8 research outputs found

    Optical RAM and integrated optical memories:a survey

    Get PDF

    Photonic platform and the impact of optical nonlinearity on communication devices

    Get PDF
    It is important to understand properties of different materials and the impact they have on devices used in communication networks. This paper is an overview of optical nonlinearities in Silicon and Gallium Nitride and how these nonlinearities can be used in the realization of optical ultra-fast devices targeting the next generation integrated optics. Research results related to optical lasing, optical switching, data modulation, optical signal amplification and photo-detection using Gallium Nitride devices based on waveguides are examined. Attention is also paid to hybrid and monolithic integration approaches towards the development of advanced photonic chips

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Development of a Full-Field Time-of-Flight Range Imaging System

    Get PDF
    A full-field, time-of-flight, image ranging system or 3D camera has been developed from a proof-of-principle to a working prototype stage, capable of determining the intensity and range for every pixel in a scene. The system can be adapted to the requirements of various applications, producing high precision range measurements with sub-millimetre resolution, or high speed measurements at video frame rates. Parallel data acquisition at each pixel provides high spatial resolution independent of the operating speed. The range imaging system uses a heterodyne technique to indirectly measure time of flight. Laser diodes with highly diverging beams are intensity modulated at radio frequencies and used to illuminate the scene. Reflected light is focused on to an image intensifier used as a high speed optical shutter, which is modulated at a slightly different frequency to that of the laser source. The output from the shutter is a low frequency beat signal, which is sampled by a digital video camera. Optical propagation delay is encoded into the phase of the beat signal, hence from a captured time variant intensity sequence, the beat signal phase can be measured to determine range for every pixel in the scene. A direct digital synthesiser (DDS) is designed and constructed, capable of generating up to three outputs at frequencies beyond 100 MHz with the relative frequency stability in excess of nine orders of magnitude required to control the laser and shutter modulation. Driver circuits were also designed to modulate the image intensifier photocathode at 50 Vpp, and four laser diodes with a combined power output of 320 mW, both over a frequency range of 10-100 MHz. The DDS, laser, and image intensifier response are characterised. A unique method of measuring the image intensifier optical modulation response is developed, requiring the construction of a pico-second pulsed laser source. This characterisation revealed deficiencies in the measured responses, which were mitigated through hardware modifications where possible. The effects of remaining imperfections, such as modulation waveform harmonics and image intensifier irising, can be calibrated and removed from the range measurements during software processing using the characterisation data. Finally, a digital method of generating the high frequency modulation signals using a FPGA to replace the analogue DDS is developed, providing a highly integrated solution, reducing the complexity, and enhancing flexibility. In addition, a novel modulation coding technique is developed to remove the undesirable influence of waveform harmonics from the range measurement without extending the acquisition time. When combined with a proposed modification to the laser illumination source, the digital system can enhance range measurement precision and linearity. From this work, a flexible full-field image ranging system is successfully realised. The system is demonstrated operating in a high precision mode with sub-millimetre depth resolution, and also in a high speed mode operating at video update rates (25 fps), in both cases providing high (512 512) spatial resolution over distances of several metres

    Characterisation and optimisation of the semiconductor optical amplifier for ultra-high speed performance

    Get PDF
    This research is in the area of high speed telecommunication systems where all- optical technologies are being introduced to meet the ever increasing demand for bandwidth by replacing the costly electro-optical conversion modules. In such systems, all-optical routers are the key technologies capable of supporting networks with high capacity/bandwidth as well as offering lower power consumption. One of the fundamental building blocks in all-optical routers/networks is the semiconductor optical amplifier (SOA), which is used in for clock extraction, wavelength conversion, all-optical gates and optical processing. The SOAs are perfect for optical amplification and optical switching at a very high speed. This is due to their small size, a low switching energy, non-linear characteristics and the seamless integration with other optical devices. Therefore, characterisation of the SOA operational functionalities and optimisation of its performance for amplification and switching are essential and challenging. Existing models on SOA gain dynamics do not address the impact of optical propagating wavelength, the combined input parameters and their adaptation for optimised amplification and switching operations. The SOA operation is limited at high data rates > 2.5 Gb/s to a greater extent by the gain recovery time. A number of schemes have been proposed to overcome this limitation; however no work has been reported on the SOA for improving the gain uniformity. This research aims to characterise the boundaries conditions and optimise the SOA performance for amplification and switching. The research also proposes alternative techniques to maximise the SOA gain uniformity at ultra-high speed data rates theoretically and practically. An SOA model is been developed and used throughout the research for theoretical simulations. Results show that the optimum conditions required to achieve the maximum output gain for best amplification performance depends on the SOA peak gain wavelength. It is also shown that the optimum phase shift of 180º for switching can be induced at lower input power level when the SOA biasing current is at its maximum limit. A gain standard deviation equation is introduced to measure the SOA gain uniformity. New wavelength diversity technique is proposed to achieve an average improvement of 7.82 dB in the SOA gain standard deviation at rates from 10 to 160 Gb/s. Other novel techniques that improved the gain uniformity employing triangular and sawtooth bias currents, as replacements for the uniform biasing, have been proposed. However, these current patterns were not able to improve the SOA gain uniformity at data rates beyond 40 Gb/s. For that reason, an optimised biasing for SOA (OBS) pattern is introduced to maximise the gain uniformity at any input data rates. This OBS pattern was practically generated and compared to the uniform biased SOA at different data rates and with different input bit sequences. All executed experiments showed better output uniformities employing the proposed OBS pattern with an average improvement of 19%

    Characterisation and optimisation of the semiconductor optical amplifier for ultra-high speed performance

    Get PDF
    This research is in the area of high speed telecommunication systems where all- optical technologies are being introduced to meet the ever increasing demand for bandwidth by replacing the costly electro-optical conversion modules. In such systems, all-optical routers are the key technologies capable of supporting networks with high capacity/bandwidth as well as offering lower power consumption. One of the fundamental building blocks in all-optical routers/networks is the semiconductor optical amplifier (SOA), which is used in for clock extraction, wavelength conversion, all-optical gates and optical processing. The SOAs are perfect for optical amplification and optical switching at a very high speed. This is due to their small size, a low switching energy, non-linear characteristics and the seamless integration with other optical devices. Therefore, characterisation of the SOA operational functionalities and optimisation of its performance for amplification and switching are essential and challenging. Existing models on SOA gain dynamics do not address the impact of optical propagating wavelength, the combined input parameters and their adaptation for optimised amplification and switching operations. The SOA operation is limited at high data rates > 2.5 Gb/s to a greater extent by the gain recovery time. A number of schemes have been proposed to overcome this limitation; however no work has been reported on the SOA for improving the gain uniformity. This research aims to characterise the boundaries conditions and optimise the SOA performance for amplification and switching. The research also proposes alternative techniques to maximise the SOA gain uniformity at ultra-high speed data rates theoretically and practically. An SOA model is been developed and used throughout the research for theoretical simulations. Results show that the optimum conditions required to achieve the maximum output gain for best amplification performance depends on the SOA peak gain wavelength. It is also shown that the optimum phase shift of 180º for switching can be induced at lower input power level when the SOA biasing current is at its maximum limit. A gain standard deviation equation is introduced to measure the SOA gain uniformity. New wavelength diversity technique is proposed to achieve an average improvement of 7.82 dB in the SOA gain standard deviation at rates from 10 to 160 Gb/s. Other novel techniques that improved the gain uniformity employing triangular and sawtooth bias currents, as replacements for the uniform biasing, have been proposed. However, these current patterns were not able to improve the SOA gain uniformity at data rates beyond 40 Gb/s. For that reason, an optimised biasing for SOA (OBS) pattern is introduced to maximise the gain uniformity at any input data rates. This OBS pattern was practically generated and compared to the uniform biased SOA at different data rates and with different input bit sequences. All executed experiments showed better output uniformities employing the proposed OBS pattern with an average improvement of 19%.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    All-Optical Flip-Flop Based on Coupled-Mode DBR Laser Diode for Optically Clocked Operation

    No full text
    corecore