2,880 research outputs found

    ACM Curriculum Reports: A Pedagogic Perspective

    Get PDF
    In this paper, we illuminate themes that emerged in interviews with participants in the major curriculum recommendation efforts: we characterize the way the computing community interacts with and influences these reports and introduce the term “pedagogic projection” to describe implicit assumptions of how these reports will be used in practice. We then illuminate how this perceived use has changed over time and may affect future reports

    Visual and Textual Programming Languages: A Systematic Review of the Literature

    Get PDF
    It is well documented, and has been the topic of much research, that Computer Science courses tend to have higher than average drop out rates at third level. This is a problem that needs to be addressed with urgency but also caution. The required number of Computer Science graduates is growing every year but the number of graduates is not meeting this demand and one way that this problem can be alleviated is to encourage students at an early age towards studying Computer Science courses. This paper presents a systematic literature review on the role of visual and textual programming languages when learning to program, particularly as a first programming language. The approach is systematic, in that a structured search of electronic resources has been conducted, and the results are presented and quantitatively analysed. This study will give insight into whether or not the current approaches to teaching young learners programming are viable, and examines what we can do to increase the interest and retention of these students as they progress through their education.Comment: 18 pages (including 2 bibliography pages), 3 figure

    The abstraction transition taxonomy: developing desired learning outcomes through the lens of situated cognition

    Get PDF
    We report on a post-hoc analysis of introductory programming lecture materials. The purpose of this analysis is to identify what knowledge and skills we are asking students to acquire, as situated in the activity, tools, and culture of what programmers do and how they think. The specific materials analyzed are the 133 Peer Instruction questions used in lecture to support cognitive apprenticeship -- honoring the situated nature of knowledge. We propose an Abstraction Transition Taxonomy for classifying the kinds of knowing and practices we engage students in as we seek to apprentice them into the programming world. We find students are asked to answer questions expressed using three levels of abstraction: English, CS Speak, and Code. Moreover, many questions involve asking students to transition between levels of abstraction within the context of a computational problem. Finally, by applying our taxonomy in classifying a range of introductory programming exams, we find that summative assessments (including our own) tend to emphasize a small range of the skills fostered in students during the formative/apprenticeship phase

    The Effectiveness of Codesters in Teaching Basic Computer Science Topics

    Get PDF
    Founded in 2014, Codesters is a visual programming environment (VPE) like the popular Scratch and Alice. Its goal is to teach middle school and older student’s computer programming. Unlike its predecessors, users of Codesters drag and drop actual Python code instead of blocks and can edit the code themselves. Codesters has also developed modules that integrate coding lessons into the VPE. In this study, we consider the Codesters Python 1 module and investigate its effectiveness in teaching the basic coding concepts of variables, loops and conditionals. During Fall 2018 and Spring 2019, we ran a coding class for eighth graders at a local Milwaukee school based on this module. We gave a pre-test, three quizzes and a post-test to evaluate what the students have learned. We then analyzed the results of these evaluations and compared them to those taken by students who learned programming in a traditional CS1 class. Our results indicate that users of Codesters understood loops and conditionals as well as the students from the traditional CS1 class. We also found that the pre-test was a poor indicator of students’ performance in the coding class suggesting that Codesters is able to engage students who might not necessarily excel in a traditional classroom

    Developmental Robots - A New Paradigm

    Get PDF
    It has been proved to be extremely challenging for humans to program a robot to such a sufficient degree that it acts properly in a typical unknown human environment. This is especially true for a humanoid robot due to the very large number of redundant degrees of freedom and a large number of sensors that are required for a humanoid to work safely and effectively in the human environment. How can we address this fundamental problem? Motivated by human mental development from infancy to adulthood, we present a theory, an architecture, and some experimental results showing how to enable a robot to develop its mind automatically, through online, real time interactions with its environment. Humans mentally “raise” the robot through “robot sitting” and “robot schools” instead of task-specific robot programming

    The Stained Glass of Knowledge: On Understanding Novice Mental Models of Computing

    Get PDF
    Learning to program can be a novel experience. The rigidity of programming can be at odds with beginning programmer\u27s existing perceptions, and the concepts can feel entirely unfamiliar. These observations motivated this research, which explores two major questions: What factors influence how novices learn programming? and How can analogy by more appropriately leveraged in programming education? This dissertation investigates the factors influencing novice programming through multiple methods. The CS1 classroom is observed as a whole system , with consideration to the factors present in it that can influence the learning process. Learning\u27s cognitive processes are elaborated to ground exploration into specifically learning programming. This includes extensive literature review spanning multiple disciplines. This allows positioning to guide the investigation. The literature survey also contributes to greater understanding of learning cognition within computing education research through its disciplinary depth. The focus on analogy with the second question is motivated through the factors observed in the first question. Analogy\u27s role in cognition and in education is observed, and the analogical inclinations of technology as a field are showcased. Stigma surrounds the use of analogy in computer science education in spite of these indications. This motivated investigation on how the use of analogy could be better addressed in programming education in order to utilize its value. This research presents a tool for the design of well-formed analogy in programming to answer this question. It also investigates additional forms analogy can take in the classroom setting, proposing relevant cultural forms such as memes can be analogical vehicles that promote learner engagement. This research presents a strong case for the value of analogy use in the CS1 classroom, and provides a tool to facilitate the design of well-formed analogies. In identifying ways to better leverage analogy in the programming classroom, presenting this research will hopefully contribute to dispelling analogy\u27s bad reputation in computing education. By exploring factors that contribute to the learning process in CS1, this research frames education design as experience design. This motivates methods and considerations from user experience design, and investigates aspects of the whole system that can promote or deter a learner\u27s experience. This dissertation presents findings on understanding the learner\u27s experience in the programming classroom, and how analogy can be used to benefit their learning process

    Lessons Learned From a PLTL-CS Program

    Get PDF
    The Peer-Led Team Learning (PLTL) approach has previously been shown to be effective in recruiting and retaining students, particularly under-represented students, in undergraduate introductory CS courses. In PLTL, small groups of students are led by an undergraduate peer and work together to solve problems related to CS. At Columbia University, the Columbia Emerging Scholars Program has used PLTL in an effort to increase enrollment in CS courses beyond the introductory level, and to increase the number of students who select Computer Science as their major, by demonstrating that CS is necessarily a collaborative activity that focuses more on problem solving and algorithmic thinking than on programming. Over the past five semesters, 68 students have completed the program, and preliminary results indicate that this program has had a positive effect on increasing participation in the major. This paper discusses our experiences of building and expanding the Columbia Emerging Scholars program, and addresses such topics as recruiting, training, scheduling, student behavior, and evaluation. We expect that this paper will provide a valuable set of lessons learned to other educators who seek to launch or grow a PLTL program at their institution as well

    Re-cognising RPL – A Deleuzian enquiry into policy and practice of Recognition of Prior Learning

    Get PDF
    This enquiry addresses a gap in the literature in relation to the conceptual development of Recognition of Prior Learning. Generally, research in RPL comprises large inventories and audits of practice as this enquiry shows. Few qualitative studies are available and there is a dearth of theoretical development in the field. This thesis explores perspectives of claimants and university managers/practitioners to explicate the issues at stake and explore the value of RPL in education. Using the practical philosophy of Gilles Deleuze and Felix Guattari (DG), the conceptualization of RPL is explored in policy and practice and their concepts are employed to reimagine RPL for learning, and as pedagogy, in adult university education. A hybrid method of grounded and rhizomatic theory informs the research approach. This involves searching the complex and diffuse territory of RPL to seek affirmative options for RPL theory and practice. Three case studies illustrate how different approaches to RPL offer different outcomes and were built on vague conceptualizations. In one setting, fifteen years of RPL claimant records is collated and analysed. Findings show that up to 70% of adult students in the case study had prior learning and gained exemptions. The data further indicates that RPL did not increase a student’s chances of completing a degree. This contradicts findings from international research. The research also challenges fears expressed by university managers that RPL poses a risk to academic standards, as claimants may not have foundational knowledge to succeed in university. The data indicates, however, that on the contrary, claimants have extensive prior learning; much of it accredited at levels 6 and 7 and are thus college ready. A model of learner directed RPL, used in another setting, is explored and theorized. This creative approach seamlessly integrates prior learning with new learning and thereby advances knowledge for the learner. The impact of the approach on the learner and learning is significant and offers new possibilities for RPL in education. It moves it on from the narrow purpose of reducing time in education and enhancing skills for employment. Accounts from participants in this enquiry show that they go to college to learn and they prize RPL most when it extends their knowledge – a dimension of RPL neglected in the literature. The thesis concludes with some affirmative options for re-cognising RPL in adult education
    • …
    corecore