2,224 research outputs found

    Generalized Assignment of Time-Sensitive Item Groups

    Get PDF
    We study the generalized assignment problem with time-sensitive item groups (chi-AGAP). It has central applications in advertisement placement on the Internet, and in virtual network embedding in Cloud data centers. We are given a set of items, partitioned into n groups, and a set of T identical bins (or, time-slots). Each group 1 0 and a non-negative utility u_{it} when packed into bin t in chi_j. A bin can accommodate at most one item from each group and the total size of the items in a bin cannot exceed its capacity. The goal is to find a feasible packing of a subset of the items in the bins such that the total utility from groups that are completely packed is maximized. Our main result is an Omega(1)-approximation algorithm for chi-AGAP. Our approximation technique relies on a non-trivial rounding of a configuration LP, which can be adapted to other common scenarios of resource allocation in Cloud data centers

    Generalized Assignment via Submodular Optimization with Reserved Capacity

    Get PDF
    We study a variant of the generalized assignment problem (GAP) with group constraints. An instance of (Group GAP) is a set I of items, partitioned into L groups, and a set of m uniform (unit-sized) bins. Each item i in I has a size s_i >0, and a profit p_{i,j} >= 0 if packed in bin j. A group of items is satisfied if all of its items are packed. The goal is to find a feasible packing of a subset of the items in the bins such that the total profit from satisfied groups is maximized. We point to central applications of Group GAP in Video-on-Demand services, mobile Device-to-Device network caching and base station cooperation in 5G networks. Our main result is a 1/6-approximation algorithm for Group GAP instances where the total size of each group is at most m/2. At the heart of our algorithm lies an interesting derivation of a submodular function from the classic LP formulation of GAP, which facilitates the construction of a high profit solution utilizing at most half the total bin capacity, while the other half is reserved for later use. In particular, we give an algorithm for submodular maximization subject to a knapsack constraint, which finds a solution of profit at least 1/3 of the optimum, using at most half the knapsack capacity, under mild restrictions on element sizes. Our novel approach of submodular optimization subject to a knapsack with reserved capacity constraint may find applications in solving other group assignment problems

    An AFPTAS for Bin Packing with Partition Matroid via a New Method for LP Rounding

    Get PDF
    We consider the Bin Packing problem with a partition matroid constraint. The input is a set of items of sizes in [0,1], and a partition matroid over the items. The goal is to pack the items in a minimum number of unit-size bins, such that each bin forms an independent set in the matroid. This variant of classic Bin Packing has natural applications in secure storage on the Cloud, as well as in equitable scheduling and clustering with fairness constraints. Our main result is an asymptotic fully polynomial-time approximation scheme (AFPTAS) for Bin Packing with a partition matroid constraint. This scheme generalizes the known AFPTAS for Bin Packing with Cardinality Constraints and improves the existing asymptotic polynomial-time approximation scheme (APTAS) for Group Bin Packing, which are both special cases of Bin Packing with partition matroid. We derive the scheme via a new method for rounding a (fractional) solution for a configuration-LP. Our method uses this solution to obtain prototypes, in which items are interpreted as placeholders for other items, and applies fractional grouping to modify a fractional solution (prototype) into one having desired integrality properties

    A decomposition approach for multidimensional knapsacks with family-split penalties

    Get PDF
    The optimization of Multidimensional Knapsacks with Family-Split Penalties has been introduced in the literature as a variant of the more classical Multidimensional Knapsack and Multi-Knapsack problems. This problem deals with a set of items partitioned in families, and when a single item is picked to maximize the utility, then all items in its family must be picked. Items from the same family can be assigned to different knapsacks, and in this situation split penalties are paid. This problem arises in real applications in various fields. This paper proposes a new exact and fast algorithm based on a specific Combinatorial Benders Cuts scheme. An extensive experimental campaign computationally shows the validity of the proposed method and its superior performance compared to both commercial solvers and state-of-the-art approaches. The paper also addresses algorithmic flexibility and scalability issues, investigates challenging cases, and analyzes the impact of problem parameters on the algorithm behavior. Moreover, it shows the applicability of the proposed approach to a wider class of realistic problems, including fixed costs related to each knapsack utilization. Finally, further possible research directions are considered

    Market-Based Models for Digital Signage Network Promotion Management

    Get PDF
    Digital signage network (DSN) is capable of delivering customized content to designated screens in a real-time or near real-time manner, which provides tremendous potential for building dynamic demand stimulation tools. However current DSN media buying process is mainly carried out through manually conducted negotiation between the DSN operator and the advertisers. This practice does not capitalize the unique technology advantage offered by the newly emerged advertising medium. We propose automated DSN media buying models which allow advertisers to customize their promotion schedules in a highly responsive manner. Specifically, we design a direct revelation mechanism and an iterative bidding model for DSN promotion scheduling. We show that the direct revelation mechanism computes optimal solutions. We evaluate the revenue performance of the iterative bidding model through a computational study. The implementation of the iterative bidding mechanism is also described

    CWU Faculty Senate Minutes - 01/10/2001

    Get PDF
    These are the official Central Washington University Faculty Senate Minutes for the 01/10/2001 regular meeting

    Making Out-of-School Time Matter: Evidence for an Action Agenda

    Get PDF
    Presents findings from a review of literature that identifies and addresses the level of demand for OST services, the effectiveness of the offerings, quality in OST programs, how to encourage participation, and how to build further community capacity
    • …
    corecore