is to maximize the performance subject to the budgets to hire the human resources, while for computing resources, the strategy aims to allocate adequate amount of computing resources to meet the QoS requirements

    Integrating multiple clusters for compute-intensive applications

    Get PDF
    Multicluster grids provide one promising solution to satisfying the growing computational demands of compute-intensive applications. However, it is challenging to seamlessly integrate all participating clusters in different domains into a single virtual computational platform. In order to fully utilize the capabilities of multicluster grids, computer scientists need to deal with the issue of joining together participating autonomic systems practically and efficiently to execute grid-enabled applications. Driven by several compute-intensive applications, this theses develops a multicluster grid management toolkit called Pelecanus to bridge the gap between user\u27s needs and the system\u27s heterogeneity. Application scientists will be able to conduct very large-scale execution across multiclusters with transparent QoS assurance. A novel model called DA-TC (Dynamic Assignment with Task Containers) is developed and is integrated into Pelecanus. This model uses the concept of a task container that allows one to decouple resource allocation from resource binding. It employs static load balancing for task container distribution and dynamic load balancing for task assignment. The slowest resources become useful rather than be bottlenecks in this manner. A cluster abstraction is implemented, which not only provides various cluster information for the DA-TC execution model, but also can be used as a standalone toolkit to monitor and evaluate the clusters\u27 functionality and performance. The performance of the proposed DA-TC model is evaluated both theoretically and experimentally. Results demonstrate the importance of reducing queuing time in decreasing the total turnaround time for an application. Experiments were conducted to understand the performance of various aspects of the DA-TC model. Experiments showed that our model could significantly reduce turnaround time and increase resource utilization for our targeted application scenarios. Four applications are implemented as case studies to determine the applicability of the DA-TC model. In each case the turnaround time is greatly reduced, which demonstrates that the DA-TC model is efficient for assisting application scientists in conducting their research. In addition, virtual resources were integrated into the DA-TC model for application execution. Experiments show that the execution model proposed in this thesis can work seamlessly with multiple hybrid grid/cloud resources to achieve reduced turnaround time

    Efficient processor allocation strategies for mesh-connected multicomputers

    Get PDF
    Abstract Efficient processor allocation and job scheduling algorithms are critical if the full computational power of large-scale multicomputers is to be harnessed effectively. Processor allocation is responsible for selecting the set of processors on which parallel jobs are executed, whereas job scheduling is responsible for determining the order in which the jobs are executed. Many processor allocation strategies have been devised for mesh-connected multicomputers and these can be divided into two main categories: contiguous and non-contiguous. In contiguous allocation, jobs are allocated distinct contiguous processor sub-meshes for the duration of their execution. Such a strategy could lead to high processor fragmentation which degrades system performance in terms of, for example, the turnaround time and system utilisation. In non-contiguous allocation, a job can execute on multiple disjoint smaller sub-meshes rather than waiting until a single sub-mesh of the requested size and shape is available. Although non-contiguous allocation increases message contention inside the network, lifting the contiguity condition can reduce processor fragmentation and increase system utilisation. Processor fragmentation can be of two types: internal and external. The former occurs when more processors are allocated to a job than it requires while the latter occurs when there are free processors enough in number to satisfy another job request, but they are not allocated to it because they are not contiguous. A lot of efforts have been devoted to reducing fragmentation, and a number of contiguous allocation strategies have been devised to recognize complete sub-meshes during allocation. Most of these strategies have been suggested for 2D mesh-connected multicomputers. However, although the 3D mesh has been the underlying network topology for a number of important multicomputers, there has been relatively little activity with regard to designing similar strategies for such a network. The very few contiguous allocation strategies suggested for the 3D mesh achieve complete sub-mesh recognition ability only at the expense of a high allocation overhead (i.e., allocation and de-allocation time). Furthermore, the allocation overhead in the existing contiguous strategies often grows with system size. The main challenge is therefore to devise an efficient contiguous allocation strategy that can exhibit good performance (e.g., a low job turnaround time and high system utilisation) with a low allocation overhead. The first part of the research presents a new contiguous allocation strategy, referred to as Turning Busy List (TBL), for 3D mesh-connected multicomputers. The TBL strategy considers only those available free sub-meshes which border from the left of those already allocated sub-meshes or which have their left boundaries aligned with that of the whole mesh network. Moreover TBL uses an efficient scheme to facilitate the detection of such available sub-meshes while maintaining a low allocation overhead. This is achieved through maintaining a list of allocated sub-meshes in order to efficiently determine the processors that can form an allocation sub-mesh for a new allocation request. The new strategy is able to identify a free sub-mesh of the requested size as long as it exists in the mesh. Results from extensive simulations under various operating loads reveal that TBL manages to deliver competitive performance (i.e., low turnaround times and high system utilisation) with a much lower allocation overhead compared to other well-known existing strategies. Most existing non-contiguous allocation strategies that have been suggested for the mesh suffer from several problems that include internal fragmentation, external fragmentation, and message contention inside the network. Furthermore, the allocation of processors to job requests is not based on free contiguous sub-meshes in these existing strategies. The second part of this research proposes a new non-contiguous allocation strategy, referred to as Greedy Available Busy List (GABL) strategy that eliminates both internal and external fragmentation and alleviates the contention in the network. GABL combines the desirable features of both contiguous and non-contiguous allocation strategies as it adopts the contiguous allocation used in our TBL strategy. Moreover, GABL is flexible enough in that it could be applied to either the 2D or 3D mesh. However, for the sake of the present study, the new non-contiguous allocation strategy is discussed for the 2D mesh and compares its performance against that of well-known non-contiguous allocation strategies suggested for this network. One of the desirable features of GABL is that it can maintain a high degree of contiguity between processors compared to the previous allocation strategies. This, in turn, decreases the number of sub-meshes allocated to a job, and thus decreases message distances, resulting in a low inter-processor communication overhead. The performance analysis here indicates that the new proposed strategy has lower turnaround time than the previous non-contiguous allocation strategies for most considered cases. Moreover, in the presence of high message contention due to heavy network traffic, GABL exhibits superior performance in terms of the turnaround time over the previous contiguous and non-contiguous allocation strategies. Furthermore, GABL exhibits a high system utilisation as it manages to eliminate both internal and external fragmentation. The performance of many allocation strategies including the ones suggested above, has been evaluated under the assumption that job execution times follow an exponential distribution. However, many measurement studies have convincingly demonstrated that the execution times of certain computational applications are best characterized by heavy-tailed job execution times; that is, many jobs have short execution times and comparatively few have very long execution times. Motivated by this observation, the final part of this thesis reviews the performance of several contiguous allocation strategies, including TBL, in the context of heavy-tailed distributions. This research is the first to analyze the performance impact of heavy-tailed job execution times on the allocation strategies suggested for mesh-connected multicomputers. The results show that the performance of the contiguous allocation strategies degrades sharply when the distribution of job execution times is heavy-tailed. Further, adopting an appropriate scheduling strategy, such as Shortest-Service-Demand (SSD) as opposed to First-Come-First-Served (FCFS), can significantly reduce the detrimental effects of heavy-tailed distributions. Finally, while the new contiguous allocation strategy (TBL) is as good as the best competitor of the previous contiguous allocation strategies in terms of job turnaround time and system utilisation, it is substantially more efficient in terms of allocation overhead
    corecore