16 research outputs found

    Alignment-free sequence comparison for biologically realistic sequences of moderate length

    No full text
    The D2 statistic, defined as the number of matches of words of some pre-specified length k, is a computationally fast alignment-free measure of biological sequence similarity. However there is some debate about its suitability for this purpose as the variability in D2 may be dominated by the terms that reflect the noise in each of the single sequences only. We examine the extent of the problem and the effectiveness of overcoming it by using two mean-centred variants of this statistic, D2* and D2c. We conclude that all three statistics are potentially useful measures of sequence similarity, for which reasonably accurate p-values can be estimated under a null hypothesis of sequences composed of identically and independently distributed letters. We show that D2 and D2c, and to a somewhat lesser extent D2*, perform well in tests to classify moderate length query sequences as putative cis-regulatory modules.This work was funded in part by ARC discovery grant DP098729

    Recapitulating phylogenies using k-mers: from trees to networks [version 2; referees: 2 approved]

    Get PDF
    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k-mers (subsequences at fixed length k). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k-mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner

    Clustering of reads with alignment-free measures and quality values

    Get PDF
    BACKGROUND: The data volume generated by Next-Generation Sequencing (NGS) technologies is growing at a pace that is now challenging the storage and data processing capacities of modern computer systems. In this context an important aspect is the reduction of data complexity by collapsing redundant reads in a single cluster to improve the run time, memory requirements, and quality of post-processing steps like assembly and error correction. Several alignment-free measures, based on k-mers counts, have been used to cluster reads. Quality scores produced by NGS platforms are fundamental for various analysis of NGS data like reads mapping and error detection. Moreover future-generation sequencing platforms will produce long reads but with a large number of erroneous bases (up to 15 %). RESULTS: In this scenario it will be fundamental to exploit quality value information within the alignment-free framework. To the best of our knowledge this is the first study that incorporates quality value information and k-mers counts, in the context of alignment-free measures, for the comparison of reads data. Based on this principles, in this paper we present a family of alignment-free measures called D(q)-type. A set of experiments on simulated and real reads data confirms that the new measures are superior to other classical alignment-free statistics, especially when erroneous reads are considered. Also results on de novo assembly and metagenomic reads classification show that the introduction of quality values improves over standard alignment-free measures. These statistics are implemented in a software called QCluster (http://www.dei.unipd.it/~ciompin/main/qcluster.html)

    Molecular Distance Maps: An alignment-free computational tool for analyzing and visualizing DNA sequences\u27 interrelationships

    Get PDF
    In an attempt to identify and classify species based on genetic evidence, we propose a novel combination of methods to quantify and visualize the interrelationships between thousand of species. This is possible by using Chaos Game Representation (CGR) of DNA sequences to compute genomic signatures which we then compare by computing pairwise distances. In the last step, the original DNA sequences are embedded in a high dimensional space using Multi-Dimensional Scaling (MDS) before everything is projected on a Euclidean 3D space. To start with, we apply this method to a mitochondrial DNA dataset from NCBI containing over 3,000 species. The analysis shows that the oligomer composition of full mtDNA sequences can be a source of taxonomic information, suggesting that this method could be used for unclassified species and taxonomic controversies. Next, we test the hypothesis that CGR-based genomic signature is preserved along a species\u27 genome by comparing inter- and intra-genomic signatures of nuclear DNA sequences from six different organisms, one from each kingdom of life. We also compare six different distances and we assess their performance using statistical measures. Our results support the existence of a genomic signature for a species\u27 genome at the kingdom level. In addition, we test whether CGR-based genomic signatures originating only from nuclear DNA can be used to distinguish between closely-related species and we answer in the negative. To overcome this limitation, we propose the concept of ``composite signatures\u27\u27 which combine information from different types of DNA and we show that they can effectively distinguish all closely-related species under consideration. We also propose the concept of ``assembled signatures\u27\u27 which, among other advantages, do not require a long contiguous DNA sequence but can be built from smaller ones consisting of ~100-300 base pairs. Finally, we design an interactive webtool MoDMaps3D for building three-dimensional Molecular Distance Maps. The user can explore an already existing map or build his/her own using NCBI\u27s accession numbers as input. MoDMaps3D is platform independent, written in Javascript and can run in all major modern browsers
    corecore