10,005 research outputs found

    A Faster Distributed Single-Source Shortest Paths Algorithm

    Full text link
    We devise new algorithms for the single-source shortest paths (SSSP) problem with non-negative edge weights in the CONGEST model of distributed computing. While close-to-optimal solutions, in terms of the number of rounds spent by the algorithm, have recently been developed for computing SSSP approximately, the fastest known exact algorithms are still far away from matching the lower bound of Ω~(n+D) \tilde \Omega (\sqrt{n} + D) rounds by Peleg and Rubinovich [SIAM Journal on Computing 2000], where n n is the number of nodes in the network and D D is its diameter. The state of the art is Elkin's randomized algorithm [STOC 2017] that performs O~(n2/3D1/3+n5/6) \tilde O(n^{2/3} D^{1/3} + n^{5/6}) rounds. We significantly improve upon this upper bound with our two new randomized algorithms for polynomially bounded integer edge weights, the first performing O~(nD) \tilde O (\sqrt{n D}) rounds and the second performing O~(nD1/4+n3/5+D) \tilde O (\sqrt{n} D^{1/4} + n^{3/5} + D) rounds. Our bounds also compare favorably to the independent result by Ghaffari and Li [STOC 2018]. As side results, we obtain a (1+ϵ) (1 + \epsilon) -approximation O~((nD1/4+D)/ϵ) \tilde O ((\sqrt{n} D^{1/4} + D) / \epsilon) -round algorithm for directed SSSP and a new work/depth trade-off for exact SSSP on directed graphs in the PRAM model.Comment: Presented at the the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018

    Reachability and Shortest Paths in the Broadcast CONGEST Model

    Get PDF
    In this paper we study the time complexity of the single-source reachability problem and the single-source shortest path problem for directed unweighted graphs in the Broadcast CONGEST model. We focus on the case where the diameter D of the underlying network is constant. We show that for the case where D = 1 there is, quite surprisingly, a very simple algorithm that solves the reachability problem in 1(!) round. In contrast, for networks with D = 2, we show that any distributed algorithm (possibly randomized) for this problem requires Omega(sqrt{n/ log{n}}) rounds. Our results therefore completely resolve (up to a small polylog factor) the complexity of the single-source reachability problem for a wide range of diameters. Furthermore, we show that when D = 1, it is even possible to get an almost 3 - approximation for the all-pairs shortest path problem (for directed unweighted graphs) in just 2 rounds. We also prove a stronger lower bound of Omega(sqrt{n}) for the single-source shortest path problem for unweighted directed graphs that holds even when the diameter of the underlying network is 2. As far as we know this is the first lower bound that achieves Omega(sqrt{n}) for this problem

    Decremental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update Time

    Full text link
    In the decremental single-source shortest paths (SSSP) problem we want to maintain the distances between a given source node ss and every other node in an nn-node mm-edge graph GG undergoing edge deletions. While its static counterpart can be solved in near-linear time, this decremental problem is much more challenging even in the undirected unweighted case. In this case, the classic O(mn)O(mn) total update time of Even and Shiloach [JACM 1981] has been the fastest known algorithm for three decades. At the cost of a (1+ϵ)(1+\epsilon)-approximation factor, the running time was recently improved to n2+o(1)n^{2+o(1)} by Bernstein and Roditty [SODA 2011]. In this paper, we bring the running time down to near-linear: We give a (1+ϵ)(1+\epsilon)-approximation algorithm with m1+o(1)m^{1+o(1)} expected total update time, thus obtaining near-linear time. Moreover, we obtain m1+o(1)logWm^{1+o(1)} \log W time for the weighted case, where the edge weights are integers from 11 to WW. The only prior work on weighted graphs in o(mn)o(m n) time is the mn0.9+o(1)m n^{0.9 + o(1)}-time algorithm by Henzinger et al. [STOC 2014, ICALP 2015] which works for directed graphs with quasi-polynomial edge weights. The expected running time bound of our algorithm holds against an oblivious adversary. In contrast to the previous results which rely on maintaining a sparse emulator, our algorithm relies on maintaining a so-called sparse (h,ϵ)(h, \epsilon)-hop set introduced by Cohen [JACM 2000] in the PRAM literature. An (h,ϵ)(h, \epsilon)-hop set of a graph G=(V,E)G=(V, E) is a set FF of weighted edges such that the distance between any pair of nodes in GG can be (1+ϵ)(1+\epsilon)-approximated by their hh-hop distance (given by a path containing at most hh edges) on G=(V,EF)G'=(V, E\cup F). Our algorithm can maintain an (no(1),ϵ)(n^{o(1)}, \epsilon)-hop set of near-linear size in near-linear time under edge deletions.Comment: Accepted to Journal of the ACM. A preliminary version of this paper was presented at the 55th IEEE Symposium on Foundations of Computer Science (FOCS 2014). Abstract shortened to respect the arXiv limit of 1920 character

    Discriminative Distance-Based Network Indices with Application to Link Prediction

    Full text link
    In large networks, using the length of shortest paths as the distance measure has shortcomings. A well-studied shortcoming is that extending it to disconnected graphs and directed graphs is controversial. The second shortcoming is that a huge number of vertices may have exactly the same score. The third shortcoming is that in many applications, the distance between two vertices not only depends on the length of shortest paths, but also on the number of shortest paths. In this paper, first we develop a new distance measure between vertices of a graph that yields discriminative distance-based centrality indices. This measure is proportional to the length of shortest paths and inversely proportional to the number of shortest paths. We present algorithms for exact computation of the proposed discriminative indices. Second, we develop randomized algorithms that precisely estimate average discriminative path length and average discriminative eccentricity and show that they give (ϵ,δ)(\epsilon,\delta)-approximations of these indices. Third, we perform extensive experiments over several real-world networks from different domains. In our experiments, we first show that compared to the traditional indices, discriminative indices have usually much more discriminability. Then, we show that our randomized algorithms can very precisely estimate average discriminative path length and average discriminative eccentricity, using only few samples. Then, we show that real-world networks have usually a tiny average discriminative path length, bounded by a constant (e.g., 2). Fourth, in order to better motivate the usefulness of our proposed distance measure, we present a novel link prediction method, that uses discriminative distance to decide which vertices are more likely to form a link in future, and show its superior performance compared to the well-known existing measures

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266
    corecore