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Abstract
In this paper we study the time complexity of the single-source reachability problem and the
single-source shortest path problem for directed unweighted graphs in the Broadcast CONGEST
model. We focus on the case where the diameter D of the underlying network is constant.

We show that for the case where D = 1 there is, quite surprisingly, a very simple algorithm that
solves the reachability problem in 1(!) round. In contrast, for networks with D = 2, we show that any
distributed algorithm (possibly randomized) for this problem requires Ω(

√
n/ logn ) rounds. Our

results therefore completely resolve (up to a small polylog factor) the complexity of the single-source
reachability problem for a wide range of diameters.

Furthermore, we show that when D = 1, it is even possible to get an almost 3 – approximation
for the all-pairs shortest path problem (for directed unweighted graphs) in just 2 rounds. We also
prove a stronger lower bound of Ω(

√
n ) for the single-source shortest path problem for unweighted

directed graphs that holds even when the diameter of the underlying network is 2. As far as we
know this is the first lower bound that achieves Ω(

√
n ) for this problem.
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1 Introduction

Reachability and shortest path are two of the most fundamental problems in graph algorithms.
In this paper, we study the single-source reachability (SSR) problem and the single-source
shortest path (SSSP) problem in the Broadcast CONGEST model of distributed computing.

The CONGEST model [17] is one of the most studied message-passing models in the field
of distributed computing. In this model, a synchronized n-vertex communication network
is modeled by an undirected graph N whose vertices correspond to the processors in this
network and whose edges correspond to the communication links between them. Each vertex
has a unique O(logn)-bit identifier initially known only to itself and its neighbors in N .
The vertices communicate in discrete rounds, where in each round each vertex receives the
messages that were previously sent to it, performs some unbounded local computation and
then sends messages of O(logn) bits to all or some of its neighbors. The vertices work together
on some common task (such as computing distances in the network) and the complexity
is measured by the number of communication rounds needed to complete this task. The
Broadcast CONGEST model is a more restrictive variant of the CONGEST model where
every vertex has to send (broadcast) the same message to all of its neighbors in each round.

In this paper we focus on directed and unweighted graphs. In the SSR problem, we are
asked to identify all the vertices in a given graph G for which there is a directed path from
some designated vertex s called the source. In the SSSP problem, we are further asked to

© Shiri Chechik and Doron Mukhtar;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/231819217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:shiri.chechik@gmail.com
mailto:doron.muk@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Reachability and Shortest Paths in the Broadcast CONGEST Model

compute for each such vertex its distance (the number of edges in a shortest path) from the
source s. In the CONGEST model as well as in other similar message-passing models, we
assume that the communication network N is identical to the underlying graph of G (where
G is the input graph for the SSR\SSSP problem). We also assume that the communication
between the vertices is bi-directional (regardless of directions of the edges in G). Initially,
each vertex in the network knows whether it is the source or not, and it also knows its set
of incoming and outgoing edges in G. In the distributed SSR problem, each vertex has
to determine whether it is reachable from the source or not, and in the distributed SSSP
problem, each vertex has to determine its distance from the source.

Related Work

Distance computation problems (such as the SSSP problem) have been widely studied in
many models of distributed computing. It is not hard to see that in many synchronous
message-passing models, problems such as SSR and SSSP require Ω(D) rounds (where D is
the diameter of the underlying network). While this lower bound can be easily matched when
messages of unbounded size are allowed, the situation for models that require the messages
to be of bounded size is far more involved.

In the CONGEST model, it is possible to solve the directed single-source reachability
problem in Õ(

√
nD1/4 +D) rounds with high probability [10]. Many variants of the SSSP

problem (directed\undirected, exact\approximate etc.) were studied over the years (see, e.g.,
[16, 11, 2, 7, 9, 8]). In particular, for directed and weighted graphs, there is a randomized
algorithm that solves the SSSP problem in Õ(

√
nD ) rounds [8]. We note that many of

the above mentioned algorithms (such as [10, 8]) actually work in the more restrictive
Broadcast CONGEST model. Regarding lower bounds, Das Sarma et al. [6] showed that
in the CONGEST model the time complexity of any (possibly randomized) algorithm for
the directed single-source reachability problem is Ω(

√
n/ logn ). However, this lower bound

was shown only for graphs of underlying diameter Ω(nδ) for some 0 < δ < 1/2. For smaller
diameters, similar but weaker lower bounds were shown e.g. Ω(

√
n/ logn) for graphs of

underlying diameter Θ(logn). The smallest constant diameter for which a non-trivial lower
bound is known is 3 where it was shown to require Ω((n/ logn)1/4) rounds.

For the related all-pairs shortest path (APSP) problem, many algorithms with near-
optimal complexities for the approximate version of this problem and for the case of un-
weighted graphs were developed over the years (e.g., [12, 14, 15, 16]). Recently, many
algorithms with improved complexities for the case of weighted graphs were devised [7, 13, 1]
culminating with the Õ(n)-time randomized algorithm of [3].

Our Results

In this paper we study the time complexity of the SSR problem and the SSSP problem (for
directed unweighted graphs) in the Broadcast CONGEST model for networks of constant
diameter. Specifically, we show that even for networks of diameter 2, any distributed algorithm
(possibly randomized) for the SSR problem requires Ω(

√
n/ logn ) rounds. In contrast, we

show that quite surprisingly for networks of diameter 1, this problem (or even the more
general all-pairs reachability problem) can be solved deterministically in 1 round. Moreover,
we show that for networks of diameter 1 one can compute in 2 rounds a (3, 2)-approximation
for the APSP problem (for directed unweighted graphs), where by (α, β)-approximation we
mean α multiplicative approximation and β additive approximation.



S. Chechik and D. Mukhtar 11:3

The algorithm for the approximate APSP problem (resp. for the all-pairs reachability
problem) allows each vertex to compute a (3, 2)-approximation for the distance between every
pair of vertices in the graph (resp. determine reachability for every such pair). We note that
if one can compute a (2− ε)-approximation for the APSP problem (for some 1 ≥ ε > 0) such
that there is some vertex v that knows the computed estimation for every pair of vertices,
then this vertex can recover the whole graph. This means that v must receive in this case
Θ(n2) bits of information from its neighbors (simply because there are Θ(2n2) possible graphs
on these vertices), but in each round, v can get at most O(n logn) bits from its neighbors
and so Ω(n/ logn) rounds are required for solving this problem.

Our results show a large gap between networks of diameter 1 and 2. As upper bounds of
Õ(
√
n ) are already known for the SSR problem when the underlying network has constant

or poly-logarithmic diameter (e.g., [10, 8]), we completely resolve (up to poly-log factors)
the SSR problem when the diameter of the underlying network is constant or even poly-
logarithmic. Our algorithms are very simple (we see this as a plus and not a minus). In
addition, we show a stronger lower bound of Ω(

√
n ) for the SSSP problem for unweighted

directed graphs in the Broadcast CONGEST model that holds even when the diameter of
the underlying network is 2. As far as we know this is the first lower bound that achieves
Ω(
√
n ) for this problem.

Further Related Work

A closely related model to the CONGEST when the underlying communication network has
diameter 1 is the Congested Clique model. The Congested Clique model is a synchronous
message-passing model in which the underlying communication network is the complete
graph on n vertices but the graph G on which the solution needs to be obtained can be an
arbitrary graph on n vertices (that is, each vertex initially knows its neighbors in G and
can exchange messages of size O(logn) with any vertex in the graph even if they are not
adjacent in G).

Censor-Hillel et al. [5] adapted parallel matrix multiplication algorithms to this model.
Using these algorithms, they obtained better algorithms for subgraph detection and distance
computation. In particular, they showed a Õ(n1/3)-round algorithm for solving the APSP
problem for weighted directed graphs, and even more efficient algorithms for unweighted
undirected graphs or distance approximation. Recently, it was shown [4] that the SSSP
problem for weighted undirected graphs can be solved in Õ(n1/6) rounds.

We note that for problems such as SSSP or APSP (for weighted graphs) the Congested
Clique model is actually a special case of the CONGEST model when the diameter of the
underlying network is 1. To see this, note that one can always transform the input graph
G into a complete graph by adding edges of very large weight. Therefore, either one can
show a constant upper bound for the weighted SSSP problem in the Congested Clique model
which will be quite a breakthrough or our upper bound shows a separation between the SSR
problem and the SSSP problem for directed weighted graphs of underlying diameter 1 (and
even between the all-pairs reachability problem and the SSSP problem).

2 Preliminaries

In the following, we assume that all directed graphs are simple (i.e., they do not contain
self-loops or multiple edges, but they may contain anti-parallel edges). For a graph H, we
respectively denote by V (H) and E(H) its vertex set and edge set. The out-degree and
in-degree of a vertex v in a directed graph H are denoted by dout(v) and din(v), respectively.

DISC 2019



11:4 Reachability and Shortest Paths in the Broadcast CONGEST Model

For a directed graph H and a vertex v in H, we denote by Nout(v) its set of outgoing
neighbors, and by Nin(v) its set of ingoing neighbors. Given a directed graph H = (V,E)
and a set A ⊆ V , we denote by Ac the set V \A. The underlying diameter of a directed graph
H is defined to be the diameter of its underlying graph. For a graph H and two vertices v
and u in V (H), we denote by d(v, u,H) the distance from v to u in H. All logarithms in
this paper are of base 2.

The rest of paper is organized as follows. In section 3, we show an algorithm that solves
the all-pairs reachability problem in one round for networks of diameter 1. In section 4, we
show that in two rounds one can compute an approximation for the APSP problem (also for
networks of diameter 1). In section 5, we prove lower bounds for computing reachability and
distances in networks of diameter 2.

3 All-Pairs Reachability for Networks of Diameter 1

In this section we show that when the diameter of the underlying network is 1, the directed
single-source reachability problem can be solved in O(1) rounds in the Broadcast CONGEST
model. In fact, we show that it can be solved in a single round. Furthermore, our algorithm
can solve the much more general problem of all-pairs reachability (again in a single round).
The algorithm is extremely simple. Every vertex simply sends its in-degree and out-degree
to all its neighbors in the underlying network, and then, by using this information only, each
vertex can determine (by a simple computation) which vertex is reachable from which. This
requires messages of at most 2dlog2 ne bits (moreover, if there are no anti-parallel edges then,
as the underlying diameter is 1, the in-degree plus out-degree of every vertex is exactly n− 1
and therefore it is enough to send only the in-degree and so dlog2 ne bits are enough).

The next lemma shows that when the underlying diameter of some directed graph H is 1,
we can determine if E(H) ∩ (A×Ac) = ∅ by using the in and out degrees of the vertices in
A, for every subset of vertices A ⊆ V (H).

I Lemma 3.1. For every directed graph H = (V,E) with underlying diameter 1 and every
set A ⊆ V , we have

∑
v∈A(din(v)− dout(v)) = |Ac ×A| if and only if E ∩ (A×Ac) = ∅.

Proof. Let H = (V,E) be a directed graph with underlying diameter 1 and let A be some
subset of V . We have

∑
v∈A dout(v) = |E ∩ (A× V )| = |E ∩ (A×A)|+ |E ∩ (A×Ac)| and

similarly
∑
v∈A din(v) = |E ∩ (V ×A)| = |E ∩ (A×A)|+ |E ∩ (Ac ×A)|. It follows that∑

v∈A(din(v)− dout(v)) = |E ∩ (Ac ×A)| − |E ∩ (A×Ac)| (1)

Now, for showing the first direction, assume that
∑
v∈A(din(v) − dout(v)) = |Ac × A|. By

equation (1), we have |Ac×A| = |E∩(Ac×A)|−|E∩(A×Ac)|. As |E∩(Ac×A)| ≤ |Ac×A|,
we get that |E ∩ (A×Ac)| ≤ 0 and so E ∩ (A×Ac) = ∅.

For the second direction, assume that E ∩ (A × Ac) = ∅. Since in addition H has
underlying diameter 1, every vertex in Ac must have an outgoing edge to every vertex in A
and so E ∩ (Ac ×A) = Ac ×A. It follows, by equation (1), that

∑
v∈A (din(v)− dout(v)) =

|Ac ×A|. J

The next lemma shows that when the underlying diameter of some directed graph H is 1,
the in and out degrees of all the vertices in H are enough to determine which vertices are
reachable from any given vertex in H.
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I Lemma 3.2. For every directed graph H with underlying diameter 1, every ordering
(v1, ..., vn) of its vertices such that dout(v1) ≤ ... ≤ dout(vn) and every i ∈ {1, ..., n},
there exists an index k ∈ {i, ..., n} such that the set of reachable vertices from vi in H

is equal to {v1, ..., vk}. Moreover, k is the minimal index in {i, ..., n} for which (n− k)k =∑k
j=1(din(vj)− dout(vj)).

Proof. Let H = (V,E) be a directed graph with underlying diameter 1, let (v1, ..., vn) be an
ordering of its vertices such that dout(v1) ≤ ... ≤ dout(vn) and let i ∈ {1, ..., n}. Let A be the
set of all the reachable vertices from vi in H, and note that we must have E ∩ (A×Ac) = ∅
(as otherwise vi can reach a vertex from Ac which is of course contradiction to the definition
of A and Ac).

Let k be the highest index in {i, ..., n} for which vk ∈ A (such an index must exist as
vi ∈ A). Clearly, we have A ⊆ {v1, ..., vk}. We claim that we must also have {v1, ..., vk} ⊆ A.
Since vk ∈ A and E ∩ (A×Ac) = ∅, the set A must contain at least dout(vk) + 1 vertices (the
vertex vk and its dout(vk) outgoing neighbors). It also follows that every vertex in Ac must
have out-degree at least dout(vk) + 1. To see this, note that every vertex in Ac must have an
outgoing edge to every vertex in A (as E ∩ (A×Ac) = ∅ and the underlying diameter of H
is 1). Therefore, it must be that vj ∈ A for all j ∈ {1, ..., k} as dout(vj) ≤ dout(vk) for every
such j. We conclude that A = {v1, ..., vk}.

Now, as E ∩ (A × Ac) = ∅ we get from Lemma 3.1 that (n − k)k =
∑k
j=1(din(vj) −

dout(vj)). We are left to show that k is the minimal index in {i, ..., n} with this property.
Assume towards a contradiction that there exists m ∈ {i, ..., n} such that m < k and∑m

j=1(din(vj) − dout(vj)) = (n −m)m. Let B = {v1, ..., vm}. By Lemma 3.1 we get that
E∩ (B×Bc) = ∅, and, in particular, that vk is not reachable from vi (as vi ∈ B and vk 6∈ B)
which is a contradiction. J

Lemma 3.2 can be easily turned into an algorithm that solves the all-pairs reachability
problem in one round (when the diameter of the underlying network is 1) as follows. Each
vertex v in the graph starts by broadcasting the values of din(v) and dout(v). After receiving
the messages, v sorts the vertices in non-decreasing order of their out-degree. Let (v1, ..., vn)
be that ordering. It then finds for every i ∈ {1, ..., n} the minimal index ki ∈ {i, ..., n}
such that (n− ki)ki =

∑ki

j=1(din(vj)− dout(vj)) and deduces by Lemma 3.2 that the set of
reachable vertices from vi is {v1, ..., vki

}. We conclude the following:

I Corollary 3.3. In the Broadcast CONGEST model, there is a deterministic algorithm that
solves the all-pairs reachability problem in one round when the diameter of the underlying
network is 1.

We also note that the time complexity of the internal computation of each vertex is O(n2).

4 APSP Approximation for Networks of Diameter 1

In the previous section, we showed that it is possible to solve the all-pairs reachability
problem in one round for networks of diameter 1. Here we show that it is actually possible
to compute an approximation to the distance between all pairs of vertices in two rounds.

Let G = (V,E) be a directed graph on n vertices and underlying diameter 1. For every
non-negative integer i < n, we let A(i) be the set of all the vertices u ∈ V whose out-degree
is greater than i and that have some in-going neighbor whose out-degree is at most i, that is,
A(i) = {u | (dout(u) > i) and (∃w ∈ V s.t. (w, u) ∈ E and dout(w) ≤ i)}. We also set M(i)
to be ⊥ if A(i) = ∅ and max{dout(v) | v ∈ A(i)} otherwise.

DISC 2019



11:6 Reachability and Shortest Paths in the Broadcast CONGEST Model

For each i ∈ {dout(v) | v ∈ V }, we set f0[i] = i, and then for each k ∈ {1, ..., n}, we
further set fk[i] to be ⊥ if fk−1[i] = ⊥ and to M(fk−1[i]) otherwise. We first prove some
basic properties.

B Claim 4.1. For every v ∈ V and k ∈ {1, ..., n} such that fk[dout(v)] 6= ⊥, we have
(i) fi[dout(v)] 6= ⊥ for every i ∈ {0, ..., k}, and (ii) fi[dout(v)] < fi+1[dout(v)] for every
i ∈ {0, ..., k − 1}.

Proof. The first property follows directly from the definition of the sequence. For the second
property, note that if fi+1[dout(v)] 6= ⊥ holds for some i ∈ {0, ..., k − 1}, then fi+1[dout(v)]
must be equal to the maximum out-degree of the vertices in A(fi[dout(v)]). As, by definition,
A(fi[dout(v)]) contains only vertices whose out-degree is greater than fi[dout(v)], it must be
that fi+1[dout(v)] > fi[dout(v)]. C

Note that, in particular, this claim implies that fn[dout(v)] = ⊥ for every v ∈ V . As
otherwise, we would get that 0 ≤ f0[dout(v)] < f1[dout(v)] < ... < fn[dout(v)], and so that
fn[dout(v)] ≥ n which is impossible as the maximum possible out-degree is n− 1.

B Claim 4.2. For every k ∈ {0, ..., n− 1} and every two vertices x and y in V such that y is
reachable from x, if fk[dout(x)] 6= ⊥ and dout(y) > fk[dout(x)] then fk+1[dout(x)] 6= ⊥.

Proof. Let x and y be two vertices in V such that y is reachable from x, and let k ∈ {0, ..., n−1}
be such that fk[dout(x)] 6= ⊥ and dout(y) > fk[dout(x)]. First, note that by definition and
Claim 4.1, we must have dout(x) = f0[dout(x)] ≤ fk[dout(x)]. This fact together with the
assumption that dout(y) > fk[dout(x)] implies that G must contain an edge (u, v) such that
dout(u) ≤ fk[dout(x)] and dout(v) > fk[dout(x)]. To see this, note that there must be a path
π from x to y (as y is reachable from x) and dout(x) ≤ fk[dout(x)] < dout(y). This is possible
only if π contains an edge (u, v) such that fk[dout(x)] ≥ dout(u) and fk[dout(x)] < dout(v).
It follows that M(fk[dout(x)]) 6= ⊥ and so fk+1[dout(x)] 6= ⊥. C

In the next claims, we show how the defined sequences can be used to estimate the
distances between the vertices in the graph.

B Claim 4.3. For every two vertices x and y in V such that y is reachable from x, there exists
an index k ∈ {0, ..., n− 1} such that fk[dout(x)] 6= ⊥ and dout(y) ≤ fk[dout(x)]. Moreover, if
k is the minimal index with this property, then the distance from x to y is at least k.

Proof. Let x and y be two vertices in V such that y is reachable from x, and let π be some
shortest path from x to y. Let k′ be the maximal index in {0, ..., n} for which fk′ [dout(x)] 6= ⊥
(such an index must exist as f0[dout(x)] 6= ⊥ always holds). Note that k′ ≤ n− 1 as we must
have fn[dout(v)] = ⊥. It follows that dout(y) ≤ fk′ [dout(x)] (as if dout(y) > fk′ [dout(x)] then,
by Claim 4.2, we must have fk′+1[dout(x)] 6= ⊥ which is a contradiction to the maximality of
k′) and so the required index exists.

Now, let k be the minimal index in {0, ..., n− 1} with the required property. We claim
that π contains at least k + 1 different vertices. Indeed, if k = 0 then π clearly contains
at least 1 vertex (or more if x 6= y). This leaves us with the case in which k > 0. Note
that for every t ∈ {0, ..., k − 1}, we have dout(x) = f0[dout(x)] ≤ ft[dout(x)] and dout(y) >
ft[dout(x)]. This means that π contains an edge (x′t, xt) such that dout(x′t) ≤ ft[dout(x)]
and dout(xt) > ft[dout(x)], for every t ∈ {0, ..., k − 1}. It follows that for every such t,
there exists a vertex xt in π such that ft+1[dout(x)] ≥ dout(xt) > ft[dout(x)]. Note that
dout(x) = f0[dout(x)] < dout(x0) < · · · < dout(xk−1) which implies that π contains at least
k + 1 different vertices. C
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B Claim 4.4. For every two vertices x and y in V , if dout(x) ≥ dout(y) then G contains a
path from x to y of length at most 2.
Proof. Let x and y be two vertices in V such that dout(x) ≥ dout(y) and assume towards a con-
tradiction that the claim does not hold. We must have x 6= y andNin(y)∩({x} ∪Nout(x)) = ∅
as otherwise the distance from x to y would be at most 2. Since the underlying diameter of G
is 1, we get that {x}∪Nout(x) ⊆ Nout(y), and so that dout(y) = |Nout(y)| ≥ |{x}∪Nout(x)| >
|Nout(x)| = dout(x) which is a contradiction. C

B Claim 4.5. For every k ∈ {0, ..., n−1} and every two vertices x and y in V , if fk[dout(x)] 6= ⊥
and fk[dout(x)] ≥ dout(y), then G contains a path from x to y of length at most 3k + 2.
Proof. Let k ∈ {0, ..., n − 1} and x, y ∈ V be such that fk[dout(x)] 6= ⊥ and fk[dout(x)] ≥
dout(y). Let x0 = x and for each i ∈ {1, ..., k} let xi and x′i be two vertices such that
(x′i, xi) ∈ E and dout(xi) = fi[dout(x)] and dout(x′i) ≤ fi−1[dout(x)] (note that such vertices
must exist as fi[dout(x)] 6= ⊥ holds for every such i, by Claim 4.1).

We first prove that for each i ∈ {0, ..., k} there exists in G a path from x0 to xi
of length at most 3i. We do this by induction on i. The base case (i = 0) is trivial.
Assume that the claim holds for some i ∈ {0, ..., k − 1} and prove it for i + 1. We have
dout(xi) = fi[dout(x)] ≥ dout(x′i+1) and so, by Claim 4.4, we get that there is a path in G
from xi to x′i+1 of length at most 2. As in addition (x′i+1, xi+1) ∈ E, it must be that there
is a path of length at most 3 from xi to xi+1 which together with the induction hypothesis
gives a path of length at most 3(i+ 1) from x0 to xi+1.

Note that we also have dout(xk) = fk[dout(x)] ≥ dout(y) and so, by Claim 4.4, there is a
path of length at most 2 from xk to y. We conclude that there is a path of length at most
3k + 2 from x0 to y. C

Now, we put everything together.
B Claim 4.6. For every two vertices x and y in V , the following holds:
1. If y is not reachable from x, then there is no index k ∈ {0, ..., n−1} such that fk[dout(x)] 6=
⊥ and dout(y) ≤ fk[dout(x)].

2. If y is reachable from x, then such an index exists, and moreover d(x, y,G) ≤ 3k + 2 ≤
3d(x, y,G) + 2 where k is the minimal index in {0, ..., n− 1} for which this property holds.

Proof. The first part follows from Claim 4.5 as the existence of such an index would imply
the existence of a path from x to y. For the second part, note that by Claim 4.3 such an index
exists. Let k be the minimal index with that property. We have d(x, y,G) ≥ k (by Claim 4.3)
and d(x, y,G) ≤ 3k+ 2 (by Claim 4.5), that is, we have d(x, y,G) ≤ 3k+ 2 ≤ 3d(x, y,G) + 2.

C

The above claim can be easily turned into an algorithm. Each vertex starts by broadcasting
its out-degree to all the vertices in the network. In the next round, each vertex finds the
maximal out-degree of its outgoing neighbors and broadcasts this value. By using this
information, each vertex can compute for every u ∈ V and i ∈ {0, ..., n} the value of
fi[dout(u)], and then it can compute an estimation for the distance between every pair of
vertices x and y by finding the required index as in Claim 4.6.

5 Lower Bounds for Networks of Diameter 2

In this section we prove lower bounds for the single-source reachability problem and the
closely related single-source shortest path problem for unweighted directed graphs in the
Broadcast CONGEST model that hold even when the underlying network has diameter 2.
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Figure 1 An illustration of the graph G(k, q, σ) for k = 3, q = 5 and σ = 101.

5.1 The Single-Source Reachability Problem
We start this section by describing a family (parameterized by two positive integers k and q)
of directed graphs with underlying diameter at most 2 which we denote by Fk,q. This family
will be used later on to prove the required lower bound.

The Family Fk,q. For two positive integers k, q ∈ Z and a k-bit string σ ∈ {0, 1}k, we
define the directed graph G(k, q, σ) to be the graph that consists of:

k vertex-disjoint directed paths P1, ..., Pk with q vertices each (that is, Pi = (Vi, Ei) where
Vi = {vi1, ..., viq} and Ei = {(vij , vij+1) | j ∈ {1, ..., q − 1}} for every i ∈ {1, ..., k}).
A source vertex s that has an outgoing edge to vi1 (the first vertex of Pi) if the i-th bit of
σ is 1, for every i ∈ {1, ..., k}.
A sink vertex u to which s and every vertex in P1, ..., Pk has an outgoing edge.

In other words, the vertex set of the graph G(k, q, σ) is V1 ∪ ... ∪ Vk ∪ {s, u} and its edge set
is E1 ∪ ... ∪Ek ∪ {(s, vi1) | i ∈ {1, ..., k} and σ(i) = 1} ∪ {(x, u) | x ∈ {s} ∪ V1 ∪ ... ∪ Vk} (see
Figure 1 for an illustration). For two positive integers k and q, we define the family Fk,q to
be the set {G(k, q, σ) | σ ∈ {0, 1}k}.

Our next goal is to show that any distributed algorithm that solves the single-source
reachability problem for all the graphs in Fk,q requires a significant number of rounds. We
start with the following lemma:

I Lemma 5.1. Let k and q be two positive integers. Let G ∈ Fk,q and let ϕ be some legal
assignment of identifiers to its vertices. Let A be some deterministic distributed algorithm
(in the Broadcast CONGEST model) that solves the single-source reachability problem on the
instance (G,ϕ, s) using at most t rounds (for some non-negative integer t < q). For each
i ∈ {1, ..., k}, the output of the vertex viq by the end of the last round is just function of the
initial input of the vertices viq−t, ..., viq and the sequence of messages that viq received from u.

Proof. Let i ∈ {1, ..., k}. We will show by induction on 0 ≤ j ≤ t that by the end of the j-th
round the state of each vertex v ∈ {viq−t+j , ..., viq} is just a function of the initial input of the
vertices in its ball of radius j (in the underlying graph of Pi) and the sequence of messages
that it received from u up to this round.

The base case (j = 0) clearly holds as the state of each vertex in {viq−t, ..., viq} by the end
of round 0 can depend only on its initial input. Assume now that the claim holds for some
0 ≤ j < t and prove it for j + 1. Let r ∈ {q − t+ j + 1, ..., q}. The state of vir by the end
of the (j + 1)-th round is a function of its state at the end of the previous round and the
messages that it received from its neighbors in the underlying network (which are u, vir−1
and possibly vir+1).
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The messages that vir has received from its neighbors in Vi are, by the induction hypothesis,
functions of the inputs of the vertices in the balls of radius j (in Pi) around these neighbors
and the sequence of messages that they received from u (up to round j). As u broadcasts
the same message to all the vertices in each round, we get that these messages are just a
function of the inputs of the vertices in the ball of radius j + 1 around vir (in Pi) and the
sequence of messages that vir received from u (up to round j). As the previous state of vir is,
by the induction hypothesis, also a function of the initial inputs of the vertices in its ball of
radius j (in Pi) and the sequence of message that it received from u, the claim follows. J

I Lemma 5.2. Let k and q be two positive integers and let ϕ be some legal assignment of
identifiers to V1 ∪ ... ∪ Vk ∪ {s, u}. For every deterministic algorithm A (in the Broadcast
CONGEST model), if A solves the single-source reachability problem on all the instances in
{(G,ϕ, s) | G ∈ Fk,q} and uses messages of size at most B bits (for some B ≥ 1), then A

requires at least min{q − 1, k/(2B)} rounds.

Proof. Let A be some deterministic algorithm that satisfies the requirements of the lemma
and let t be its running time. We can assume that t ≤ q − 2 as otherwise there is nothing
to show.

For each G ∈ Fk,q, we let out(G) be the sequence (out(v1
q , G), ..., out(vkq , G)) where

out(viq, G) is the output of viq when A is invoked on (G,ϕ, s), for every i ∈ {1, ..., k}. Lemma
5.1 implies that for each G ∈ Fk,q the value of out(G) is just a function of the initial inputs in
(G,ϕ, s) of the vertices

⋃k
i=1{viq−t, ..., viq} and the sequence of messages that u had broadcast.

Since we assumed that t ≤ q − 2, the initial inputs of these vertices is the same in all
{(G,ϕ, s) | G ∈ Fk,q}, and so we can have out(G) 6= out(G′) for two graphs G and G′ in
Fk,q only if the sequence of messages that u had broadcast in the corresponding invocations
was different.

In each round, u may send a message that contains at most B bits, that is, a message with
0 bits, or with 1 bit and so on. Therefore, there are 1+2+...+2B ≤ 22B different messages that
u may send in each round. It follows that there are at most 22Bt possible sequences and so we
get that |{out(G) | G ∈ Fk,q}| ≤ 22Bt. Note also that |{out(G) | G ∈ Fk,q}| = 2k as for each
G ∈ Fk,q the output should be different. We conclude that 2k ≤ 22Bt and so t ≥ k/2B. J

I Corollary 5.3. In the Broadcast CONGEST model, there is no deterministic algorithm that
solves the single-source reachability problem in o(

√
n/ logn ) rounds even when the diameter

of the underlying network is always 2.

Proof. Assume towards a contradiction that there exists a deterministic algorithm A that
solves the above problem in T (n) = o(

√
n/ logn ) rounds. As A works in the CONGEST

model, there must be some constant c ≥ 1 such that the number of bits in any message that
the algorithm may send (when it is invoked on inputs of size n > 1) is at most c · logn.

Since T (n) = o(
√
n/ logn ), there must be some integer n0 ≥ 16 for which T (n) ≤

1
10c

√
n/ logn holds for every n > n0. Choose an integerm > n0 such that both k =

√
m logm

and q =
√
m/ logm are positive integers. Lemma 5.2 implies that there must be some

G ∈ Fk,q and some assignment of identifiers ϕ to V (G) such that invoking the algorithm on
(G,ϕ, s) requires at least min{ 1

2q,
1
4c

k
logm} = min{ 1

2

√
m

logm ,
1
4c

√
m

logm} = 1
4c

√
m

logm rounds.

But, we also have |V (G)| > m > n0 and so the algorithm must take at most 1
5c

√
m/ logm

rounds on (G,ϕ, s), a contradiction. J

In the next lemma, we show that the same lower bound holds for distributed randomized
algorithms as well.
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I Lemma 5.4. Let k and q be two positive integers and let ϕ be some legal assignment of
identifiers to V1 ∪ ... ∪ Vk ∪ {s, u}. For every randomized algorithm A (in the Broadcast
CONGEST model), if A correctly solves the SSR problem on each instance in {(G,ϕ, s) |
G ∈ Fk,q} with probability > 1/2 and uses messages of size at most B bits (for some B ≥ 1),
then A requires at least min{q − 1, (k − 1)/(2B)} rounds.

Proof. Clearly, it is sufficient to show that this lower bound holds in a model that generates
a public random string first, announces it to every vertex in the graph and then every vertex
proceeds deterministically as usual. Let A be a randomized algorithm that works in the
above model and solves the SSR problem on every instance in F = {(G,ϕ, s) | G ∈ Fk,q}
with probability > 1/2. We can assume that its running time t is at most q − 2. As in the
proof of Lemma 5.2, we can show that, for every fixed random string r, the algorithm (given
that string) can succeed on at most 22Bt of the instances in F .

For each graph G in Fk,q, let RG be the event that the algorithm fails on (G,ϕ, s).
Note that we must have

∑
G∈Fk,q

P (RG) ≥ |Fk,q| − 22Bt. By assumption, we must also
have 0.5|Fk,q| >

∑
G∈Fk,q

P (RG) and so 0.5|Fk,q| > |Fk,q| − 22Bt which implies that t >
(k − 1)/2B. J

5.2 The Single-Source Shortest Path Problem

The result of the previous section already gives a lower bound of Ω(
√
n/ logn ) for the

directed SSSP problem (or even for the approximate version of it) as, by definition, any
algorithm that solves this problem must also solve the SSR problem.

In this section we show a slightly stronger lower bound of Ω(
√
n ) for this problem which

holds even when the diameter of the underlying network is 2 and even when all the vertices
in the input graph are guaranteed to be reachable from the given source. As in the previous
section, we start by describing a family Jk of unweighted directed graphs with underlying
diameter 2 which will be used to prove the lower bound.

The Family Jk. For a positive integer k and a sequence σ of k numbers from {1, ..., k}, we
define the directed graph G(k, σ) to be the graph that consists of:

k vertex-disjoint directed paths P1, ..., Pk where each Pi = (Vi, Ei) contains σ(i) + k

vertices. For each path Pi, we denote by ui its first vertex and by vi1, ..., vik its last k
vertices.
A source vertex s that has an outgoing edge to the first vertex of every path in {P1, ..., Pk}.
A sink vertex u to which s and every vertex in P1, ..., Pk has an outgoing edge.

In other words, the vertex set of the graph G(k, σ) is V1 ∪ ... ∪ Vk ∪ {s, u} and its edge
set is E1 ∪ ... ∪ Ek ∪ {(s, ui) | i ∈ {1, ..., k}} ∪ {(x, u) | x ∈ {s} ∪ V1 ∪ ... ∪ Vk} (see Figure
2 for an illustration). For a positive integer k, we define the family Jk to be the set
{G(k, σ) | σ ∈ {1, ..., k}k}.

We say that a collection of assignments {ϕG | G ∈ Jk} is a consistent set of assignments
for the family Jk, if ϕG is a legal assignment of identifiers to V (G) and ϕG(x) = ϕG′(x), for
every G,G′ ∈ Jk and x ∈ {u} ∪ (

⋃k
i=1{vi1, ..., vik}).

I Lemma 5.5. Let k > 1 be some integer and let {ϕG | G ∈ Jk} be some consistent set
of assignments for Jk. For every deterministic algorithm A (in the Broadcast CONGEST
model), if A solves the SSSP problem on all the instances in {(G,ϕG, s) | G ∈ Jk}, then A
requires Ω(k) rounds.
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Figure 2 An illustration of the graph G(k, σ) for k = 2 and σ = (1, 2).

Proof. Let A be some deterministic algorithm that satisfies the requirements of the lemma
and let t be its running time. We can assume that t ≤ k − 2 as otherwise there is nothing to
show. As A works in the CONGEST model, there must be some constant c ≥ 1 such that
the number of bits in any message that the algorithm may send on any input of size n > 1 is
at most c · logn.

Consider invoking the algorithm A on the instance (G,ϕG, s) for some G ∈ Jk. In each
round, u may send one message containing at most c · log(|V (G)|) ≤ 4c · log(k) bits to all the
vertices in the graph. Given that, it is easy to see (by a proof similar to Lemma 5.1) that the
output of every vik is just a function of its initial input, the initial input of at most t ≤ k − 2
vertices that precede it in the path Pi, and the sequence of messages that u had broadcast.

For each G ∈ Jk, we let out(G) be the sequence (out(v1
k, G), ..., out(vkk , G)) where

out(vik, G) is the output of vik when A is invoked on (G,ϕG, s), for every i ∈ {1, ..., k}.
By the observation above, for each i ∈ {1, ..., k} the vertices in Pi whose initial input may
affect the output of vik are just vi2, ..., vik. Since the initial input of each of these vertices is
the same in each of the instances in {(G,ϕG, s) | G ∈ Jk}, we get that out(G) 6= out(G′) can
hold for some graphs G and G′ in Jk only if the sequence of messages that u had broadcast
in the corresponding invocations was different.

Straightforward calculations show that the number of such sequences is at most (28c·log(k))t
= k8c·t, and so |{out(G) | G ∈ Jk}| ≤ k8c·t. Since we assumed that the algorithm is correct,
we must have out(G) 6= out(G′) for every two different graphs G and G′ in Jk (as, by
construction, we cannot have d(s, vik, G) = d(s, vik, G′) for every i ∈ {1, ..., k}), and so
|{out(G) | G ∈ Jk}| = |Jk| = kk. We conclude that kk ≤ k8c·t and so t ≥ k/(8c). J

I Corollary 5.6. In the Broadcast CONGEST model, there is no deterministic algorithm
that solves the SSSP problem in o(

√
n ) rounds even when the diameter of the underlying

network is always 2.

Proof. Assume towards a contradiction that there exists a deterministic algorithm A that
solves the above problem in T (n) = o(

√
n ) rounds. As before, we can assume that there is a

constant c ≥ 1 such that the number of bits in any message that A may send on any input
of size n > 1 is at most c · logn.

Since T (n) = o(
√
n ), there must be some positive integer n0 for which T (n) ≤ 1

18c
√
n

holds for every n > n0. Let k > 1 be an integer such that k2 > n0. The proof of Lemma
5.5 implies that there must be some G ∈ Jk and some assignment of identifiers ϕ to
V (G) such that invoking the algorithm on (G,ϕ, s) requires at least k/(8c) rounds. But,
|V (G)| > k2 > n0 and so the algorithm must take at most 1

18c
√
|V (G)| ≤ 1

9ck rounds on
(G,ϕ, s), a contradiction. J

By a proof similar to that of the previous section, it is possible to show that the same
lower bound holds for randomized distributed algorithms as well.
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Weighted All-Pairs Shortest Paths in Õ(n5/4) Rounds. In Proceedings of the 58th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’17), pages 168–179, 2017.

14 Christoph Lenzen and Boaz Patt-Shamir. Fast Partial Distance Estimation and Applications.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC
’15), pages 153–162, 2015.

15 Christoph Lenzen and David Peleg. Efficient Distributed Source Detection with Limited
Bandwidth. In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing
(PODC ’13), pages 375–382, 2013.



S. Chechik and D. Mukhtar 11:13

16 Danupon Nanongkai. Distributed Approximation Algorithms for Weighted Shortest Paths. In
Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing (STOC ’14),
pages 565–573, 2014.

17 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, 2000.

DISC 2019


	Introduction
	Preliminaries
	All-Pairs Reachability for Networks of Diameter 1
	APSP Approximation for Networks of Diameter 1
	Lower Bounds for Networks of Diameter 2
	The Single-Source Reachability Problem
	The Single-Source Shortest Path Problem


