
ACM Curriculum Reports: A Pedagogic Perspective
Sebastian Dziallas
School of Computing

University of Kent
Canterbury, CT2 7NF, England

+44 1227 827684
sd485@kent.ac.uk

Sally Fincher
School of Computing

University of Kent
Canterbury, CT2 7NF, England

+44 1227 824061
S.A.Fincher@kent.ac.uk

ABSTRACT
In this paper, we illuminate themes that emerged in interviews
with participants in the major curriculum recommendation efforts:
we characterize the way the computing community interacts with
and influences these reports and introduce the term “pedagogic
projection” to describe implicit assumptions of how these reports
will be used in practice. We then illuminate how this perceived
use has changed over time and may affect future reports.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – curriculum, computer science education.

General Terms
Standardization

Keywords
Computing Curriculum Guidelines, Computing Education
Research

1. INTRODUCTION
In 1968, the ACM curriculum committee delivered the first
curriculum report of its kind: a series of recommendations and
guidelines for academic programs in computer science. Since
then, the ACM has published curriculum reports roughly once
every decade, as of 1991 in conjunction with the IEEE Computer
Society. (The first curriculum recommendations were produced by
the ACM curriculum committee. Subsequent efforts from 1991
through 2008 referred to the group of authors as task force. The
most recent 2013 report dropped this in favor of the term steering
committee.) These reports have become an institution; with each
new iteration, chairs are chosen, task forces formed, disciplinary
groups engaged, drafts produced and then posted on websites and
presented at conferences to solicit community feedback. Over the
years, these committees and these documents have provided
course descriptions, articulated learning outcomes, and taken
views on what is – and is not – computer science. In the process,
they have inherently shaped the academic discipline.

The reports are documents that reflect their time. And yet, as
written records, they cannot fully capture the context of their time.
[14] While some reports explicitly respond to pressing
contemporary concerns (such as “the computing crisis” in the
2008 interim report), they do not reveal the rich discourse that is
exchanged between committee members and that is engaged more
widely in the academic community, that the reports ultimately
represent. This dialogue includes the reports’ joint and several
authors, but also other, less central participants, such as those who
contribute perspectives to individual knowledge areas; those who
provide sample courses and curricula; and those who provide
oversight on the ACM Education Board.

2. METHODOLOGY
We initially reviewed each of the major ACM and IEEE1
curriculum reports to identify emerging themes in the texts. In a
second stage, we interviewed participants in these efforts: chairs
of the reports, knowledge area contributors, members of the ACM
Education Board and educators who contributed additional
material (such as curriculum exemplars). Semi-structured
interviews were conducted remotely via video chat and each
lasted no longer than an hour. Throughout our conversations, we
were looking to illuminate the following key questions:

• How did the work of the committee come about and
progress? How was their work situated within the larger
community? How (if at all) do these aspects differ between
the various reports?

• Within the larger societal context, what factors,
developments, and pressures were influencing the creation of
the respective reports?

• What did each committee try to achieve with its report? What
were their goals?

• Did they look to effect particular changes? What were they?
Inspired by work on narrative journalism we also introduced a
question at the end of each interview: “Who else should we talk
to?” [11] For such a slight intervention, this proved to be rich and
valuable, and through it we discovered participants who we
otherwise would not have known to interview, or not have
considered as having a perspective to contribute. Our approach,
then, was exploratory: we expanded our reach and conducted
additional interviews based on the conversations we had.

1 The IEEE Computer Society independently published model
curricula in 1977 and 1983. The 1983 report influenced the
creation of the subsequent joint report in 1991, for instance
through its detailed laboratory materials. While we included these
reports in our review, we didn’t explicitly interview participants in
these efforts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICER '15, August 09 - 13, 2015, Omaha, NE, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3630-7/15/08…$15.00
DOI: http://dx.doi.org/10.1145/2787622.2787714

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/30708653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table 1: Study Participants

Curriculum
Report

Study Participants

Curriculum
‘68

Werner
Rheinboldt2

Curriculum
‘78

Richard
Austing3

Gerald Engel3

Computing
as a

Discipline

Peter Denning

Computing
Curricula

1991

Allen Tucker Kim Bruce

Computing
Curricula

2001

Eric Roberts Bob Sloan Shai
Simonson

Computer
Science

Curriculum
2008

Andrew
McGettrick

Lillian Cassel

Computer
Science

Curricula
2013

Mehran
Sahami

Dan
Grossman

Kathleen
Fisher

Henry Walker Simon
Thompson

For each of these interviews, with two exceptions, both authors
were present. One of us (Dziallas) guided the conversation, while
the other (Fincher) captured observations and followed up with
questions. Immediately after the interview, we debriefed by
comparing notes. [15] The completed interviews were then
professionally transcribed and analyzed using methods of
grounded theory. [4]
In a few instances where participants on the respective
committees could not be reached, we relied on previous
publications, such as the Computing Educators Oral History
Project. Whilst those interviews were not centrally concerned
with participants’ work on the curriculum reports, their reflections
on their contributions nevertheless provided additional context for
this work.

Not all of the people we interviewed were involved as part of the
task forces and steering committees. Indeed, we interviewed some
of them for their perspective on the periphery of the effort,
whether as contributors to individual knowledge areas or for their
work on the implementation of the curriculum.

In the interview excerpts below, we identify participants by the
year of their contribution. While some of them have contributed to
multiple instances of the curriculum recommendations, we
identify them by the report we interviewed them for, as indicated
in table 1. (We refer to the Computing as a Discipline report by its
release date in 1989.)

We want to highlight three themes that emerged in our analysis:
perceived use and pedagogic projection; community involvement
and influence; and contrasting visions for the future of these
reports.

2 Werner Rheinboldt submitted written responses to our questions.
3 Neither Richard Austing nor Gerald Engel participated directly

in this study. However, both of them took part in oral history
interviews which we used to include their accounts. [16, 22]

Table 2: Major Changes Between Reports

Curriculum
Report

Major Changes

Curriculum ‘68 first report; focused on defining the subject and
provided a suggested curriculum structure

Curriculum ‘78 significantly raised the profile of programming;
introduced CS1-CS8 course sequence

Computing as a
Discipline

aimed to distinguish computing from other
disciplines; argued for a view beyond
programming, including, e.g., design

Computing
Curricula 1991

introduced knowledge units & breadth-first
curriculum; first joint ACM & IEEE-CS

curriculum report
Computing

Curricula 2001
reduced the size of the body of knowledge;

returned to a more specific approach to course
descriptions & included learning objectives

Computer
Science

Curriculum
2008

interim report; minor updates, including a
section on security and “the computing crisis”

Computer
Science

Curricula 2013

advocated flexibility in relation to other
disciplines; introduced curricular exemplars &

division of core into tier 1 and 2; refined
learning objectives by levels of mastery

3. PERCEIVED USE & PEDAGOGIC
PROJECTION
Implicit in these reports is their perceived use: that is, committee
members’ assumptions and perceptions about how a report will be
used, that are reflected in decisions about its approach and
structure.

I think the real issue… is how people want to use [it]
or whether they want to use it. [2001]

3.1 Actual use
Some committees have conducted surveys, or undertaken polls as
to their projected use. One of the most common reported uses is
reassurance: that is, to pick up the document, match it against
current practice and say “yes: close enough”.

…as part of our survey of department chairs before we
started CS2013, we did a survey asking how had they
used CC2001, or 2008. It was kind of a multiple
choice. They had five answers which was everything
from, A was “Didn’t use it at all,” B was “We kind of
looked at it but didn’t really pay a lot of attention to
it.” C was, “We used it as guidance. We read the
report, we understood what it said, but we weren’t
going to implement everything in it but we wanted to
understand the trends so that could influence our
curriculum.” D was, “We implemented significant
portions of it, but not necessarily the whole thing.” E
was, “We did the whole thing.” As you can imagine,
that distribution across those five choices looks like a
bell curve. The biggest one was, “We used it as
guidance, but it wasn’t going to just dictate what our
curriculum was.” [2013]

Others cited numbers of downloads as a metric of use, or the
quantity of textbooks that are based on a curriculum, or which cite
it.

3.2 Curriculum as weapon
In the early years of the discipline, the committees aimed to take a
formative stance, providing guidance as institutions established
their computing programs.

…in the older days the field was not well defined and
people really needed some help figuring out what to
do. [2008]

The role of the early reports could be seen as curriculum as
weapon, in defining disciplinary boundaries, as what was – and
what was not – to be counted as “computing” or “computer
science”, and how that might be distinctively different from other
subjects.

…we were able to answer the nagging education
questions of the day, is computer science engineering?
Science? Mathematics? Where does it fit in a
university? [1989]

It was a weapon to be wielded by Department Chairs in arguing
for resource, or in establishing programmes. As Peter Denning,
the chair of the Computing as a Discipline report, recalled:

I just did not want us to become the victim of other
people’s stories about us. There was so much we could
do for ourselves. I wanted to help computing find its
own voice. I think that our report was the beginning of
finding our voice. We were able to say who we are,
why we are new and not part of older more familiar
fields. I think other people began to see what was
different about computing and why we are not a
subfield of mathematics, science, or engineering. We
certainly have much to offer to mathematics, science,
and engineering, but we are different because
computing deals with information processes and
machines that transform them. No other field has that
as a focus of concern. [1989]

The role of disciplinary maturity runs through this paper, as it has
run through the coeval period this paper covers. The need for
curriculum as weapon inevitably decreases as computing has
become an established – even dominant – offer in Universities
over the last 50 years.

3.3 Curriculum as prescription
A second perceived use is curriculum as prescription, either what
should be taught at all or what should be taught everywhere.

In our discussions of the many common problems, we
soon identified as a major concern … the selection of
the material that should be taught. [1968]

Notably, the focus of early curricula was on what should be
taught, and not how. The 1978 report was particularly
prescriptive, and consisted of a largely pre-defined course
sequence, from CS1 to CS8 in the core (with an additional ten
elective courses) that formed an orderly progression of material
from first introduction to graduation. The degree of prescription,
however, was not unwelcome and widely adopted; indeed,
terminology it introduced persists in many universities who still
call their introductory course “CS1”.

I think '78 had the most impact. It really redefined the
field. '68 would have had impact, except that there's
not that much computer science going on, you know,
it's an early effort. '78 was the sort of basis on which
all future reports would be built, and had enormous
impact. [2001]

The Curriculum 78 report, for instance, created the
term ‘CS1’. That’s where it came from, that report,
and every single course was numbered CS1, CS2, CS7,
whatever. For quite a long time, courses were referred
to by reference to that report and the number in that
report. CS1/CS2 are the lingering numbers; I don’t
think anything else remains in common use. [2008]

3.4 Curriculum as permission
As computer science matured as discipline in its own right, the
curriculum perception changed: it became less important that
everyone had to be exposed to the same material in the same
order, that there was only one way that computer science could be
taught (and learned). It became more important that the range and
diversity of possible content in a computer science degree was
represented. Thus, the 1991 report departed from the previous
approach of outlining an entire computing curriculum. Instead, it
introduced “knowledge units” which, when combined in various
ways, constituted the requirements for undergraduate computing
education.

We wanted to present a single curriculum model that
could be embraced by the widest range of
undergraduate CS programs, from small colleges to
universities to engineering schools. For that reason,
we invented the notions of a “knowledge area” and a
“knowledge unit” with the idea that knowledge units
(KU's) could be repackaged in different ways to fit the
goals of different types of programs. We also felt [that]
there should be an alternative to the standard way of
organizing the CS1 and CS2 courses, so as to present
students with a sense of the richness of the discipline
beyond just programming. We called it the “Breadth-
First Curriculum…. [1991]

As the level of prescription diminished, the perception of use
changed. In 1991, the more permissive approach to subject matter
content, went hand-in-hand with ideas of how the content could
be combined: the “breadth first” approach suggesting a new way
of presenting computer science to a new end, displaying “the
richness of the discipline”.

In this paradigm the curriculum is as much about how to teach as
it is about what to teach.

So the body of knowledge [of the 2013 report] was
very much written in a general ‘leave room for
innovation’ ‘support all comers as long as they are
hitting the learning outcomes’ sort of way. I think all of
them were, maybe all the knowledge areas… [2013]

The UK equivalent to the US curriculum reports (called
benchmark statements) is another such example of a
permissive stance:

They saw their view as being one where they would try
and encompass everything … at a high level. [2013]

3.5 Curriculum as authority
The relationship between curriculum and textbooks is oft-cited.
The idea that textbooks and curriculum inhabit the same space, as
resources for classroom practitioners is widespread, although it
takes on different characteristics. Sometimes, it is seen as a
beneficial symbiotic relationship:

the other outcome … is to drive publishers to name
books as covering particular courses. And that's
critical, because most people want the textbook from

which to teach, and having a name of a course that's
standard and not specific to an institution means that
publishers can design for that market. [2001]
Certainly I've seen, in my reviews of book proposals,
people will talk about how they fit the Curriculum 2001
model. [2001]

In this view, textbook and curriculum proceed hand-in-hand,
supporting each other’s effort, and when this breaks down, it is to
mutual disadvantage:

…'91 was harder to take off the shelf. It was a bunch
of, you know, “Choose one from column A,” sorts of
things, and build it yourself. And that … gave no
guidance to publishers, you couldn't cover a particular
course or something in '91, it didn't have the impact.
[2001]

For others, the curriculum/textbook relationship is not seen a
mutually beneficial, but rather more parasitic:

…what is core and what’s not … determines what
people put in their textbooks, and what people
therefore teach. [2013]

The implicit workflow is that curriculum comes first and the
publishers/authors latch onto that.

Textbook authors wanted us to lay out a series of
courses so they could write books ... It makes perfectly
good sense from their point of view. [1991]

In another framing of the parasitic relationship, the for-profit
motives of the publishers mean that textbooks represent but a poor
resource, and the curriculum must exist as redress for educators, a
reliable source of content:

A non-specialist will not have … examples at their
fingertips. … They would be, if you will, at the mercy
of the author of the textbook who is not necessarily
thinking what’s best because there’s some commerce
involved there. [2001]

A third view is that, by drawing on diverse talents, the curriculum
provides deep expertise in every area which the average academic
doesn’t have the time or resource to access individually:

Because in a large university, even in a small college,
for the most part you’re going to be judged on how
much work you’re publishing. Secondarily—even in
teaching school—secondarily on your teaching. So to
take a very strong interest in making sure that when
you teach a non-specialised course, you’re actually
teaching something that is authentic and really good
for the students, takes a lot of initiative. [2001]

As well as the symbiotic and parasitic framings, there are more
subtle interactions between the two estates. Sometimes the
curriculum committee become the most knowledgeable, most
appropriate textbook authors.

As it turned out, some of the people on the committee
afterward contributed to a series of books in this
breadth-first approach…. [1991]

And sometimes, the influence is the other way around: the
textbooks, and their perception of how knowledge is arranged, are
the inspiration for (parts of) the curriculum:

As an area, there’s less uniformity in the way courses
are taught than in some of the other areas. In AI, a
huge number of institutions, particularly in North

America, use the Russell and Norvig text. … [other
areas] have not achieved that uniformity. … I didn’t
have three standard textbooks to go to and reverse
engineer, we really did it more from scratch. [2013]

So there are perceived uses of a stipulated curriculum document
from within and outwith the committees that construct them.
However, there is a category of use that comes alongside the
construction of the curriculum. This is the implicit notion of how
the committee think the curriculum will be used by teachers in
their practice, of course design or in teaching, We call this
“pedagogic projection”.

3.6 Pedagogic projection
Pedagogic projection differs between the different curriculum
reports, sometimes reflecting the perceived use. So, for the early
years, 1968 and 1978, the pedagogic projection is that an educator
will pick up the course sequence and deliver it as constructed.
Associated with this is the view that the people who are designing
the curriculum know more than those who will use it, that the
teachers who pick it up will be less skilled or less expert than the
designers.

This becomes problematic when the intended recipients feel
themselves to be seen as deficient or lacking in some respect.

I think the impression that many of us had [of the 1978
effort] was [that] it simply wrote down what people in
large universities were doing that day. [1991]

In 1991, the pedagogic projection was different; it expressly
defined a mix-and-match freedom that expected educators to be
engaged with the construction of their own curriculum. It
recognised that “Each curriculum will be site-specific, shaped by
those responsible for the program who must consider factors such
as institutional goals, opportunities and constraints, local
resources, and the prior preparation of students.” [19]

By 2001 the Knowledge Units introduced in 1991 had become the
normal way expression of the Body of Knowledge. The 2001
committee also put together a series of model ways the units could
be combined, in made-up sequences. Any one of six introductory
courses (Imperative-first, Breadth-first, Functional-first; Objects-
first, Algorithms-first, Hardware-first) could be followed by any
intermediate approach (Topics-based, Compressed, Systems-
based, Web-based) and finished with “additional courses to
complete the undergraduate curriculum”. Whilst this illustrated
the flexibility that the authors wanted, the projections were
generic and fell between prescription and permission: institutions
found it hard to see themselves represented. [10]

The 2013 committee took a very different view. Their pedagogic
projection of the relationship between curriculum and classroom
was one of professional discussion. This was underpinned by the
belief that educators knew their own context best, and knew what
would work within that context. What permitted discussion were
examples of how curriculum was differently arranged in other
contexts, similar or dissimilar in their construction and
constraints: so teachers could see courses from colleges that were
“the same” as theirs, and those typical of other types of institution.
The Steering Committee devised a common template and solicited
authentic examples of how the curriculum (in part or whole) was
delivered in a wide range of institutional contexts. They called
these course exemplars and curricula exemplars and appended 84
and 6 of these, respectively, in Appendices C and D of the final
report. As the authors write: “These exemplars are not meant to be
prescriptive with respect to curricular design, nor are they meant
to define a standard curriculum for all institutions. Rather they are

provided to give educators examples of different ways that the
Body of Knowledge may be organized into courses, to provide
comparative breadth, and to spur new thinking for future course
design.” [10]

The different levels of abstraction at which these documents
project their pedagogic use are reminiscent of the “ladder of
abstraction”, a model of communication where each rung
represents a different degree of abstraction. Terms on the bottom
of the ladder are concrete, while those at the top are most abstract.
“…we create meaning at the top of the ladder and exemplify that
meaning at the bottom of the ladder.” [11]

The most successful communication needs to work on both ends
of the ladder of abstraction, while avoiding the middle. For
example:

Participants at school board meetings never discuss
critical issues such as literacy or the development of
young citizens who can participate in democratic life –
ideas at the top of the ladder. Nor is there discussion
about the children trying with difficulty to decode the
reading in Miss Gallagher’s first grade classroom –
the bottom of the ladder. Instead, it’s a world where
teachers are referred to as “instructional units,” while
the conversation is about the “scope and sequencing of
the language arts curriculum” – the middle of the
ladder.

We contend that curriculum recommendations, too, can be seen
stepped between the struggles of “Jo the Computer Science
Teacher” and the desirability that “Graduates need understanding
of a number of recurring themes, such as abstraction, complexity,
and evolutionary change, and a set of general principles, such as
sharing a common resource, security, and concurrency.” [10] –
and that they, too, work best when they avoid the dangerous
middle.

4. COMMUNITY INVOLVEMENT &
INFLUENCE
Curriculum reports are produced by committees. But committees
are not isolated, they do not do their work in purdah, they are
jointly and severally part of the wider computing community.
Committee members incorporate perspectives from their own,
specific subject (mathematics, programming languages, human-
computer interaction, etc.) and institutional communities (liberal
arts, engineering, etc.). During the course of its construction, each
curriculum is periodically exposed for comment. Here, we first
characterize the general processes employed to ensure that the
curriculum is acceptable. Then, we describe two examples of
communities working to influence the creation of a report.

4.1 Creating a Curriculum: How it is Done
By 2013, the way a curriculum committee was expected to engage
the wider community was well established. Committee members
were each associated with a knowledge area, and each knowledge
area formed small working groups, with expert membership
outside of the main committee to formulate guidelines and review
drafts. For the overall document, drafts of reports were prepared
and presented at conferences, such as the SIGCSE symposium.

There’s a report regularly; interim reports are
available. There is a straw-man version of the report
produced. It’s put out for public comment. In 2013 that
was put on the Ensemble site as a community, so that’s
where the comments and feedback were gathered. All

of that was taken into account and they go through the
various iterations until they get to the final draft….
[Interviewer] Is that process of iteration mandated, or
is it just down to each committee to decide how to do
that?
That’s a good question. It’s always done. I don’t know
that it’s written down officially as a rule, but it always
is. [2008]

For earlier efforts, though, this was not always done, and there
were less formal ways in which recommendations emerged. As
universities across the United States were establishing computing
centers in the 50s and 60s, the need to incorporate computing into
university curricula emerged in largely informal conversations
among their directors. These conversations eventually led to the
formation of a committee, the solicitation of input from
community members, multiple writing sessions hosted at IBM and
others, and to the release of “Recommendations for Academic
Programs in Computer Science” in 1968. [1]

In the years following the publication, some institutions played
more significant roles than others in the development of
curriculum reports. Of particular note was the University of
Maryland. The first director of the computing center at Maryland
was Werner Rheinboldt (a member of the 1968 committee). In
1963 he hired Earl Schweppe, the secretary of the ’68 committee,
and Richard Austing, who would become one of authors of the
’78 report. And in 1966, William Atchison, the chair of the ‘68
curriculum report, joined the University to become the second
director of its computing center. [13] While the University of
Maryland didn’t establish its own computer science department
until 1973, it was certainly a hotbed for curriculum development
in computer science at the time.

… I just kind of got mixed up in that with Atchison,
Rheinboldt, and Schweppe. Deeply involved. And I
certainly am not going to claim any contribution to it
all, but I certainly benefited personally from it. And it
certainly spiked my interest in combining my interest in
education with the field itself. I feel kind of on the
ground floor of a lot of that. And in some sense ... Bill
Atchison was really a mentor in that regards. He saw
my interest in it and his interest corresponded to that
and he … opened the doors a bit, which was very
helpful. And so … [I] got into the ACM through him
and into the education operation through him. [1978]

The personal nature of the community is very evident here. And
personality and personal networks remain influential in a pre-
formal craft approach to getting the job done.

That [at Stanford] is where actually I first met Eric
Roberts…. We got to know each other. I think those
kind of personal interactions make a big impact along
the way, … [he] was the person who was one of the
driving forces for saying, “Hey, you should go do the
CS2013 curricular effort.” [2013]

4.2 Engaging the community
All reports have (more or less formally) solicited input from
outside the committee membership, sometimes individually,
sometimes in a cascade of participation. The 1968 curriculum
committee engaged community members, who were referred to as
“consultants”. [17] And in preparation for the 1978 report, Gerald
Engel and Richard Austing arranged for subcommittees and
prepared a series of papers and working reports. The 2001 report

had a number of unique features with regard to engagement: it
brought all of its participants together in a room.

Probably our most successful meeting around the
curriculum was an NSF-funded workshop, where we
able to invite all of the people who were on our
knowledge task force working groups to a meeting …
where they would make the case for the larger number
of required units…. [2001]

It employed a devolved structure consisting of 14 knowledge
focus groups and, for the first time, 6 pedagogy focus groups.

There was, I imagine, someone in charge of the whole
thing and then someone in charge of the whole theory
area…. And then, whoever was in charge of that area
then distributed it again and refined it, and in the end I
personally was in charge of the discrete structures part
of that area. That was my major responsibility, where I
effectively wrote the document and then everybody else
would check and edit, and suggest. And then there
would be some discussion and argument about that.
[2001]

These “focus group” contributors also helped review and edit
other areas.

My role in other areas in theory was to do the
suggesting, the editing, and the checking – rather than
the initial proposal. Basically, one person was in
charge of the original write up, just like two people
collaborating on some sort of a writing project. One
person typically comes up with a first draft and the
other one revises it, then it goes back and forth. That’s
what it was here, where one person was the lead in a
certain area and the rest acted as editors and a panel.
[2001]

4.3 Influencing the Curriculum: Unwritten
Rules
The processes of consultation are visible, but not transparent to
the outside. Aside from open solicitation of comments, and trust
that the committee will take heed of them, there is no specification
for how particular issues can be raised, or particular change
affected. Interest groups negotiate these paths differently, and we
examine two instances here.

4.3.1 Liberal Arts
One of the groups that has played a role in shaping these reports
since their inception is a (more or less formalized) coalition of
Liberal Arts colleges. As Henry Walker and Charles Kelemen
observed, the problem for the Liberal Arts was that the reports
“…treated all institutions as being similar; the same
recommendations were to apply to technical schools, research-
oriented universities, and liberal arts colleges.” [20]

Liberal Arts institutions began establishing computer science
programs around the time the ’78 curriculum report was released.
In fact, both Richard Austing and Gerald Engel recalled in their
oral history interviews the desire to develop a curriculum
applicable to smaller colleges4 as part of their work on the 1978
curriculum report.

4 The influence we refer to in this section is generally

characterized by liberal arts institutions and specifically by the
Liberal Arts Computer Science Consortium (LACS). While

I felt large colleges, large universities could kind of
fend for themselves, get their own faculty, etc. Small
colleges at the time were struggling like crazy … a lot
them realized the need… that a lot of students wanted
to get into computing and so they had to build up
something ... So I felt that I was around at the right
time and could take some of that background and
information I had into their curriculum. [1978]

And yet, despite this sensitivity, the 1978 curriculum makes few
references to such institutions. Indeed, a number of educators at
liberal arts institutions published experience reports in the early
1980s, many of which included suggested changes to adapt the
’78 curriculum to a liberal arts context. [8, 18, 21] Liberal Arts
colleges, then, were unsatisfied with the status quo of curricular
guidelines available to them. A session at the 1984 SIGCSE
conference particularly reinforced this issue.

…the basic theme was: “How would small colleges
have to water down curricula in order to do
something” Or rather, it [the curriculum] wasn’t going
to be very good [for them], but at least they could do
something. This did not resonate well with many
people, as you might expect… [2013]

This lack of an appropriate solution for their context led to the
emergence of the Liberal Arts Computer Science Consortium
(LACS), an alliance of concerned individuals from Liberal Arts
institutions. In 1986, with support from the Sloan Foundation,
they published the first “Model Curriculum for a Liberal Arts
Degree in Computer Science”. [9] It provided suggestions for how
an institution with a small computer science faculty would be able
to offer a B.A. degree. The curriculum was highly prescriptive,
even including a detailed description of a teaching load
distribution for departments with as little as three faculty
members.

The group aimed to provide others with the resources to establish
their own computer science programs at Liberal Arts institutions.
Among the initial list of questions to be discussed by the members
of LACS were: [3]

• What kind of curriculum would be appropriate and realistic
in the small liberal arts college environment?

• How could we attract faculty to this kind of environment?

These questions, as the larger liberal arts agenda in the early days,
speak to the notion of curriculum as prescription and as a
weapon.
The subsequent 1991 ACM/IEEE-CS curriculum report faced
difficulties in bridging differences between engineering and
liberal arts programs: differences in participants’ backgrounds
lead to differences in perspectives, which contributed to tensions
within the group. For instance, opinions on when to introduce
concepts such as P/NP or whether physics should be a compulsory
course for computing students varied widely based on institutional
background.

The notion that one might have a curriculum that was
more flexible and had lower requirements than is
typical in an engineering school, some of them found
that difficult to accept and thought that it just meant

liberal arts and small colleges don’t necessarily describe the
same type of institution, we employ the terms used by the
participants in our study.

you were watering things down, that it wasn’t a real
curriculum, and so there were a number of strains. The
ACM and the IEEE people tended to have different
points of view. Obviously, there was a range in there,
but there was often a fair amount of tension. [1991]

Dissatisfied, this led LACS to release another set of its own
recommendations specifically for liberal arts institutions in 1996.
And again, the 2001 ACM curriculum was symmetrically
followed by the release of LACS recommendations in 2007. (See
[3] for an overview the three curriculum models released by
LACS.)

In the 2001 there was an effort in the task force to be
broader and think of more perspectives. But ultimately
LACS concluded it was a nice effort, but it really didn’t
get the job done in terms of what would make sense in
a liberal arts perspective. [2013]

For liberal arts institutions, with limited number of available
course hours and instructors, one of the central concerns had been
the size of the curriculum. That is, how they would be able to
cover a computer science curriculum as defined. The 2001 task
force explicitly worked to reduce the size of the body of
knowledge:

The most common reaction that we got when we had a
survey of what were the problems with '91, which was
one of the first things that we did, was that people felt
that it was just too large; you know, that there was no
way that that institution, particularly if it had
limitations of resources, or if it was a small faculty,
could cover all the material that was in the desired set
of knowledge units from '91. So ours is considerably
smaller. [2001]

And in 2013, this issue was addressed early on.

Something we were very cognisant of from the
beginning is how do we create these guidelines that
contain new material, but can’t require more hours of
instruction? That is what creates some of the real
challenge: if you’re putting new stuff in, what’s the old
stuff that comes out? You’re always going to upset
someone when you take old stuff out, because if it’s
their stuff, they’re going to be upset. But luckily, we
found a structure with this tiered structure that worked.
[2013]

Indeed, the 2013 curriculum report introduced a two-tiered
structure. While previous reports had distinguished between core
and elective materials in the body of knowledge, the 2013 report
further separated the core into tier 1 and 2.

…when I read that 2001 document with fresh eyes—
having never read one before—the language that
bothered me a lot was pieces about… “you must do
this”, “you have to do this”, “every undergraduate
program must”, “every student”, “every hour of the
core”.
And I looked at that and I said “this is bogus”. I mean
it’s not reality. It’s not fair. You can’t tell me that a
strong computer science program that happens to have
a curriculum that covers 273 of the 280 hours is
somehow not a computer science program. It’s not
believable. And that was the genesis for me to say
“We’ve got to relax some of the language.” [2013]

Material in tier 1 is seen as fundamental to any degree program in
computing, and thus essential. At the same time, the 2013 report
acknowledges that not every degree program may necessarily
include the content in tier 2 in its entirety. The response to the
2013 report has been notably different.

For the 2013, with two of the three curricula
exemplars for four-year programmes coming from
Liberal Arts, we’re really pretty pleased that our
perspectives are represented in a meaningful way. I
don’t believe there’s expectation there will be a follow-
up consortial [LACS] response, because effectively
then that’s been incorporated already into what’s
there. [2013]

Over decades, the liberal arts agenda was represented to the
various curriculum committees to get their perspective embodied
in the curriculum. Sometimes this was directly espoused by
members of the main committee, even the committee chairs. In
this respect one might claim that the liberal arts agenda had
enormous, and persistent, influence. And yet the group still felt
the need to regularly create its own guidelines. A contrasting
example of community influence is the effort of the programming
languages group.

4.3.2 Programming Languages
The 1978 curriculum recommendations had included a significant
amount of programming. This was something the 1991 report
reversed, in part in response to the 1989 Computing as a
Discipline report.

Whenever someone asked “What is computer
science?” our main answers were about programming
computers. Many in our field celebrated great
programming as the epitome of computing. … I think
our report gave us a way of talking about our
discipline that made clear we have strong elements of
mathematics, science, and engineering, blended in a
new way, and that we are not simply coders or
technology hackers. We wanted to overcome the
disconnect between the public view of computing and
the real guts of our field. Characterising the field as a
field of programmers is just a giant mistake. [1989]

The next effort in 2001 initially didn’t include a representative
from the programming languages on its task force, and the
programming languages knowledge area focus group was only
established at a later point. A draft of the curriculum had
significantly reduced the number of core hours allocated to
programming languages. The programming languages knowledge
area focus group published an article soliciting comments from
the community in the SIGPLAN Notices in response [2], and the
SIGPLAN executive committee released a letter to the curriculum
task force. [6] While ultimately changes were made in time for the
final curriculum report, it left the programming languages
community dissatisfied.

As part of the work leading up to the 2008 curriculum
recommendations, an interim revision of the 2001 report, the
programming languages group then argued for additional material
to be included. However, the task force at the time decided not to
incorporate substantial changes until the next major revision.

And people sent in 100 comments saying “You need to
fix this, we’ve been mad since 2001; fix it, fix it, fix it!”
And the 2008 group decided – it was a very close call –
that it was too significant a change for what 2008 was
trying to accomplish. [2013]

So, the consultation route had not succeeded, perhaps in similar
ways that it had not succeeded for the liberal arts. In 2008, the
SIGPLAN community established its own education board. [7]
During the 2013 effort, two representatives from SIGPLAN were
on the report’s steering committee and the SIGPLAN education
board effectively became part of the programming languages
knowledge area working group. They re-wrote the programming
languages section from the ground up, and in this way the group
was able to effect change within a single curricular iteration.

If you have someone who is willing to do a lot of the
work, they can have a great impact on things, so
whoever is the driving force. The Curriculum
Committee, certainly in my experience, the people who
are willing to do a lot of the work can have a major
impact. [1991]

We have illustrated some ways in which interest groups have been
able to influence the curriculum, and there is clearly no one “right
way” to achieve this. Indeed, both the liberal arts and
programming languages groups’ efforts were successful in 2013.
The formal mechanisms of consultation and review are important;
the informal mechanisms of friendship and group membership are
important; models of activism and organization are important.
Community members need to be able to have influence in the
system, but, at least as importantly, the system has to be malleable
to allow that influence to take effect.

5. IMPLICATIONS FOR FUTURE
REPORTS
In our interviews with community members, we discovered
contrasting narratives about the future of these curriculum
recommendations. Visions for the future are necessarily grounded
in the perceived use of the reports, and one narrative views the
mission of these curriculum reports as accomplished: if their goal
was to provide guidance in the early years of the discipline, future
reports may not be necessary.

It’s an interesting question: what will happen in the
future? Computer science is now a more or less grown
up discipline … as recently as the late ‘90s …
computer science was still an adolescent and needed
extra things. Computer science is finally growing up,
and this year - this decade a superstar! - growing up.
Are we going to keep needing this stuff? Beats me.
That’s the thought that comes to my mind from
reflecting back and thinking about where we are today.
How much of the need was because it was a young,
new field with many of the educators being converted
from their training before computing training was
widely available to being a mature field? Is the one
that just came out the last one? [2001]

A second set of observations take a more apocalyptic vision of the
continued growth of the discipline, along with an inherent
increase in subject matter knowledge (SMK).

…one of the real worries … was after CC2001 and
2008, was it even possible to do another curricular
volume? Was there just so much work to do because
the field had expanded so much? It had been so much
work [in 2001] that he wasn’t even sure it was possible
to do it again. [2013]

This view stands on the notion that a single undergraduate degree
can and should still encompass the whole field. All the while, the
number of available course hours in an undergraduate degree has

not changed. A second view is that this increase in SMK is driven
by a focus on technological developments.

…I believe the historical progression of focus on
computing as a series of technologies has begun to
outlive its usefulness. It’s certainly true that computing
has been a driving force in technology advancement
and the agent of many major advances and
innovations. We do not want to throw away the
technology history we are. But my fear is that our
curriculum has gotten so technology oriented that it’s
short-changing important parts of the field, especially
the many growing interactions with other fields and the
rising importance of design in our field. [1989]

The vision of a vastly restricted curriculum comes from other
voices, too, not with the intention of excising bloat, but rather
with the twin aims of identifying an essential core and empirical
examination of authentic practice.

I actually think that [we were] unsuccessful to some
extent … tier 1 is too big … there are a lot of things in
tier 1 that belong in tier 2. … There are perfectly
reasonable high quality computer science program
that aren’t quite doing everything in tier 1. Hopefully
over time -- in ten years from now – we’ll be able to
revisit that again and say, “Well, we’ve evidence that
they aren’t doing that, that there are good programs
out there that aren’t covering this material”. [2013]

This radically restricted approach is already in practice at some
institutions. As Downey and Stein observe: “Compressing the
core of the CS curriculum is a necessity at many schools, but may
be a virtue at others. By relieving the obligation of coverage, it
facilitates other kinds of innovation.” [5] It may be a way to
address both ends of the ladder of abstraction – by providing an
abstract description of the essential core of the discipline, as well
as an exploration of authentic practice through, for instance,
course exemplars.

6. SUMMARY
Curricula are texts, and as such they are passive and silent. [12]
But these curriculum recommendations emerge from the joint
collaborative effort of the community and from networks of
influence. We have given voice to these threads and documented
their interplay in this paper. This exploration concerns only the
production (and embedded in it, the implicit perception of use) of
the various reports, and not how they were received, read, or acted
upon.

These are complex documents: their production is a complex
endeavor, involving multiple authors and multiple influences.
They also have historicity; that is, individual reports don’t stand
alone. They are located in time, and placed in the larger sequence
of curriculum reports. Indeed, participants in our study often
referred to previous and subsequent efforts. Through our
interviews with them, in this paper, we have illuminated themes
that span these efforts.

7. ACKNOWLEDGEMENTS
We are grateful for the support of this work through the award of
a 2015 ACM History Fellowship, to the Computing Educators
Oral History Project for allowing us to include parts of their
interview with Richard Austing, and to the anonymous reviewers
for their helpful comments.

8. REFERENCES
[1] Atchison, W.F., Conte, S.D., Hamblen, J.W., Hull, T.E.,

Keenan, T.A., Kehl, W.B., McCluskey, E.J., Navarro, S.O.,
Rheinboldt, W.C., Schweppe, E.J., Viavant, W. and
Young, D.M., Jr. 1968. Curriculum 68: Recommendations
for Academic Programs in Computer Science: A Report of
the ACM Curriculum Committee on Computer Science.
Commun. ACM. 11, 3 (Mar. 1968), 151–197.

[2] Bruce, K.B. 2000. Curriculum 2001 Draft Found Lacking
in Programming Languages. SIGPLAN Not. 35, 4 (Apr.
2000), 26–28.

[3] Bruce, K.B., Cupper, R.D. and Drysdale, R.L.S. 2010. A
History of the Liberal Arts Computer Science Consortium
and Its Model Curricula. Trans. Comput. Educ. 10, 1 (Mar.
2010), 3:1–3:12.

[4] Charmaz, K. 2011. Constructing grounded theory: a
practical guide through qualitative analysis. SAGE.

[5] Downey, A.B. and Stein, L.A. 2006. Designing a small-
footprint curriculum in computer science. Frontiers in
Education Conference, 36th Annual (Oct. 2006), 21–26.

[6] Fenwick, J., Norris, C., Cytron, R. and Felleisen, M. 2001.
Computing Curricula 2001 Draft. SIGPLAN Not. 36, 4
(Apr. 2001), 3–4.

[7] Fisher, K. and Krintz, C. 2008. SIGPLAN Programming
Language Curriculum Workshop: Workshop Organization.
SIGPLAN Not. 43, 11 (Nov. 2008), 1–6.

[8] Fosberg, M.D.H. 1982. Adapting Curriculum 78 to a Small
University Environment. Proceedings of the Thirteenth
SIGCSE Technical Symposium on Computer Science
Education (New York, NY, USA, 1982), 179–183.

[9] Gibbs, N.E. and Tucker, A.B. 1986. A Model Curriculum
for a Liberal Arts Degree in Computer Science. Commun.
ACM. 29, 3 (Mar. 1986), 202–210.

[10] Joint Task Force on Computing Curricula, A. for C.M.
(ACM) and Society, I.C. 2013. Computer Science

Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. ACM.

[11] Kramer, M. and Call, W. eds. 2007. Telling True Stories: A
Nonfiction Writers’ Guide from the Nieman Foundation at
Harvard University. Plume.

[12] McGann, J.J. 1991. The Textual Condition. Princeton
University Press.

[13] Minker, J. 2007. Forming a Computer Science Center at
the University of Maryland. IEEE Annals of the History of
Computing. 29, 1 (Jan. 2007), 49–64.

[14] Mishler, E.G. 1991. Research Interviewing: Context and
Narrative. Harvard University Press.

[15] Portigal, S. 2013. Interviewing Users: How to Uncover
Compelling Insights. Rosenfeld Media.

[16] Russell, A.L. 2013. An Interview with Gerald L. Engel.
IEEE Computer Society Leaders Oral History Project.

[17] Schweppe, E.J. 1990. On the Genesis of Curriculum 68.
(Washington, DC, 1990).

[18] Smith, J. 1979. The Small Liberal Arts College: A
Challenge for Computer Science. Proceedings of the Tenth
SIGCSE Technical Symposium on Computer Science
Education (New York, NY, USA, 1979), 220–223.

[19] Tucker, A.B. ed. 1991. Computing Curricula 1991.
Commun. ACM. 34, 6 (Jun. 1991), 68–84.

[20] Walker, H.M. and Kelemen, C. 2010. Computer Science
and the Liberal Arts: A Philosophical Examination. Trans.
Comput. Educ. 10, 1 (Mar. 2010), 2:1–2:10.

[21] Worlana, P.B. 1978. Using the ACM Computer Science
Curriculum Recommendations in a Liberal Arts College.
SIGCSE Bull. 10, 4 (Dec. 1978), 16–19.

[22] Young, A. 2006. An Interview with Richard (Dick)
Austing. Computing Educators Oral History Project.

