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Abstract

The optimization of Multidimensional Knapsacks with Family-Split Penalties has been introduced in the
literature as a variant of the more classical Multidimensional Knapsack and Multi-Knapsack problems. This
problem deals with a set of items partitioned in families, and when a single item is picked to maximize the
utility, then all items in its family must be picked. Items from the same family can be assigned to different
knapsacks, and in this situation split penalties are paid. This problem arises in real applications in various
fields. This paper proposes a new exact and fast algorithm based on a specific Combinatorial Benders Cuts
scheme. An extensive experimental campaign computationally shows the validity of the proposed method
and its superior performance compared to both commercial solvers and state-of-the-art approaches. The
paper also addresses algorithmic flexibility and scalability issues, investigates challenging cases, and analyzes
the impact of problem parameters on the algorithm behavior. Moreover, it shows the applicability of the
proposed approach to a wider class of realistic problems, including fixed costs related to each knapsack
utilization. Finally, further possible research directions are considered.

Keywords: knapsack problems; discrete optimization; integer programming; decomposition methods; benders cuts

1. Introduction

The class of Knapsack problems belongs to the set of the most studied and challenging problems in
combinatorial and integer optimization (Martello and Toth, 1990; Kellerer et al., 2004; Cacchiani
et al., 2022a). The original Knapsack problem (KP) is still of great interest due to its applications
in many contexts. Nevertheless, over the years, its basic model has been modified and extended
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providing several variants investigated in the literature, including the Multiple Knapsack Prob-
lem (MKP) and the Multidimensional Knapsack Problem (MdKP) (Cacchiani et al., 2022b). This
paper considers a variant of both the more classical MKP and MdKP, namely the Multiple Multi-
dimensional Knapsack Problem with Family-Split Penalties (MMdKFSP) introduced by Mancini
et al. (2021) that occurs in different application areas, including resource management in distributed
computing systems and service oriented architectures, logistics, and manufacturing. In this prob-
lem, the items are partitioned into families of interdependent entities. Such a forceful belonging is
conveyed in the problem by the constraint that if one family member is chosen, all other compo-
nents of the same family must be chosen as well. Furthermore, although items belonging to the
same family can be allocated in different knapsacks, if this happens, family-split penalties are paid;
thus reducing the global utility. Although most of the time it is reasonable to assume that every
single item has its own individual profit, as in the basic (multiple) KP, in some cases it happens
that the profit can only be defined for a family of items, rather than for each of them separately.
In Chen and Zhang (2018), the classical meaning of the knapsack problem is extended, consid-
ering two examples. In the first case, several people go hiking together. In this situation, all that
is necessary for putting a tend in place, such as the poles, ropes, sticks, and the tent itself has a
single value that may only be obtained if every item is available. The second example deals with
the delivery of large equipment or devices, which could be split into smaller parts and carried by
multiple vehicles. However, no piece of equipment has an individual value, and it only makes sense
to carry all the parts. Similar cases can be encountered in the manufacturing sector concerning the
management of tooling of machining centers, components preparation, and kitting. The MMd-
KFSP also arises in resource and operations management of distributed computing applications
and service oriented architectures (Mancini et al., 2021) either on a local scale (e.g., departmental
servers), or on a larger scale (e.g., public cloud environments). In these contexts, items are generally
used for modeling computing tasks or services, with heterogeneous resource requirements. Items
are organized into families according to the software process or application they relate to, kind of
requirements, or customers. In this scenario, knapsacks usually model computing nodes (e.g., vir-
tual machines and physical servers) and are characterized by a limited capacity in terms of various
resources such as CPU, RAM, storage, and networking. The items, that is, the parts of software
applications waiting to be allocated and executed on the machines, have their needs with respect to
the resources utilization, and when one item is chosen to maximize a global index of performance,
its family must be entirely chosen as well, that is, a family cannot be partially chosen because an
application might not be functional without all its components. Nevertheless, items belonging to
the same family can be assigned to different knapsacks; however, in this situation, split penalties are
paid to consider either the required additional organizational burdens and/or the quality-of-service
reductions (Sun et al., 2016).

All these applications motivate the study of the MMdKFSP and the pursuit of suitable algo-
rithmic solutions. In fact, notwithstanding the interest due to the real-world applications of this
problem, it has not yet received adequate attention from the modeling and algorithmic point of
view. To this aim, this paper intends to make a significant step forward with respect to what is
proposed in the literature. More specifically, this research work is motivated by the need to im-
prove the state-of-the-art on this subject, designing and testing new algorithms to efficiently handle
large-size instances.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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The main contributions of this paper can be summarized in the following: (i) it proposes a new
exact and rapid solution method for the MMdKFSP based on the application of a specific Com-
binatorial Benders Cuts (CBC) approach that relies on an effective problem re-formulation; (ii) it
introduces a specific relaxation procedure able to provide high-quality upper bounds to be used in
the presented algorithmic approach that overall is fundamentally different from the standard CBC
method (Benders, 1962); (iii) it reports on a campaign of computational experiments conducted
on different sets of benchmark instances and a comparison to state-of-the-art algorithms from the
literature and a top-level optimization commercial software, demonstrating the effectiveness of the
proposed solution; (iv) it offers an experimental analysis that addresses also algorithmic flexibility
and scalability issues, studies the impact of problem parameters on the algorithm behavior, and
investigates challenging instances and possible extensions or generalizations. To ensure both repro-
ducibility and repeatability of experiments, the instances generated to test the proposed algorithm
are made available online for further research.

The rest of the paper is structured as follows. Section 2 offers a review of the related problems in
the literature. In Section 3, the formal description of the MMdKFSP is provided, including an in-
teger programming formulation, and useful relaxations of the problem to obtain the upper bounds.
The CBC scheme, the proposed solution method, and the implementation details are illustrated in
Section 4. The description and discussion of the experimental validation of the proposed method is
the theme of Section 5, where an analysis of the behavior of the algorithm is reported also consid-
ering the possible extension to a wider class of problems. Finally, conclusions follow in Section 6,
indicating also possible directions for future research works.

2. Literature review

The MMdKFSP has been introduced in Mancini et al. (2021), showing how various problems stud-
ied in the literature share some features with it. This problem, however, presents a specific structure
and is involved in relevant applications that motivate both modeling and algorithmic research ac-
tivities, and its own place in the knapsack literature (Cacchiani et al., 2022b). MMdKFSP can
be viewed as a variant of the more established MKP and MdKP. Reviews on these problems can
be found in Chekuri and Khanna (2000), Dell’Amico et al. (2019), Ferreira et al. (1996), Fréville
(2004), and Pisinger (1999). Other KP variants related to the problem under study include the cases
in which the items are partitioned or grouped into different families or classes, introducing related
adjustments in the model constraints and/or the objective functions. A first example is given by
the KP with Setups (KPS), where the set of items is subdivided into a set of families. In this case,
unlike MMdKFSP, a single item can be chosen only if a setup cost is paid for the family containing
it (McLay and Jacobson, 2007; Michel et al., 2009; Della Croce et al., 2017; Furini et al., 2018; Pfer-
schy and Scatamacchia, 2018; Amiri, 2020; Amiri and Barkhi, 2021). Differently, the Fixed-Charge
Multiple Knapsack Problem (FCMKP) has been proposed by Yamada and Takeoka (2009) as an
extension of the MKP in which a specific fixed cost must be paid for each knapsack used in the
solution. The problem is to decide the set of knapsacks to use, and to assign items to them, so that
the total net profit (item profits minus knapsack costs) is maximized.

Another case arising in various application contexts is the Class-Constrained Multiple Knap-
sack (CCMK) (Shachnai and Tamir, 2001), having as objective the maximization of the total profit

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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obtained by the chosen items, in which sets of items of different profits and sizes are included into
different classes, and each knapsack is characterized by a bounded capacity. Moreover, in CCMK,
an additional constraint is considered on the number of different classes of items each knapsack
can host.

Regarding the multi-objective version of the MdKP and the correspondent optimization meth-
ods, a comprehensive review is offered in Lust and Teghem (2012), while Ceselli and Righini (2006)
and Della Croce et al. (2019) addressed a Penalized version of KP (PKP). In the latter problem,
each single item is characterized by a penalty of constant value, and the objective is modeled by a
function representing the total profit that is reduced by the most significant penalty shown by the
chosen items.

A further relevant problem related to MMdKFSP is the Multiple-choice Multidimensional
Knapsack Problem (McMKP) (Nauss, 1978). In this case, the set of items available for selection is
divided into several groups and various types of capacitated resources, each item generates a specific
profit contributing to the overall objective, and needs a certain amount of each resource. The goal
of the McMKP is to choose exactly one item from each group to maximize the total profit of the
selection, while the utilization of each resource has to respect the limit expressed by a set of knap-
sack constraints. Recently, due to its theoretical and practical relevance (Mansi et al., 2013; Shojaei
et al., 2013), the McMKP is receiving increasing attention from researchers, also justified by various
applications (Hifi et al., 2004; Han et al., 2010; Chen and Hao, 2014; Mansini and Zanotti, 2020).

Other relevant cases close to MMdKFSP are some extensions of MKP appearing in assignment
or packing models, more specifically the Multiple Knapsack Assignment Problem (MKAP), the
All-or-Nothing Generalized Assignment (AGAP), and the problem of packing groups of items in
multiple knapsacks (GMKP). Like in MMdKFSP, in MKAP the items available for allocation in
the knapsacks are partitioned in sets, but in this case each knapsack may only receive items from
one of the sets induced by the partition (Kataoka and Yamada, 2014; Martello and Monaci, 2020).
Also the AGAP (Adany et al., 2013) considers items partitioned into different groups, each item has
its own size and a payoff, however the latter also depends on the knapsack to which it is assigned.
The overall size of the items assigned to a knapsack, as usual, is subject to a capacity constraint.
Furthermore, in this problem, each knapsack is able to allocate at most one item from each group
introduced by the partition. A group of items is considered satisfied only when all its own items are
assigned to a knapsack. The global objective is to find a feasible packing of a subset of items in the
knapsacks maximizing the total profit given by the satisfied groups. More similar to MMdKFSP
seems the case of packing Groups of Items into Multiple Knapsacks (GMKP), recently studied
in Chen and Zhang (2018). Also this problem presents items partitioned in different groups. Each
single item has its own size, but the utility is associated with the groups instead of the items. The
utility of a group can be obtained only when all items included in it are assigned. They can be
allocated in different knapsacks, but the latter are identical and, more relevant, the model does not
consider penalties when splitting groups.

3. The MMdKFSP problem description

This section gives a formal description of the optimization problem considered in this paper. The set
I contains n = |I| given items. A generic item is denoted by i ∈ I, which takes values in {1 . . . , n}.
© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.
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Table 1
Explanation of the parameters and variables used in the model

Parameter Description

I Set of items available for selection; |I| = n
F Set of item families; |F | = m
F j Set of items included in the jth family; j ∈ {1, . . . , m}
K Set of available knapsacks; |K| > 1
D Number of relevant dimensions of knapsacks
Cd

k Capacity value of knapsack k concerning dimension d ∈ {1, . . . , D}
cd

i Demand of resources of item i ∈ I concerning dimension d ∈ {1, . . . , D}
pj Profit of family F j

δ j Split-penalty of family F j

Variable Description

xj (0/1) variable having value 1 if and only if family F j is selected
yik (0/1) variable having value 1 if and only if item i is allocated in knapsack k
z jk (0/1) variable having value 1 if and only if at least one item included in family F j is allocated in knapsack k
uj (0/1) variable assuming value 1 if family j is split into two or more knapsacks and value 0 if all items

included in family F j are allocated in the same knapsack or if the family has not been selected

Items in I are partitioned into m families indicated as F j ⊂ I, with j ∈ {1, . . . , m}. Hence, each
single item is included in one (and only one) family (i.e., Fh ∩ Fk = ∅, ∀h �= k, and ∪m

j=1F j = I).
Hereinafter, F indicates the set of families. A set of heterogeneous multidimensional knapsacks, K
is given. Each knapsack k ∈ K has a number D of relevant dimensions, and specific capacity values
Cd

k representing the amount of available resources for each dimension d ∈ {1, . . . , D}. Each item i is
associated with a demand of resources, referred to as cd

i with d ∈ {1, . . . , D}, and i ∈ I, respectively,
and the global requirement of a resource for a family corresponds to the sum of all the requirements
of the items included in it.

Each family F j has associated a specific profit p j , assumed to be a deterministic and constant
value, which is known before optimization takes place. The profit p j is earned only if the corre-
sponding family F j is selected, that is, if all the items included in F j are allocated in some k ∈ K.
Items of the same family can be allocated to the same knapsack or to different knapsacks. In the
second case, a family-dependent penalty cost indicated as δ j is applied. The overall goal is to maxi-
mize the total utility given by the profits obtained by allocating the families, net of split penalties.

Section 3.1 presents a mathematical programming formulation of this problem, whereas in Sec-
tion 3.2 a method to obtain upper bounds based on a specific problem relaxation is introduced.

3.1. Mathematical programming formulation

This section introduces the mathematical model adopted for the MMdKFSP, which can be formu-
lated as an Integer Linear Optimization Problem indicated as ILP_MMdKFSP in what follows. To
make the model description clearer, Table 1 summarizes the used parameters and variables.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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The general goal of MMdKFSP is to maximize the profit obtained by allocating the selected
items, discounting the penalties paid for splitting families across two or more knapsacks, as stated
in the objective function (1). For clarity, the two terms are kept separate. The (0/1) variable xj takes
value 1 if and only if family F j is selected, whereas the (0/1) variable u j is set to 0 when all items of
family F j are allocated in the same knapsack or the family has not been selected, and has value 1
when there is a splitting.

(ILP_MMdKFSP) max
∑

j|F j∈F
p jx j −

∑
j|F j∈F

δ ju j (1)

Subject to:

∑
k∈K

yik = xj ∀i ∈ I, ∀ j|i ∈ F j, (2)

∑
i∈I

cd
i yik ≤ Cd

k ∀k ∈ K, ∀d ∈ {1, . . . , D} , (3)

z jk ≥ 1
|F j |

∑
i∈F j

yik ∀ j|F j ∈ F, ∀k ∈ K, (4)

u j ≥ 1
|K| − 1

(∑
k∈K

z jk − 1

)
∀ j|F j ∈ F, (5)

xj, u j ∈ {0, 1} ∀ j|F j ∈ F, (6)

z jk ∈ {0, 1} ∀ j|F j ∈ F, ∀k ∈ K, (7)

yik ∈ {0, 1} ∀i ∈ I, ∀k ∈ K. (8)

Constraints (2) make sure that if a family is chosen, all the items included in it are allocated
in some knapsack. We can note that yik is a (0/1) variable having value 1 if and only if item i is
allocated in knapsack k. The group of Inequalities (3) implies for all knapsacks the respect of the
capacity constraints for all the considered dimensions. The set of Constraints (4) identifies whether
a knapsack contains items of a given family, whereas Constraints (5) enable the formulation to
detect if a family is allocated in a single knapsack or split into two or more of them. The (0/1)
variable z jk assumes the value 1 only if at least one item included in the family F j is allocated in the
knapsack k. Finally, Constraints (6)–(8) define the domain of the variables.

3.2. Upper bounds through multi-knapsack relaxation

To provide tight upper bounds for the MMdKFSP, we propose a Multi-Knapsack relaxation (MKr)
that keeps unchanged the number and the capacity of the knapsacks of the original problem while

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.
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treating each family F j as a single compound item Sj having a demand for each resource type given
by the sum of the requirements of all items included in it, that is, cd

j = ∑
i∈F ĵ

cd
i .

The peculiarity of this approach is that each item Sj can be split into arbitrary portions Qjk (with
0 ≤ Qjk ≤ 1, and

∑
k∈K Qjk = 1) that can be assigned to different knapsacks k ∈ K, and if it is the

case, a split penalty is charged. Since the number of items is sensibly smaller than in the original
problem, this problem can be quickly solved to optimality.

The advantage of the proposed relaxation mainly lies in the inclusion of the splitting penalties in
the objective function of the relaxed problem to obtain a tight upper bound, especially in those cases
where, due to the difference in size between families and knapsacks, the number of split families is
quite large.

The integer linear programming formulation for MKr is reported in the following:

(MKr) max
∑

j|F j∈F
p jx j −

∑
j|F j∈F

δ ju j (9)

Subject to:

∑
k∈K

Qjk = xj ∀ j|F j ∈ F, (10)

∑
j|F j∈F

cd
j Qjk ≤ Cd

k ∀k ∈ K, ∀d ∈ {1, . . . , D} , (11)

z jk ≥ Qjk ∀ j|F j ∈ F, ∀k ∈ K, (12)

u j ≥ 1
|K| − 1

(∑
k∈K

z jk − 1

)
∀ j|F j ∈ F, (13)

xj, u j ∈ {0, 1} ∀ j|F j ∈ F, (14)

z jk ∈ {0, 1} ∀ j|F j ∈ F, ∀k ∈ K, (15)

0 ≤ Qjk ≤ 1 ∀ j|F j ∈ F, ∀k ∈ K. (16)

The objective function of MKr is reported in (9). Constraints (10) imply that if a family j ∈ F
is selected (i.e., xj = 1), it must be fully assigned to one or more knapsacks, in arbitrary shares. If
a family is not selected, no portion of it is assigned to knapsacks. Capacity constraints for each
resource must be respected for all the knapsacks, as imposed by Constraints (11). Constraints (12)
allow the formulation to identify whether a portion of a family has been assigned to a knapsack or
not, whereas Constraints (13) detect whether a family is split or not. Finally, Constraints (14)–(16)
define the domain of the variables.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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4. Combinatorial benders cuts

Benders Decomposition (BD) (Benders, 1962) is an established methodology based on the main
idea of decomposing the optimization problem under study into a Main Problem (MP) and a Sub-
Problem (SP) that are sequentially solved in an in iterative fashion.

A variant of the classical BD method, referred to as Logic Based Benders Decomposition
(LBBD), has been proposed by Hooker and Ottoson (2003). In the approach proposed by the au-
thors, MP considers only variables contributing to the objective function, while the remaining ones,
responsible only for feasibility, are addressed in SP. This way, the SP turns out to be a pure feasibil-
ity problem. Whether SP results infeasible, cuts are added to MP to exclude from MP’s search space
solutions detected as infeasible by SP. As soon as SP provides a feasible solution, this solution is
proved to be optimal for OP, too.

A particular case of LBBD, named Combinatorial Benders Cuts based approach, (CBC), has
been introduced by Codato and Fischetti (2006). This approach is specifically designed for models
dealing with binary variables tied together by a large number of logical implications. In such a
scenario, every time a realization of MP variables yields an infeasible SP, a CBC, forcing to 0 at least
one of the variables with value 1, is included in the MP. Such a procedure allows the formulation to
exclude from the search space a single solution, which was proved to be infeasible, at a time. This
may yield, in cases of highly constrained problems presenting large infeasible portions of the search
space, a very slow convergence toward an optimal solution.

Stronger cuts can be earned by detecting, optimally or heuristically, a subset of variables that
are responsible for infeasibility. Such cuts can be considered stronger because they allow the
model to exclude, from MP search space, several solutions at a time, cutting-off large sub-spaces,
strongly speeding up the convergence toward an optimal solution, as in the recently published pa-
pers (Bruglieri et al., 2021; Mancini and Gansterer, 2021), in which different CBC approaches for
vehicle routing problems are provided.

It is worth remarking that the convergence of the algorithm is guaranteed with both standard
and enhanced cuts, in a finite number of iterations (Chu and Xia, 2004; Codato and Fischetti,
2006). In fact, in the worst case a number of iterations equal to the number of possible realiza-
tions of the variable set, minus one is required. However, this number can become huge even for
problems involving a reduced number of variables, since it grows exponentially with the number
of variables. It is important to point out that, given a MIP model, different decomposition strate-
gies, leading to different MPs, may show completely different performances in terms of convergence
speed, since both the number of iterations required and the computational time required to solve
each of them can vary sensibly. Therefore, the definition of MP (and consequently of SP) plays a
crucial role in the success of the proposed method and therefore this issue must be carefully ad-
dressed. Nevertheless, also the effectiveness of the proposed combinatorial Benders Cuts plays a
fundamental role. In fact, classical no good cuts, which only exclude from the solution space one
solution at a time, may be weak and require a very large number iterations to converge to the opti-
mal solution. Conversely, the adoption of stronger cuts that allow the model to exclude large por-
tions of the solution space simultaneously, and consequently an exponential number of solutions,
would speed up the convergence of the algorithm, significantly reducing the number of iterations
required.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.
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S. Mancini et al. / Intl. Trans. in Op. Res. 0 (2022) 1–25 9

4.1. A novel combinatorial benders cuts algorithm for the MMdKFSP

The novel CBC we propose aims at exploiting in the MP the problem specific MKr relaxation
introduced in Section 3.2; this method is denoted by CBC-MKr. In the MKr relaxation, each family
is considered as a compound item having as demands, for each resource, the sum of the demands of
all the items belonging to it. Each family can be split into portions of arbitrary size, if needed to fit
the knapsacks but, if it happens, a split penalty is charged. In this case, the objective value of MP
optimal solution exactly corresponds to that of MMdKFSP and thus the obtained solution is also
feasible for it. Therefore, the SP is only responsible for checking feasibility. If the optimal solution
of MP is feasible also for MMdKFSP, then it is automatically optimal for it.

When the CBC-MKr algorithm starts, MP exactly corresponds to the MKr relaxation, whereas
SP is derived by the original formulation, ILP_MMdKFSP, by setting the value of the xj variables
to 1 if they have been selected in the optimal solution of the MP, xj = 0 otherwise. The method
works as follows. At each iteration, first MP is solved, then the set of families selected in the optimal
solution are forced to be selected also in SP, which is solved in turn. If SP is feasible, then the optimal
solution of MP is certified optimal also for MMdKFSP. Conversely, if SP is infeasible, a CBC is
added to MP to exclude a future simultaneous selection of all the families chosen at the previous
iteration. These steps are reiterated until the SP feasibility is reached.

The rationale of this approach lies in the design of a relaxation able to provide a tight upper
bound of the optimal solution, with the aim to reduce the number of iterations and cuts to add
to MP to close the problem to optimality, with a consequent boost on computational times. It is
worth noting that the adopted cuts allow us to simultaneously exclude a large number of solutions
from the MP solution space. Indeed, excluding a combination of selected families, we are removing
all the solutions in which those families are selected, whichever their assignment to knapsacks is.
The number of possible different combinations of family assignments to knapsacks, given a fixed
set of families, exponentially grows with the size of this set.

This method guarantees convergence toward the optimal solution in a finite number of iterations.
In fact, the number of possible combinations of selected families is exponential but it is finite and in
the worst case, the number of iterations needed is at most equal to 2|F |. However, the tighter is the
upper bound offered by the relaxed problem MKr, the lower is the number of required iterations.

At a generic iteration h of the CBC-MKr procedure, the Main Problem MPh and the Sub-
Problem SPh are solved in sequence. Once an optimal solution x̄ = {x̄h

1, x̄h
2, . . . , x̄h

m} of value WMPh

for MPh is calculated, the related set of selected families is tested for feasibility for the original
ILP_MMdKFSP. To this aim, SPh solves the ILP_MMdKFSP with an additional set of constraints
to fix the values of the xj variables to those provided by the optimal solution of MPh:

xj = x̄h
j ∀ j|F j ∈ F . (17)

If SPh is infeasible, then the following cut is introduced to prevent the MP from including the same
subset of families in another solution of future iterations:∑

j|x̄h
j=1

xj ≤ αh − 1, (18)

where αh = ∑
j|F j∈F x̄h

j .
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10 S. Mancini et al. / Intl. Trans. in Op. Res. 0 (2022) 1–25

Algorithm 1. CBC-MKr Algorithm for MMdKFSP

On the basis of the MKr mathematical formulation introduced in Section 3.2, and the Benders
cuts defined in (18), the integer linear program MPh for the Main Problem MP at the generic
iteration h can be formulated as reported from (19) to (27). Note that the set of Constraints (24)
collects in MPh all the Benders cuts (18) generated up to the iteration h.

To summarize the structure of the CBC-MKr algorithm for MMdKFSP, a detailed pseudo-code
is reported in the following, where W h

� indicates the value of the optimal solution for a problem
� = {MPh, SPh} at iteration h, respectively (Algorithm 1).

(MPh) max
∑

j|F j∈F
p jx j −

∑
j|F j∈F

δ ju j (19)

Subject to:

∑
k∈K

Qjk = xj ∀ j|F j ∈ F, (20)

∑
j|F j∈F

cd
ĵ
Q jk ≤ Cd

k ∀k ∈ K, ∀d ∈ {1, . . . , D} , (21)

z jk ≥ Qjk ∀ j|F j ∈ F, ∀k ∈ K, (22)

u j ≥ 1
|K| − 1

(∑
k∈K

z jk − 1

)
∀ j|F j ∈ F, (23)

© 2022 The Authors.
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∑
j|x̄h−1

j =1

xj ≤ αh−1 − 1 ∀h ≥ 2 | SPh-1 infeasible, (24)

xj, u j ∈ {0, 1} ∀ j|F j ∈ F, (25)

z jk ∈ {0, 1} ∀ j|F j ∈ F, ∀k ∈ K, (26)

0 ≤ Qjk ≤ 1 ∀ j|F j ∈ F, ∀k ∈ K. (27)

5. Computational analysis

In this section, we describe the computational experiments performed to analyze the behavior of
the proposed algorithm and evaluate its effectiveness. The proposed algorithm is compared against
state-of-the-art alternative approaches both in terms of execution times and the quality of the re-
sults. More specifically, to assess the performance of the CBC-MKr approach proposed in this pa-
per, we compare it against the baseline ILP formulation presented in Section 3.1 (ILP_MMdKFSP)
and the state-of-the-art Combinatorial Benders Cuts method, hereinafter referred to as CBC-SKr,
proposed in Mancini et al. (2021) in which the MP consists in a Single-Knapsack relaxation (indi-
cated as SKr).

The computational experiments presented in this article have been run on a system with a 2.4
GHz Intel-i7-5500U CPU, with 16GB of RAM and Windows 7 OS. All the (single-threaded) pro-
cedures have been implemented in the Xpress-mosel language. Importantly, all ILP models in this
experimental study campaign, both those underpinning CBC-MKr and those of other approaches,
have been solved with the same solver, namely Xpress 7.9. All reported computation times for the
execution of the algorithms are expressed in seconds.

The rest of this section is organized as follows. Section 5.1 illustrates the sets of test instances
considered in our computational experiments. They include both benchmark instances available
from the recent literature, and a set of new instances designed to better investigate the behavior of
the proposed algorithm, providing a more comprehensive experimental setting. The successive Sec-
tion 5.2 reports, analyzes, and discusses the obtained results. Then, the application of the proposed
method to the more general Fixed-Charge MMdKFSP case is also considered.

5.1. Experimental setup

In order to evaluate the performance of the proposed approach, a benchmark consisting of four in-
stance sets from the literature has been exploited. In addition, a new set of test instances have been
generated, extending the experimental settings toward more challenging cases. The benchmark in-
stances available in the literature, in what follows referred to as MCM2019, have been proposed in
Mancini et al. (2021), and are composed of four groups of cases, indicated as Gi, with i ∈ {1, . . . , 4}.
The first group, G1, contains 360 bi-dimensional instances (i.e., D = 2) having the number of
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12 S. Mancini et al. / Intl. Trans. in Op. Res. 0 (2022) 1–25

knapsacks |K| ranging from 3 to 10, the number of items n is between 400 and 600, while the
number of families m assumes values from 6 to 13. The instances are organized into four scenarios
to consider various capacity settings characterized by patterns based on different Cd

k values and
their distribution among knapsacks. The second group of test instances, G2, has been proposed to
investigate the scalability of algorithms when knapsacks with several dimensions are considered. In
G2 instances, all knapsacks (|K| = 10) and items (n = 600) have the same number of dimensions
D ∈ {2, 4, 6, 8}.

As for the other parameters, in the groups G2-G4 the general scheme of the instances of G1
adopts an uneven arrangement of the knapsack capacities, with one sensibly more capacious than
the others. To this aim, a parameter βkd has been introduced to represent the filling ratio of knap-
sack k with respect to the dth dimension. In these instances, the capacity of first knapsack (indi-
cated with k = 1) for a certain dimension d is equal to the maximum of the per-family consolidated
demand of d , that is

Cd
1 = max

j|F j∈F

∑
i∈F j

cd
i ∀d ∈ {1, . . . , D} , (28)

where cd
i represents for each item i ∈ F j the demand of resource d ∈ {1 . . . D}. As for the other

knapsacks, the capacity for each dimension d has been calculated with the following formula:

Cd
k = βkd

|K|
∑
i∈I

cd
i ∀k ∈ K, k �= 1, ∀d ∈ {1, . . . , D} (29)

with βkd drawn from the uniform distribution U (0.27, 0.33).
For each value of D, 10 instances are considered in G2, making a total of 40 cases. The group

G3 has been proposed to study the influence of the number of knapsacks on the algorithms’ per-
formance, and contains 30 bi-dimensional instances with |K| ∈ {10, 15, 20}, whereas the number of
items is fixed at n = 600. Finally, the group of instances G4 in the MCM2019 set has been proposed
to investigate the algorithmic performance for a growing number of items n. This group includes 30
bi-dimensional cases with n ∈ {600, 800, 1000} and |K| = 10.

However, in all G1-G4 groups the average size of the items is very small compared to the knap-
sacks’ capacity, producing a granularity effect. Consequently, in these cases, considering each family
as a single item is a very good approximation. Indeed, since the items are small, it is very likely that,
given a selection of families, a feasible partition of items into knapsacks exists.

This idea motivated the use of SKr in which all knapsacks are collapsed into a fictitious macro-
knapsack, k̂, whose capacity, for each resource, corresponds to the sum of the capacity of all the
knapsacks, Cd

k̂
= ∑

k Cd
k . In this scheme, each family is considered as a single item having, for each

resource, a demand given by the sum of the requirements of the items included.
In order to study more challenging scenarios, in this paper we introduce a new set of bi-

dimensional instances, named G5, in which the item size (in terms of demand of resources cd
i , with

i ∈ I and d ∈ {1, . . . , D}) is relatively large respect to the capacity of the knapsacks (Cd
k , k ∈ K)

associated to dimensions d ∈ {1, . . . , D}, that is, each knapsack can contain a reduced number
of items. The structure of the instances of G5 follows the uneven pattern, with one of the knap-
sacks significantly wider in size than the others, as described in (28) and (29). In addition to the

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13207 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [21/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



S. Mancini et al. / Intl. Trans. in Op. Res. 0 (2022) 1–25 13

Table 2
Aggregated results for the test instances MCM2019

ILP_MMdKFSP CBC-SKr CBC-MKr

Set (#Inst) %Os T(s) %Os T(s) Fc Pc %Os T(s) C

G1 (360) 98.3 104.90 99.7 87.07 0.02 4.61 100.00 0.14 0.00
G2 (40) 90.0 908.99 100.0 318.36 3.20 29.20 100.00 4.73 0.60
G3 (30) 83.3 1056.36 86.7 795.77 0.33 18.10 100.00 0.62 0.00
G4 (30) 60.0 2026.33 70.0 1695.07 0.73 69.63 100.00 0.58 0.00
Avg. 94.1 362.18 96.9 228.27 0.36 11.87 100.00 0.77 0.07

benchmark sets form the literature, these instances allow us to investigate the impact of the number
of families. They are expected to be challenging since, given a set of selected families, a feasible
partition of items into knapsacks may be difficult to find or not exist at all. The set G5 consists
of four groups (indicated as G5γ , with γ = 1, . . . , 4), each containing 10 instances. The number of
knapsacks |K| = 10, the number of items n = 100, and the number of dimensions D = 2 is the same
in all groups, while the number of families m increases gradually from G51 to G54. More in detail,
in the instances of groups G5γ the number of families is generated from a distribution characterized
by E(D) = 5γ .

The overall number of instances investigated in our computational experiments amounts to 500.

5.2. Computational results and discussion

This section reports on the results obtained testing the CBC-MKr algorithm presented in Sec-
tion 4.1 on the just-introduced benchmark instances, also conducting a comparison with alternative
models and methods available from the literature.

The computational experiments have been carried out running all considered methods on each
of the 500 instances included in the benchmark sets allowing a maximum computation time of
3600 s for each run (i.e., an algorithm is allowed to run at most one hour on each instance), and
recording the objective value of the best solution found together with information on its optimality
status.

Table 2 shows the results related to the instances MCM2019, while the results concerning the
instances of the set G5 proposed in this paper are detailed in Tables 2–6. In order to assess the
performance of the CBC-MKr approach proposed in this paper, we compare it against CBC-SKr
and the baseline ILP formulation presented in Section 3.1 (ILP_MMdKFSP) running on the same
computational setting on the instances of the G1-G4 group.

Each row of this table shows the average results, by groups, achieved by the three approaches con-
sidered. The first column lists the group identifier together with the number of instances included
in the group (Set (#Inst)). In addition, the last row presents the averaged results on all groups
of instances.

The table is divided into three sections, each one dedicated to summarize the results of one
of the methods considered in this experiment. These sections are identified with the labels
ILP_MMdKFSP, CBC-SKr, and CBC-MKr, respectively.

© 2022 The Authors.
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14 S. Mancini et al. / Intl. Trans. in Op. Res. 0 (2022) 1–25

Table 3
Computational results for the test instances G51. For all instances n = 100 and |K| = 10

ILP_MMdKFSP CBC-SKr CBC-MKr

Inst (m) OF T(s) OF T(s) Fc Pc OF T(s) C

1 (5) 206 1.76 206 2.81 0 4 206 0.29 0
2 (6) 115 1.05 115 1.87 0 4 115 0.03 0
3 (6) 236 2.67 236 12.31 0 4 236 0.29 0
4 (6) 248 2.97 248 18.05 0 13 248 0.30 0
5 (6) 250 1.27 250 2.60 0 3 250 0.06 0
6 (5) 145 6.07 145 10.29 0 4 145 0.33 0
7 (5) 204 1.42 204 0.65 0 2 204 0.05 0
8 (5) 165 1.82 165 2.96 0 4 165 0.17 0
9 (5) 165 2.12 165 5.52 0 6 165 0.24 0
10 (5) 126 1.10 126 1.86 0 5 126 0.22 0
Avg. 186.00 2.22 186.00 5.89 0.00 4.90 186.00 0.20 0.00

Table 4
Computational results for the test instances G52. For all instances n = 100 and |K| = 10

ILP_MMdKFSP CBC-SKr CBC-MKr

Inst (m) OF T(s) OF T(s) Fc Pc OF T(s) C

1 (11) 230 8.25 230 360.00 26 69 230 0.53 0
2 (10) 243 6.20 243 106.77 6 42 243 0.48 0
3 (9) 216 2.16 216 3.59 0 8 216 0.32 0
4 (10) 217 4.34 217 59.40 4 20 217 0.47 0
5 (11) 215 9.32 215 187.93 11 47 215 0.47 0
6 (14) 426 3600 426 3600 59 507 428 11.27 1
7 (15) 452 3600 452 3600 80 321 452 10.58 1
8 (15) 513 3600 532 3513.50 68 455 532 0.91 0
9 (15) 517 1796.53 517 3600 86 455 517 0.78 0
10 (15) 427 3600 424 3600 106 342 427 0.72 0
Avg. 345.60 1622.68 347.20 1863,12 44.60 226.60 347.70 2.64 0.20

The section concerning the ILP baseline outcomes features two columns. The first column (%Os)
shows the percentage of instances of each group solved to optimality; the second one (T(s)) reports
the average calculation time (in seconds). Note that for this algorithm, as for the other methods
involved in this comparison, a timeout of 60 minutes per single instance has been set.

The results of the CBC-SKr algorithm are discussed in the second section of the table. However,
the scheme of this sub-table consists of four columns, the first two of which have the same meaning
as those in the first section (i.e., percentage of instances resolved to optimality and average exe-
cution time). The remaining two columns (Fc) and (Pc) describe the behavior of the algorithm in
terms of the average number of occurred feasibility and penalty cuts added per instance on aver-
age, respectively.

In fact, in the CBC-SKr method the MP solution determines an optimal selection of families
while SP plays a twofold role. First, it checks whether the optimal solution of the MP is feasible
for MMdKFSP, and second, it detects if split penalties occur. When the solution of the MP turns

© 2022 The Authors.
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Table 5
Computational results for the test instances G53. For all instances n = 100 and |K| = 10

ILP_MMdKFSP CBC-SKr CBC-MKr

Inst (m) OF T(s) OF T(s) Fc Pc OF T(s) C

1 (15) 469 3600 465 3600 71 347 470 12.65 1
2 (14) 328 122.48 328 3600 67 603 328 0.57 0
3 (15) 472 3600 477 3600 93 284 484 23.61 2
4 (14) 398 448.75 398 3600 92 597 398 0.35 0
5 (14) 376 3600 376 2989.66 110 509 376 0.32 0
6 (11) 220 3600 226 159.04 11 39 226 15.19 1
7 (11) 284 6.24 284 75.90 2 19 284 0.42 0
8 (12) 318 8.98 318 273.36 17 57 318 0.37 0
9 (11) 318 3600 328 258.82 16 59 328 16.45 1
10 (10) 170 14.37 170 40.45 1 13 170 0.38 0
Avg. 335.3 1860.08 337 1819.72 48.00 252.70 338.20 7.03 0.50

Table 6
Computational results for the test instances G54. For all instances n = 100 and |K| = 10

ILP_MMdKFSP CBC-SKr CBC-MKr

Inst (m) OF T(s) OF T(s) Fc Pc OF T(s) C

1 (20) 730 471.02 721 3600 194 195 730 2.25 0
2 (20) 596 3600 595 3600 190 213 604 2.01 0
3 (21) 718 495.13 682 3600 211 159 718 1.54 0
4 (19) 552 512.29 536 3600 176 284 552 0.66 0
5 (20) 585 3600 585 3600 193 173 595 4.69 0
6 (20) 761 3600 757 3600 160 205 772 1.62 0
7 (20) 568 3600 568 3600 131 300 572 1.35 0
8 (21) 645 3600 644 3600 168 197 649 1.80 0
9 (20) 622 145.49 608 3600 122 251 622 0.55 0
10 (20) 738 1015.58 729 3600 179 202 738 1.03 0
Avg. 651.50 2063.95 642.50 3600 172.40 217.90 655.20 1.75 0.00

out to be infeasible, a Feasibility Cut (Fc) is added to the MP to prevent simultaneously selecting
all the families selected by MP at the previous iteration. If the solution of the MP is feasible but
split penalties occur, a Penalty Cut (Pc) is added to MP and an additional penalty term is added
to its objective function stating that if the same set of families selected by the MP at the previous
iteration is selected again, a correspondent split penalty has to be paid. The method iterates until
the objective function of the optimal solution of MP is lower than the best feasible solution found
by SP.

The third section of the table, indicated as CBC-MKr, reports the results attained by the new
CBC approach described in Section 4.1. It contains three columns reporting the averages of the
percentage %Os, the computation time T (s), and the number of Benders Cuts (indicated as C)
added per instance, respectively. Ultimately, the bottom row of Table 2, for each column, provides
the average calculated taking into account the different number of instances in the groups G1-G4.
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16 S. Mancini et al. / Intl. Trans. in Op. Res. 0 (2022) 1–25

The performance on these benchmark tests of both the CBC-SKr method and the baseline ILP
Model has been studied by Mancini et al. (2021), showing that the Combinatorial Benders Cuts
approach outperforms the ILP_MMdKFSP baseline both in terms of solution quality and execu-
tion time. Nevertheless, none of these two methods can optimally solve all instances in the assigned
maximum computation time. The proposed CBC-MKr approach consistently performs better on
all groups G1-G4. In fact, it optimally solves 100% of instances always using a much shorter com-
putational time (i.e., on average CBC-MKr is about 470 times faster than the ILP solver and about
300 times compared to CBC-SKr), thus resulting far superior to the other two methods for all
the group of instances included in the MCM2019 benchmark set. The nonparametric Kruskal–
Wallis H-test (Kruskal and Wallis, 1952) followed by a post hoc analysis based on the Nemenyi
test (Nemenyi, 1962) demonstrated CBC-MKr’s clear superiority over competing approaches in
terms of execution time. We observe that this result seems mainly due to the particular quality
of the relaxation used, since the Benders cuts are added only in the case of group G2 containing
large size higher dimensional instances, which consequently require a relatively longer calculation
time. Besides this case, a correlation analysis suggests that, while the first two methods show an
increasing computational effort passing from G1 to G4, the CBC-MKr performance seems to be
only marginally affected by the different typology of instances showing a more flexible and robust
behavior also due to the adoption of stronger cuts.

Tables 3–6 summarized the results obtained for the test instances of groups from G51 to G54,
respectively. Each table is organized in three sub-tables dedicated to the detailed results of the three
considered methods indicated as ILP_MMdKFSP, CBC-SKr, and CBC-MKr. In this case, the re-
ported results refer (by rows) to each instance indicated in the first column (Inst (m)) with the
indication of the considered number of families m. The value OF of the objective function ob-
tained for each instance is reported for all the methods, and the required computation time T (s) in
seconds. The OF value is reported in bold when the method certifies its optimality. The sub-table
devoted to CBC-SKr reports the number of Feasibility and Penalty Cuts, indicated as Fc and Pc,
occurred for each instance, whereas the CBC-MKr section shows the number C of Benders Cuts
introduced by the novel method. Finally, the last row of each table reports the average results for
the group of instances to which it refers.

Looking at the results of the G51 group of instances shown in Table 3, we note that for this case
characterized by the lowest number of families (i.e., the set presents an average value of m = 5.4),
all the methods were able to solve all the instances optimally. Nevertheless, it can be seen that CBC-
MKr is much faster than the other two approaches for all instances. On average, the new method
requires a computation time equal to approximately 9% of that used by the solver on the ILP model
and approximately 3.4% of that required by CBC-SKr. In this group of test instances, we find that
CBC-SKr has a relatively worse behavior among the three compared methods. More specifically,
it does not generate Feasibility Cuts but always introduces Penalty Cuts with an average of 4.9
additional cuts per instance. On the contrary, CBC-MKr does not produce Benders Cuts showing
that the MKr relaxation for this group of instances offers solutions that turn out to be optimal for
MMdKFSP. Furthermore, a detailed analysis of the results shows that the families selected in the
optimal solution are on average 3.4, but in no case are all the families selected.

Moving on to the results relating to the G52 group shown in Table 4, it can be seen that CBC-
SKr and the baseline ILP_MMdKFSP solve to optimality only 60% of the instances within the
time limit of 3600 seconds, whereas CBC-MKr rapidly solves all the cases taking an average of
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2.64 seconds. In this case, the performances of ILP_MMdKFSP are on average the worst among the
compared methods. CBC-SKr produces on average 44.60 Feasibility Cuts and 226.60 Penalty Cuts,
while CBC-MKr introduces Benders Cuts only in 20% of cases that consequently require an higher
computation time with respect to the previous group of instances. All other instances’ features
being equal, the increase in the number of families leads to an increase in the computational effort
required, but this is particularly accentuated for the ILP model and CBC-SKr, while it remains
much more contained for CBC-MKr. In this case, the average number of families per instance is
12.5, while the families selected in the optimal solution are on average 6.4, and they are never
all selected.

This behavior is confirmed in the group of instances G53 where CBC-SKr performs better than
ILP_MMdKFSP. However, even in this case CBC-MKr is still the best method by optimally and
fastly closing all instances as in the group of cases G52. The computation time taken by CBC-MKr
is again orders of magnitude lower than that required by the other two compared methods. Further-
more, the new method generates Benders Cuts in 40% of cases, highlighting that the algorithmic
scheme is able to rapidly solve MMdKFSP joining the quality of the relaxation solutions and the
effectiveness of the adopted cuts. In group G53, the instances have an average number of fami-
lies m = 12.7, whereas the families selected in the optimal solution are 7.9 on average, and never
selected altogether.

The superior performance of CBC-MKr is even more marked in the case of the G54 group of in-
stances (generated with an expected number of families m = 20) whose results are shown in Table 6.
In fact, it solves all instances quickly and without generating cuts, whereas CBC-SKr is unable to
certify the optimality for any instance within the time limit, and the ILP model optimally solves
only 50% of instances using on average more than 2000 seconds compared to 1.75 seconds required
by CBC-MKr. A detailed analysis of the results shows that the families selected in the optimal so-
lution are on average 10.80, while the average number of families in the instances is m = 20.1. As
in the previous cases, in the optimal solutions the families are never all selected.

A nonparametric statistical analysis of the results, similar to that presented for the G1-G4 groups
and extended to the G5 group instances, demonstrates the superiority of the CBC-MKr method in
terms of computation time. The boxplot in Fig. 1 graphically shows the three methods’ calcula-
tion times for all instances (the dashed purple line identifies the average values). Note that the
figure features a symlog scale abscissae axis so that time values lower than one second can be bet-
ter distinguished.

The results obtained in the experimental campaign show that the novel approach CBC-MKr is
the only method able to solve all the considered test instances optimally. In addition, CBC-MKr
has proven to be a very fast algorithm due to a specific relaxation that is particularly tight, and
to the effectiveness of the considered Benders Cuts. The computational time required by CBC-
MKr is always a small fraction of that required by the other two compared methods. These results
are confirmed in the new set of instances G5, where in cases with very low or very high m values
CBC-MKr shows a better behavior regarding the computation time, due to the particularly good
solutions obtained by relaxation MKr. Although in the instances characterized by intermediate m
values in about 30% of cases, some Benders Cuts (generally few) are introduced by the CBC-MKr
algorithm before reaching the optimal solution, thus requiring a relatively higher computational
time. It can be observed that extreme values of m lead the instances to seem those of other problems
of the knapsack family or even of assignment or packing problems.
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18 S. Mancini et al. / Intl. Trans. in Op. Res. 0 (2022) 1–25

Fig. 1. Boxplot of computation time distributions for the experimental campaign. The purple line represents the mean
value for each method.

Fig. 2. Correlation matrix for selected variables from results of G2 instances.

Finally, the dependence of the number of dimensions (D) on CBC-MKr’s execution times is
analyzed. In this regard, Fig. 2 presents the correlation matrix computed from the results of
the experiments on the G2 group of instances (n = 600, |K| = 10). It is noticeable that while the
objective function (CBC-MKr_OF) is positively correlated to the number of families m (FAMI-
LIES), the number of dimensions D (DIMENSIONS) affects the execution times of the algorithm
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Fig. 3. (a) Violin plot of CBC-MKr’s per-dimension execution times distributions. A nonlinear increasing trend is
noticeable. (b) Line plot (linear regression) superimposed on a violin plot of CBC-MKr’s per-dimension log execution

times distributions. (c) Line plot (SVR) superimposed on a violin plot of CBC-MKr’s per-dimension log execution times
distributions.

(CBC-MKr_TIME) with a correlation coefficient equal to 0.46. Although at first glance correlation
seems to be somewhat limited, it must be considered that the covariate DIMENSIONS is categori-
cal (D ∈ {2, 4, 6, 8}) and multiple data points are associated to the same value of D. Therefore, it is
sensible to consider the average execution time to identify a more explicit dependence. And indeed,
the correlation coefficient between DIMENSIONS and CBC-MKr_AVG_TIME is conspicuously
higher, that is 0.92. Furthermore, the per-dimension time distributions plot (see Fig. 3a) suggests
a nonlinear, quasi-exponential increasing trend of time averages versus the number of dimensions.
We then applied a base 10 logarithmic transformation to the time values and calculated the average
of the data points thus obtained. The transformation is meant to reduce nonlinearity; notably, the
correlation coefficient between DIMENSIONS and CBC-MKr_LOG_AVG_TIME rises to 0.99.

To complete discussion of the computational results, a linear regression model (CBC-
MKr_LOG_AVG_TIME ≈ DIMENSIONS) was fit and compared with a support vector regres-
sion model (SVR). As expected, see Fig. 3b, the DIMENSIONS covariate is statistically significant
(p < 0.001) and the linear model features a very high R2, that is, 0.978 and a very low Root-Mean-
Square Error (RSME), that is, 0.006. Although these results explain more than satisfactorily the
dependence of D on the CBC-MKr’s average execution times, a final comparison is performed us-
ing a Support Vector Regression (SVR) model with Radial Basis Function (RBF) Kernel to assess
the impact of the remaining nonlinearity on the studied dependence: as it can be seen from Fig. 3b–
c, although the SVR provides a lower error (RSME = 0.002) the difference from the linear model
is only marginal.

We complete the analysis of the behavior of the proposed algorithm with a final experiment,
the results of which are given below, aimed at assessing the limits of applicability of the CBC-
MKr algorithm. To this end, we use a new dataset, labeled G6, containing instances crafted
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Table 7
Computational results of CBC-MKr on G610 and G620 instances. For
all instances n = 100

OF T(s) C F

G610 359.1 31.49 45.2 5.3
G620 646.3 308.39 46.3 10.9

specifically to challenge the algorithm. More in detail, G6 comprises two groups of 10 instances
each, referred to as G610, featuring 10 knapsacks, and G620 in which 20 knapsacks are used. In both
cases, bi-dimensional knapsacks/items are considered. Each instance is characterized by a set of
100 items organized in 33 families with at most four items each. For each item, both sizes are in-
dependently sampled from U [200, 300], whereas the knapsacks’ sizes are drawn from U [400, 600].
In this setting, the per-dimension sizes of families and knapsacks are comparable. It is to be ex-
pected that such a coarse granularity makes packing the items more challenging as the relaxed
solution (where a family is treated as a single, yet divisible, super-item) might be infeasible. As a
consequence, CBC-MKr is expected to generate on these instances a larger number of cuts with re-
spect to instances with fine granularity (i.e., Cd

k  cd
i ∀k ∈ K, i ∈ I, d ∈ D). Instances of this type,

with coarse granularity, are realistic as they may arise in scenarios pertaining to the allocation of
service-based applications in an edge computing environment. Indeed, in such circumstances, it is
likely that nodes (knapsacks) have limited resources, comparable to those required to run a minimal
set of applications.

Table 7 summarizes the results obtained on the set G6 reporting for G610 and G620, separately,
the averages of the objective function (OF), computation time in seconds (T (s)), number of gen-
erated cuts (C), and the number of selected families (F). Examining the reported data, we note
that on set G610, CBC-MKr requires on average 45 iterations to converge to the optimum. Aver-
age computational time is around 30 seconds, that is, at least one order of magnitude larger than
the time required to address instances with a similar number of items and knapsacks in previous
experiments (e.g., G5). Moreover, when the number of knapsacks doubles (G620), the number of
families to be selected doubles accordingly, extending the space of feasible solutions and making
the problem even more challenging. Indeed, even if the number of cuts required to converge is
roughly unchanged for the two considered datasets (since the instances’ granularity is the same in
G610 and G620), when applied on instances of G620 CBC-MKr takes about seven seconds to com-
plete a single iteration, which is 10x the time required for the case with 10 knapsacks. Such rapid
growth in computation time (as a function of the number of knapsacks) indicates that it is possible
to generate realistic instances that would be prohibitive even for the CBC-MKr algorithm and call
for other solution methods (e.g., heuristics).

To conclude, the analysis of these results shows that the CBC-MKr algorithm, in addition to
offering excellent performances, is particularly flexible and robust with respect to the parameters
and configurations of the instances. The success of this method is due to a very tight relaxation used
in MP, as well as to the adoption of very effective cuts able to simultaneously exclude an exponential
number of solutions from the solution space.

On the basis of the results obtained, the CBC-MKr proves to be an excellent method to deal with
the MMdKFSP. Moreover, it appears very promising to face also different but similarly structured
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problems and to play a relevant role in the design of more complex algorithmic schemes. An ex-
ample is given in the following Section 5.2.1, where the extension to the Fixed-Charge MMdKFSP
is considered.

5.2.1. Application of CBC-MKr to the fixed-charge MMdKFSP
A relevant feature of the proposed CBC-MKr algorithm is represented by its possible application
to the more general Fixed-Charge version of MMdKFSP (indicated as FC-MMdKFSP) as an
extension of the original problem in which a specific fixed cost must be paid for each knapsack
used in the solution. Therefore, the problem is also to decide the set of knapsacks to use and to
assign items to them, maximizing the total net profit given by item profits minus knapsack costs
and family-split penalties.

Introducing a set of binary variables (wk) associated with the utilization of each knapsack k ∈ K,
and a corresponding fixed cost φk, the mathematical formulation of the MMdKFSP variant can be
written as follows.

(ILP_FC-MMdKFSP) max
∑

j|F j∈F
p jx j −

∑
j|F j∈F

δ ju j −
∑
k∈K

φkwk, (30)

Subject to:∑
k∈K

yik = xj ∀i ∈ I, ∀ j|i ∈ F j, (31)

∑
i∈I

cd
i yik ≤ Cd

k ∀k ∈ K, ∀d ∈ {1, . . . , D} , (32)

z jk ≥ 1
|F j |

∑
i∈F j

yik ∀ j|F j ∈ F, ∀k ∈ K, (33)

u j ≥ 1
|K| − 1

(∑
k∈K

z jk − 1

)
∀ j|F j ∈ F, (34)

wk ≥ z jk ∀ j|F j ∈ F, , ∀k ∈ K (35)

xj, u j ∈ {0, 1} ∀ j|F j ∈ F, (36)

z jk ∈ {0, 1} ∀ j|F j ∈ F, ∀k ∈ K, (37)

yik ∈ {0, 1} ∀i ∈ I, ∀k ∈ K (38)

wk ∈ {0, 1} ∀k ∈ K. (39)

Our CBC-MKr method can be easily adapted to address FC-MMdKFSP, by substituting the
original objective function (16) with (30). Conversely, CBC-SKr cannot be adapted to deal with
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Table 8
Comparison of computational times (in seconds) required by
ILP and CBC-MKr on the FC-MMdKFSP instances

ILP CBC-MKr

G54A 2021.62 1.02
G54B 2012.12 1.38
G54C 1999.89 1.00
G54D 2022.01 1.19

this extension. In fact, in CBC-SKr, the MP considers a single meta-knapsack representing the
union of all the knapsack, therefore it is not possible to quantify the fixed charged costs associ-
ated to a specific solution of the MP. In order to assess the performance of CBC-MKr on FC-
MMdKFSP, we generated four additional sets of instances, starting from set G54 and adding
different types of fixed charges (FCs). Set G54A considers high FCs, uniformly distributed in
the interval [40,70], G54B adopts high homogeneous FC equal to 50, G54C low FCs, uniformly
distributed in the interval [10,40], whereas G54D includes low homogeneous FC set equal to
25. In Table 8, we report a comparison between the ILP solution using Xpress 7.9 and CBC-
MKr. Results show a clear dominance of CBC-MKr that is able to solve all the instances in
around 1 second, while ILP require around 2000 seconds. The type of FCs considered (homo-
geneous/heterogeneous and low/high) does not have a significant impact on the computational
times required by both approaches. We can conclude that CBC-MKr is a very effective method for
FC-MMdKFSP too. Moreover, the optimal solution of MP turned out to be optimal for the origi-
nal problem in all the tested instances, which prove the tightness of the proposed relaxation also on
FC-MMdKFSP.

6. Conclusions

This work deals with the MMdKFSP, a problem considered in the literature as a variant of the
more classic Multi-Knapsack and problems Multidimensional Knapsack problems), characterized
by the fact that items are organized into families. Families impose a selection constraint on items,
that is, either all family items are selected or none is. Also, the problem requires that if a family is
selected, it is more convenient, from a profit point of view, to assign its items to the same knapsack;
otherwise, it will incur a penalty.

This problem is receiving a growing interest from different application fields, which calls for
adequate attention from the modeling and algorithmic point of view.

In this paper, we propose a novel exact and fast approach to solve the problem. This approach
is based on a dedicated problem relaxation (MKr) and on a specific scheme of the Combinato-
rial Benders Cuts method (named CBC-MKr). A number of sets of test instances with different
sizes and layouts (either available from the literature or developed in this research work) are used
as a benchmark to compare the performance of the proposed algorithm with those of both the
state-of-the-art MMdKFSP algorithm, and a cutting edge solver processing the baseline ILP for-
mulation. We have compared the algorithms according to criteria of efficiency, optimality of results,
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and scalability, as is evident from the analysis reported in Section 5.2, CBC-MKr statistically and
significantly outperforms its competitors.

The computational experiments show that the proposed specific relaxation procedure can pro-
vide particularly good upper bounds to be used in an algorithmic scheme that is substantially dif-
ferent from the state-of-the-art algorithm available in the literature (Mancini et al., 2021) and from
the classic CBC method (Benders, 1962). The proposed CBC algorithm offers excellent compu-
tational performances and is particularly flexible and robust with respect to the parameters and
configurations of the instances, including the possibility of solving the fixed-charge variant of
MMdKFSP.

The results obtained in this paper suggest that the proposed algorithmic approach could be ex-
tended or generalized to tackle structurally related problems, including different assignment, pack-
ing and knapsack problems arising in various application contexts such as manufacturing, trans-
portation, logistics, and services.

Possible future research directions may involve the design, implementation, and testing of new
algorithms, either exact or heuristic, to efficiently address challenging instances representing special
cases or that are, for example, orders of magnitude larger than those considered in this work. These
extensions could include the study of stronger combinatorial Benders cuts.
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