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Abstract

Standard methods for biological sequence comparison and phylogeny reconstruction are
traditionally based on sequence alignments. These methods are very accurate but also
computationally expensive. Because of the exponentially growing amount of biological se-
quence data, alignment-free methods have become more important over the past decades.
Alignment-free methods are substantially faster than alignment-based methods and are
essential for large scale sequence comparison. One major application of alignment-free
methods is whole genome phylogeny reconstruction. To this end, distances between pairs
of genomes are calculated and subsequently clustered. Current alignment-free methods are
fast but less accurate than alignment-based approaches.
In this thesis, I developed the filtered spaced-word matches (FSWM) approach, a new
alignment-free method for fast and accurate whole genome phylogeny reconstruction. FSWM
rapidly identifies spaced-word matches which are defined by patterns of match and don’t
care positions. The fraction of non-matching nucleotides at the don’t care positions are
used to estimate evolutionary distances. To reduce the noise from random matches, I
developed a filtering technique which calculates a similarity score for each spaced-word
match and discards matches with a score below a threshold. This filtering removes most
of the unwanted background matches and the distances calculated based on the remaining
spaced-word matches are very accurate.
Moreover, I investigated if FSWM can be used to identify anchor points for genome align-
ments. I integrated a slightly modified version of FSWM intomugsy [6], a popular multiple-
genome-alignment pipeline. If FSWM is used to identify anchor points, more homologies
are found and aligned and the alignments are of higher quality.
Furthermore, I transferred the idea of FSWM from genomic sequences to protein sequences.
I developed Prot-SpaM, a fast tool which estimates evolutionary distances between pairs
of whole proteoms. Prot-SpaM is the first alignment-free tool that estimates the number
of substitutions between pairs of protein sequences without sequence alignment.
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1 Introduction

The comparison of different organisms has always been a fundamental task in biology.
In many popular scientific writings one can read that the observation and comparison of
different beak forms and functions of finches led to Charles Darwin great work „On the
Origin of Species “ [18]. Even though it is controversial if the comparison of the finches was
responsible for his breakthrough [112], it symbolizes how important comparative studies
always have been for the study of life.

Nowadays, organisms are usually compared on a molecular level. Instead of similarities
or differences in the morphological or anatomical characteristics, differences in the DNA,
the hereditary material, or proteins are used to determine the degree of relatedness. Zuck-
erkandl and Pauling [137] were among the first who discussed that information about the
evolutionary history can be gained if homologous residues of DNA or protein sequences are
compared. Today, thanks to the convergence of two major technological revolutions, next
generation sequencing and high performance computing, sequence comparison has become
cheaper and faster than ever before [9]. Because of these developments the major objective
to reconstruct the evolutionary history of all life on earth has taken a major step forward.
Evolutionary relationships among different organisms are depicted as phylogenetic trees or
networks. Since it is assumed that all living organisms on earth share one last universal
common ancestor [119] the goal is to unite all lineages into one single phylogenetic tree or
network which is called the tree of life [41].

Homologous residues between a set of sequences are traditionally identified by sequence
alignments. There are, in general, two ways to reconstruct the phylogeny based on a se-
quence alignment: distance-based methods which require a subsequent clustering of the
sequences and character-based methods which infer the phylogeny directly from the align-
ment. The distance-based methods often estimate the number of substitutions between
pairs of sequences to quantify their level of relatedness. If a sequence alignment is given,
the nucleotides, which changed into another one, are revealed and the mismatch rate be-
tween pairs of sequences can be calculated easily. This observed rate, however, does not
reflect the correct number of substitutions that have happened since the organisms di-
verged. That is because nucleotides can change back to their original base. For example,
a nucleotide can change from A to T and then back to A again. In this scenario, zero
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mutations are visible but in reality two mutations have happened. To solve this problem,
substitution models were developed to turn the observed number of mismatches into an
evolutionary distance which reflect the number of substitutions. The first substitution
model was proposed by Jukes&Cantor [48]. They assumed that there are equal mutation
rates among the four nucleotides. In 1980, another substitution model was proposed by
Kimura [53] which distinguishes between transitions and transversions. Since then multi-
ple other substitution models have been proposed [116, 25, 34], addressing, for example,
unequal expected nucleotides frequencies.
After all pairwise distances are calculated a tree reconstruction algorithm must be used to
recover the phylogeny. Most commonly used is the Neighbor-Joining (NJ) algorithm [97].
One advantage of this algorithm is that is does not assume a molecular clock compared to
other tree reconstruction algorithms such as UPGMA [106].
Character-based methods which infer the phylogeny directly from a multiple sequence
alignment are, for example, Maximum Likelihood [108], Maximum Parsimony [28] or
Bayesian Inference [95]. The idea of the Maximum Parsimony approach is to identify the
tree which implies the smallest number of substitutions. Maximum Likelihood methods
works broadly similar to Maximum Parsimony but instead of the number of substitutions
as criterion, different substitution models can be used. Bayesian inference methods use
Markov chain Monte Carlo sampling which is based on a prior probability distribution of
the possible trees. These methods are considered to be more accurate than the distance-
based methods but are also considerably slower.

Alignment-based phylogeny is well studied [26] and still considered as the gold standard.
There are, however, notorious difficulties associated with sequence alignments. Zielezinski
et al. [135] identified five cases where sequence alignments reach their limits: first, sequences
must be homologous to be aligned. Therefore, homologous regions must be identified first
which require manual intervention and often prior knowledge of the sequences under study.
Second, the authors state that sequence alignments become increasingly imprecise the more
divergent the sequences are. Third, alignment-based methods are generally computation-
ally expensive. The time complexity of an optimal pairwise alignment is proportional to
the product of the sequence length. Given the huge volume of sequence data generated by
modern sequencing technologies, an excessive amount of computational resources would be
required to align all the sequences. Fourth, the calculation of an optimal multiple sequence
alignment is NP-hard [124]. Therefore, heuristics are needed which do not ensure optimal-
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ity of the alignment and this effects further downstream analyses. The fifth problem they
identified is that multiple a priori assumptions are needed to tune the parameters such as
gap penalty or the choice of the substitution matrix.
An alternative to alignment-based methods are alignment-free methods. Zielezinski et al.
[135] defined alignment-free methods as follows: ’(...) any method of quantifying sequence
similarity/dissimilarity that does not use or produce alignment (assignment of residue-
residue correspondence) at any step of algorithm application’. This definition covers a broad
spectrum of different fields in bioinformatics where alignment-free methods are used. In
this work, however, the term alignment-free is always used in the context of phylogeny
reconstruction. Despite the quoted definition above, there are alignment-free methods for
phylogeny reconstruction that explicitly establish a residue-residue correspondence to de-
fine distances between pairs of sequences. These methods are discussed and described in
detail in Section 1.1.4.
The biggest advantage of alignment-free methods over alignment-based methods is their
lower run time. Therefore, they are often used for large scale sequence comparison where
alignment-based methods reach their computational limits. One major application of
alignment-free methods is whole genome phylogeny reconstruction. Alignment-free meth-
ods can be directly applied to whole genomes because they are not sensitive to rearrange-
ments and gene duplications. Moreover, no prior knowledge about orthologies or the level
of relatedness is required which reduces preprocessing of the data to a minimum. How-
ever, alignment-free methods are generally less accurate than alignment-based methods.
Therefore, Haubold et al. [37] stated that alignment-free methods trade speed for precision.

In my thesis, I focus on the development of new a alignment-free approach to bridge the
gap between speed and accuracy of alignment-based and alignment-free approaches. For
a better understanding, I start with a comprehensive review of alignment-free methods,
beginning with the first very basic ideas and ending with the latest state-of-the-art ap-
proaches. Some recently developed, so-called, alignment-free methods are in a twilight
zone: they calculate distances based on short local gap-free alignments but still considered
to be alignment-free. They strive for the accuracy of alignment-based methods but try to
circumvent their disadvantages. I describe these methods in Section 1.1.4 in detail. The
introduction is followed by the main work of my thesis, the development of the filtered
spaced-word (FSWM) approach. In Chapter 3, I describe how FSWM can be applied to
whole genome alignments as anchor points and in Chapter 4 I extended the FSWM ap-
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proach to protein sequences. My thesis ends with a discussion and an outlook where I give
suggestions how this approach can be continued in the future.

1.1 Alignment-free methods for phylogeny reconstruction

In the following sections, I give an overview of well-known approaches to alignment-free
sequence comparison. I start by describing the traditional classification of these methods
according to several review papers. This classification divide alignment-free methods into
word count methods and match lengths methods. Methods based on word counts are
described in detail in Section 1.1.2 and match lengths methods in Section 1.1.3. Recently,
new approaches emerged which estimate distances based on so-called micro-alignments.
These new methods are described in Section 1.1.4. In this section, I also explain the
fundamental differences between methods based on micro-alignments and methods based
on word counts or match lengths. Moreover, I discuss their advantages over traditional
alignment-free methods but I also point out their shortcomings.

1.1.1 Classification

The first comprehensive review of alignment-free methods was published in 2003 [122].
These authors identified two main categories of alignment-free methods: methods based
on (relative) word frequencies and methods that are not dependent on a specific resolu-
tion. Word frequency methods count words of a fixed length for each sequence and define
distances between the word frequency vectors as the distances between the corresponding
sequences. The other class of methods are called resolution free because no parameter for
the word length must be specified. These methods define distances based on the amount
of information shared between a pair of sequences. This quantity can be approximated by
joint compression of the sequences. Details of this procedure are described in Section 1.1.3.
The theoretical background of data compression is based on information theory [100]. Orig-
inally, information theory was developed to study the transmission of messages over a noisy
channel but nowadays it is used in many different fields. In bioinformatics, information
theory is not only used for sequence comparison but also to address other issues such
as, for instance, prediction of transcription factor binding sites [114]. A review of impor-
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tant applications of information theory for biological sequence analysis was published in
2014 [121].

This has been applied, for example, to the com-

putation of the tree of life from small subunit rRNA

sequences [11] and the phylogeny of 82 fungi from

their complete genomes [28]. The computation of

dcv is implemented in the Web-based CVtree soft-

ware [29]. Its application to our primate data yields

the correct tree (Figure 3D).

The word count methods detailed so far are de-

signed to recover the topology of a phylogeny rather

than its branch lengths. Branch lengths are tradition-

ally expressed as substitutions per site, which is diffi-

cult to estimate without alignment. However, the

recently published method Co-phylog achieves just

that [8]. It starts by counting words of a certain

length, say seven, that do not have a match in the

genome that differs at the middle position. This is

repeated for a second genome. Among the intersec-

tion between the two sets of words, the proportion

Phylogeny

Alignment

Distance MP ML

No Alignment

Partition Distance

Genes Residues

Word Counts

Exact

dkmer dffp dcv

Inexact

dco

Match Lengths

LZ-factors

dgram

Common Substrings

dacs dkr

Figure 2: Classification of phylogeny reconstruction methods, with particular emphasis on alignment-free meth-
ods. MP: maximum parsimony; ML: maximum likelihood; LZ: Lempel^Ziv. The distances d? are further explained in
Table 1.
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Figure 3: Primate phylogenies based on seven fully sequencedmitochondrial genomes. Distances were either com-
puted from sequences aligned with (A) clustalw [19], or (B) using the k-mer distance dkmer [9], (C) feature frequency
profile, dffp [10], (D) composition vector, dcv [11], (E) co-phylog, dco [8], (F) grammar-based distance, dgram [12], (G)
average common substring, dacs [13] and (H) substitutions from repeats, dkr [14]. The numbers in (A) are bootstrap
values.C.Chimp: common chimp; P.Chimp: pigmy chimp.

410 Haubold

Downloaded from https://academic.oup.com/bib/article-abstract/15/3/407/185284
by Bibliothek der Geologischen und Mineralogische Institute der Universitaet Goet user
on 01 June 2018

Figure 1: Classification of phylogeny reconstruction methods, taken from Haubold [35].
MP: maximum parsimony, ML: maximum likelihood, LZ: Lempel-Ziv [136], dkmer: k-mer
based approach [132], dffp: feature frequency profile [103], dcv: CVTree [138], dCO: CO-
Phylog [133], dgram: grammar-based [96], dACS : Average common substring approach [120],
dKr : Kr [37]

About one decade later, a new review of alignment-free methods was published [35]. In
this review, a general classification of phylogeny reconstruction methods was proposed,
including alignment-based and alignment-free approaches. This classification is shown in
Figure 1. It illustrates various different approaches to phylogenetic reconstruction but
the main focus is on residue-based alignment-free methods which they divided into two
categories: word counts (frequencies) and match lengths. In this classification, the match
lengths category can be seen as a superclass of the compression-based methods and, in fact,
the author classified LZ-factorisation [136], a compression algorithm, as a match lengths
method. Moreover, match lengths methods are resolution free and therefore one can argue
that the proposed classification agrees with the classification of the first review by Vinga
and Almeida [122].
The alignment-based methods shown in Figure 1 were briefly reviewed in the introduction.
These methods are not the focus of this work and omitted in the following sections.
Almost all alignment-free methods calculate pairwise distances from which the tree is
inferred. There is one exception which is denoted as partition-based [42] in Figure 1. Un-
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til very recently, the partition-based approach was the only alignment-free method that
inferred trees without computing pairwise distances first. While writing this thesis, an-
other alignment-free non–distance-based method was presented at the RECOMB-GC 2018,
calledMulti-SpaM [22]. It rapidly identifies homologous blocks between four sequences each
and calculates quartet trees using RAxML [108]. Then these quartet trees are amalgamated
into one tree using the Quartet MaxCut algorithm [104]. One drawback is that Multi-SpaM
is only able to recover the topology but not the branch lengths.
The alignment-free distance-based methods in Figure 1 are divided into gene-based and
residue-based methods. Most common gene-based methods quantify the number of shared
or absent genes among the genomes [118] or are based on comparative gene mapping [83].
The problem with these methods is that the genes must be identified first which either
require gene annotations or they must be found by sequence alignments. This is contra-
dictory to the idea of alignment-free methods and therefore, the author of Figure 1 states
that it would be ’a slight overstatement to call them alignment-free’. Consequently, most
work has been done on residue-based methods. These methods are described and discussed
in detail in the following three sections.

Another review paper about alignment-free methods was published in 2017 [135]. It con-
tains over 180 references which shows that alignment-free sequence comparison is cur-
rently a hot topic and new methods are developed rapidly. This review is more general
than the other reviews and covers multiple different domains where alignment-free ap-
proaches are used. This includes for example read alignment [2, 58, 70], protein clas-
sification [14, 64, 72, 73], isoform quantification from RNAseq reads [89], sequence as-
sembly [134], metagenomics [5, 13, 66, 78, 115, 117, 125, 131], analysis of regulatory ele-
ments [24, 50, 65] and identification of biomarkers [23]. In my work, however, I concentrate
on alignment-free methods for phylogeny reconstruction.
Other reviews focused on statistical analyses of popular alignment-free distance mea-
sures [10, 99], assessed the performance of alignment-free methods in the presence of lateral
gene transfer [7] or explored alignment-free methods for short unassembled reads [107]. The
latest review of alignment-free approaches was published in 2018 [94] and concentrated on
word count methods for next generation sequencing data.

The vast majority of alignment-free methods uses either word counts or match lengths
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Word Counts Match Lengths Micro-Alignments
FFP [103] ACS [120] CO-Phylog [133]
CVTree [138] grammar [96, 87] andi [38]
Spaced [44, 60, 81] Kr [37] FSWM [61]
D∗2 [74, 93, 123] kmacs [59, 82] Prot-SpaM [63]

UA [15] Multi-SpaM [22]

Table 1: Alignment-free methods based on different information sources.

as basis for the distance calculation. There is one remarkable exception, called CO-
phylog [133]. This approach can be found in Figure 1 as word count method under the
name dCO. CO-phylog estimate distances from micro-alignments which are short local
gap-free alignments. The underlying information source from which the distances are cal-
culated is different compared to word count or match length methods. Therefore, I divided
alignment-free methods in three different categories: word count methods, match length
methods and methods based on micro-alignments, see Table 1. In this table, there are four
more approaches, besides CO-phylog, the pioneering approach, that are based on micro-
alignments: andi [38], FSWM [61], Prot-Spam [63] and Multi-Spam [22]. CO-phylog and
andi are described in Section 1.1.4. In this section, I also discuss the similarities and
difference of methods based on micro-alignment as well as their advantages and disadvan-
tages. Moreover, I point out the limitations of CO-phylog and andi which motivates the
development of filtered-spaced word matches (FSWM) a new alignment-free method, the
main objectiv of this thesis (see Section 2). Prot-Spam is a modification of the FSWM ap-
proach and described in section 4. Multi-Spam generalizes the FSWM approach to multiple
sequences and is not a part of this thesis.

1.1.2 Methods based on word counts

Word count methods define distances based on the word composition of the sequences
under study. That is, for a fixed word length k the (relative) frequencies of all words
of length k are determined. Each sequence is then represented by its frequency vector
and distances between these frequency vectors are defined to be the distance between the
corresponding sequences. In the literature, words of length k are also often called k-mers,
k-tuples or k-grams.

11



Below is an example for the sequence AATCGAATC and k = 3. At first the word frequen-
cies are determined by moving a sliding window of length k = 3 from left to right:

A A T C G A A T C
A A T

A T C
T C G

C G A
G A A

A A T
A T C

During this process all occurring words are counted and stored in a list:

word AAT ATC CGA GAA TCG
count 2 2 1 1 1

This process is repeated for all sequences and distances between the lists (frequency vectors)
are calculated. Often standard metrics as the Euclidean distance or the Jensen-Shannon
divergence [71] are used. The basic idea is that the closer related two sequences are, the
more similar the word frequency distributions and the smaller the distance between the cor-
responding frequency vectors. Intuitively, this seems to make sense but, on the other hand,
it is also clear that these distances do not reflect the number of substitutions that have
happened since two organisms diverged, i.e. these distances are not based on a stochastic
model of evolution. As pointed out in the introduction, evolutionary relationships are usu-
ally defined based on the number of substitutions. Empirically, however, these distances
are a good estimate of the evolutionary relationship between organisms. The exploration,
why that is the case, is a major part of this section. To this end, I start with a brief
historical overview of word count methods which is, however, by no means exhaustive.

The foundation for the first word count method was laid by the creation of so called 16S
rRNA oligonucleotide catalogs [105]. In the early beginnings of molecular phylogenetics,
distances were calculated based on these catalogs and dendrograms were reconstructed
based on the obtained distances [29]. In 1987, Woese [128] showed that there is a (small)

12



correlation between the distances calculated based on the 16S rRNA oligonucleotide cat-
alogs and distances calculated by sequence alignments. A detailed review of the methods
used at that time is given in [92]. In the beginnings, it was common to quantify differ-
ences between di- and trinucleotide frequencies, i.e. the word lengths were k = 2 and
k = 3. Popular dis/similarity measures include the χ2 statistics [8], relative dinucleotide
abundance [52, 51], and the D2 statistics [16]. The idea to use trimers might be based
on that fact that triplets of nucleotides encode for one amino acid. If coding regions are
to be compared, similarity in the codon frequencies should reflect the level of related-
ness. Nowadays, however, alignment-free methods are often applied to whole genomes,
including coding and non coding regions. For these sequences, longer word lengths seem
to work better. The question of how to find the optimal word length was investigated
in [103, 49, 102, 130]. These authors empirically determined a lower and an upper limit
of word lengths such that word lengths within this range produce the most promising
results. Their tool, called Feature Frequency Profiles (FFP), is one of the most popular
implementation of generic word count methods. By default, FFP calculates distances with
the Jensen-Shannon divergence [71] between the frequency vectors but it also provides a
wide range of other standard metrics such as the Euclidean distance. Recently, a powerful
standalone platform for alignment-free sequence comparison was proposed, called aCceler-
ated Alignment-FrEe sequence analysis (CAFE) [75]. It provides a user-friendly graphical
user interface and also includes programs to calculate and visualize phylogenetic trees. In
CAFE, 28 different word count distances are implemented. Some of them take background
word frequencies into account. For example, one popular method that adjust their dis-
tances for background frequencies is the Composition Vector Tree (CVTree) approach [90].
They used a Markov model to predict word frequencies for unrelated sequences and sub-
tract the predicted background frequencies from the observed word frequencies. The idea
behind it was to distinguish between random mutations and selective mutations, i.e. mu-
tations which lead to evolutionary advantages. CVTree was used in multiple studies,
e.g. [91, 33, 30, 69, 113, 139] and is available through a user-friendly webserver [138].

So far, all mentioned approaches are ad-hoc dissimilarity measures, i.e. they do not reflect
the number of substitutions between two sequences. To understand the relationship be-
tween these rough dissimilarity measures and the substitution rate, it is helpful to take a
closer look at the D2 statistic first.
In 2002, Lippert et al. [74] defined the D2 statistic to be the number of word matches
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of length k between two sequences. This statistic can be easily calculated as the inner
product of two word frequency vectors. They showed how the expected number of word
matches between two sequences with independent and identically distributed characters
can be calculated under the null hypothesis, i.e. between two unrelated sequences. To
this end, let L1 be the length of sequence S1 and L2 the length of sequence S2. More-
over, let q be the random match probability and k be the word length. Then clearly, the
expected number of word matches between two unrelated sequences can be calculated by
(L1 − k+ 1) ∗ (L2 − k+ 1) ∗ qk. In words: for each position in the first sequence there is a
chance for a match at any position in the other sequence. Distance measures that adjust
for background hits, such as the popular D∗2 score [93, 123], usually outperform distances
which do not take background matches into account. The reason for this is simple: if the
background noise is subtracted then the number of the remaining word matches indicate
some sort of sequence similarity. Based on this idea, we showed how the expected number
of word matches between two related sequences can be calculated [81, 80]. To this end, we
used a simplified model of evolution with a constant mutation rate p and equal mutation
rates of the four nucleotides. Moreover, the sequences are indel-free, have the same length
and share homologies over the entire sequence. Under this model, the number of word
matches between two sequences, denoted by N , is composed of the number of homologous
matches plus the number of random matches. The expected number of word matches can
be calculated by

E(N) = (L− k + 1) ∗ (L− k) ∗ qk︸ ︷︷ ︸
background

+ (L− k + 1) ∗ (1− p)k︸ ︷︷ ︸
homolog

(1)

This equation shows the relationship between the number of word matches and the mis-
match rate p under the simplified model of evolution. Clearly, the mismatch rate p̂ can be
estimated based on the number of word matches between two sequences with a momentum
based approach. By using the Jukes&Cantor model, the estimated mismatch rate p̂ can
be turned into an evolutionary distance d̂ that reflects the number of substitution. There-
fore, a sequence alignment is not required to calculate evolutionary distances between pairs
of sequences. The first approach which was able to estimate evolutionary distances from
unaligned genomes was published in 2009, called Kr [37]. Instead of the number of word
matches, they estimated substitution rates based on average match lengths. This approach
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is described in Section 1.1.3.
Based on Equation 1, it is obvious that the number of background matches grow quadratic
with the sequence length while the number of homologous matches only grow linear. There
are two more variables that determine whether the number of word matches is dominated
by background matches or by homologous matches: the word length k and the probabil-
ities for homologous and background matches. If the match probability for homologous
matches is much higher than for background matches, larger word lengths lead to less back-
ground hits, hence, reduce the noise. The number of homologous matches, on the other
hand, is also decreasing if longer word lengths are used. Therefore, the choice of the word
length k is a trade-off between signal and noise. In our previous work [81, 80], we pointed
out that if k is sufficiently large and the sequences are not too distantly related then the
Jensen-Shannon divergence approximates L−N and the euclidean distance

√
L−N . This

answers the question of why these distances lead to evolutionary meaningful distances.

So far, only contiguous or exact word counts were considered. Inexact word matches,
however, play an important role in sequence analysis. Li et al. [67] [68] showed that
so-called spaced-seeds or spaced-words are far superior compared to contiguous-words in
homology detection. Spaced-words are defined by binary patterns of match and don’t
care positions. A spaced-word match occurs between two sequences if all match positions
coincide. Mismatches are allowed at the don’t care positions. The advantage of spaced-
words over contiguous-words is that they are statistically less dependent on each other and
this leads to a higher probability to find a match between two sequences. Later, we used
this concept for alignment-free sequence comparison [60, 44]. We proposed to count spaced-
word frequencies and defined distances based on these frequency vectors as a measure of
global sequence similarity. An example for the sequence AATCGAATC and the pattern
1101 is given below:

A A T C G A A T C
A A * C

A T * G
T C * A

C G * A
G A * T

A A * C
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The corresponding spaced-word frequency count is given below:

spaced-word AA*C AT*G CG*A GA*T TC*A
count 2 1 1 1 1

The advantage of spaced-word frequencies for alignment-free sequence comparison is that
the variance of the number of word matches is smaller compared to contiguous words [80].
Consequently, the estimated distances are more stable if spaced-words are used. We also
showed that if multiple patterns are used, the variance can be reduced further. More-
over, the variance is dependent on the patterns, i.e. there are patterns which lead to a
smaller variance than others. Therefore, we developed a hill climbing algorithm, called
rasbhari [32], which tries to minimize the variance of a set of patterns. We showed that
the variance of the number of word matches is closely related to a concept called overlap
complexity [46, 47].

Word count methods are easy to implement and run very fast. There are two practical
solutions to compute word frequencies: One is based on a (rolling) hash function and a
data structure to store the word frequencies. The other solution is to sort all occurring
words lexicographically so that equal words end up adjacent to each other which can then
be counted easily. Once the word counts are determined, it is straight forward to calculate
distances based on the frequencies. This simplicity also contributed to the popularity of
word count methods.

1.1.3 Methods based on match lengths

In Figure 1, match lengths methods are divided into LZ-factors and common substrings.
LZ-factors stands for Lempel-Ziv factorisation and is well-known for data compression [136].
Data compression is also used to estimate the relatedness between two sequences. To this
end, two sequences are concatenated and then compressed. The level of compression indi-
cates how similar the sequences are. The Lempel-Ziv factorization decomposes a sequence
into its constituents. To explain this process, some notation is required: For a sequence
S, S[i] denotes the i-th element of S and S[i..j] with i ≤ j denotes the substring of S,
starting at i and ending at j. Then, the Lempel-Ziv factors can be determined as follows:
If there is a longest match S[i..j] that starts somewhere in S[1..i− 1], then the LZ factor
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is S[i..j+1] and the process continues at S[j + 2]. If not, then the factor is S[i] and the
process continues at S[i+1]. An example for the sequence S1 = AATCGAATC is given
below:

A A T C G A A T C
Factor 1 A
Factor 2 A T
Factor 3 C
Factor 4 G
Factor 5 A A T C

In this example, the sequence S1 is decomposed into 5 LZ factors (A,AT,C,G,AATC) which
is denoted as c(S1) = 5. If an identical sequence S2 is attached to S1 then c(S1S2) = 6, i.e.
there is only one additional LZ factor more. This measure, however, increases the more
divergent the sequences are. Two popular distance measures based on this concept are [87]
and [96].

The other class of match lengths methods define distances between sequences based on the
average lengths of longest common substrings. That is, for two sequences S1 and S2, these
approaches determine for each position i in S1 the length of the longest common substring,
starting at position i in S1 that matches a substring starting at some position j in S2. An
example is given below:

S1 A A T C G A A T C G G C T
S2 G G T A A C G A A T C G C C G T

This examples shows the longest common substring that starts at position 4 in S1 and
matches the substring starting at position 6 in S2. The length of this substring match is
7. The average of these lengths are a similarity measure of the sequences. The average
common substring approach ACS [120] turns this similarity measure into a distance based
on principles of information theory. In general, these distances are not symmetrical due to
difference in sequence length, gene duplications and other genomic events. Therefore, they
defined the distance between two sequences as the average of both asymmetric distances.
The ACS approach was published in 2006 and outperformed most word count methods at
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the time. The reason why match lengths methods work so well is that the average substring
lengths increases with sequence similarity. If the simplified model of evolution from the
previous section (iid, no indels) is used then substrings between two sequences match until
a mutation occurs then the exact match ends. It is obvious that if more mutations happen,
the lengths of exact matches must be shorter on average than if fewer mutations occur.
Haubold et al. [37] used this observation to derive an estimator, called Kr. This estimator
is based on the average lengths of SHortest Unique substring (shustrings). Shustrings
can be determined by extending the longest common substrings by one position [36]. At
first, they derived the probability density function of shustring lengths for two unrelated
sequences and then extended it to related sequences. They showed that this estimator
estimates substitution rates very precise up to 0.5 substitutions per site. For more divergent
sequences, however, this estimator reaches its limits. There are two reasons for it: first,
the chance of background matches increases, i.e. the length of shustrings is dominated by
background matches instead of homologous matches and second the length of homologous
matches and background matches do not differ very much anymore. Therefore, at about 0.5
substitutions per site homologous match lengths become indistinguishable from background
match lengths so that distances can not be estimated anymore.
This was the first alignment-free approach ever that was able to estimate the number of
substitutions per site. Until this time, all alignment-free distances were ad-hoc measures
of dissimilarities and it was believed that a sequence alignment is necessary to infer the
number of substitutions between sequences. However, one should not forget that this
estimator was derived based on a simplified model of evolution and real-word genomes are
far more complex. Not only indels can affect the shustring lengths but also large repetitive
regions which are especially frequent in eukaryotic genomes. This issue was addressed by
the underlying subwords approach [15] by eliminating overlapping substrings. The distances
they calculate, however, do not reflect the number of substitutions.

In the previous section, the concept of inexact matches was introduced and we developed
a similar idea for match lengths methods [59]. Instead of exact longest common substring
matches we proposed to search for substring matches with up to k mismatches. This is
a generalization of the ACS approach, and we called it the k-mismatch average common
substring approach (kmacs). There is, however, an inherent problem with this idea: cal-
culating longest common substrings with up to k mismatches can not be done in linear
time. Therefore, we suggested to approximate them with a simple heuristic which works
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as follows: At first, we search for exact longest common substrings similar to ACS. Then,
these longest common substring matches are extended without gaps until k mismatches
occurred or the end of the sequence is reached. An example for a longest common substring
match with k = 2 mismatches is shown below:

S1 C A T T G C A T A C G A
S2 A T G G A T C C C G A A

In this example, kmacs identifies the longest common substring for position 4 in S1 that
exactly matches the substring at some position in S2. In this case, such a match is found
at position 2 in S2. Then, this match is extended to the right until the third mismatch is
reached. The length of this longest common substring with 2-mismatches is 7 but we only
count the number of matching nucleotides which is 5 in this case. Then, we averaged all
these lengths and defined distances analogous to the ACS approach.
A few years later, we derived the length distribution of k-mismatch longest common sub-
strings and the length distribution for the heuristic used in kmacs [82]. We developed a
tool that estimates the number of substitutions per site based on lengths of the extensions.
We showed that this estimator works up to almost 1 substitution per site and therefore,
performs better on divergent sequences than Kr.

Like word counts, substring matches can be calculated in linear time. However, more
sophisticated data structures are needed such as suffix trees [127]. In a suffix tree each
path from the root to a leaf represents one suffix of a sequence S. To ensure that each
suffix is represented by a leaf a special character, usually $, is appended to the sequence.
Otherwise, a suffix that is a prefix of another suffix would not end up in a distinct leaf.
Suffix trees are one of the most important data structures for pattern matching. They
allow extremely fast and important string operations such as string searching. Therefore,
they also play an important role in bioinformatics for sequence analysis. Beside alignment-
free sequence comparison there are many other applications that rely on suffix trees. One
example is the rapid identification of tandem repeats [31]. Another important application
is whole genome alignment. Here, suffix trees are used to rapidly find anchor points from
which the alignment is extended. Perhaps the most popular tool for this is the MUMmer
pipeline [56]. However, one major disadvantage of suffix trees is that they have a relatively
high memory requirement of 20 bytes per input character [55]. This problem can be
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circumvented if a suffix array [76] is used instead. A suffix array contains the starting
positions of all suffixes of a sequence in lexicographical order. For a constant alphabet, a
suffix array can be build in linear time with O(1) workspace [85]. If the suffix array is
enhanced by additional tables, then each string problem that can be solved with suffix trees
can also be solved with suffix arrays with same time complexity [1]. Because suffix arrays
reduce the memory bottleneck they become more frequently used in bioinformatics [101].
For example, the latest release of MUMmer [77] switched from a suffix tree implementation
to suffix arrays. Also most alignment-free approaches described in the section use enhanced
suffix arrays to identify longest common substrings efficiently.

1.1.4 Methods based on micro-alignments

The term micro-alignment was coined by the authors of CO-phylog [133]. These methods
define distances based on short local gap-free alignments which are identified by spaced-
word matches. In this section, two approaches are described: CO-phylog and andi [38].
The latter one can not be found in Figure 1 because it was published after the review
paper. CO-phylog, on the other hand, was classified as an inexact word count method.
It is, to some extent, correct that CO-phylog count word matches but only those with a
certain property. This procedure is described in the following.

Since CO-phylog is based on spaced-word matches, a pattern of match and don’t care
positions must be defined first. The patterns they use have a certain structure which is
as follows: the patterns start with n consecutive match positions, followed by one single
don’t care position and then again n consecutive match positions. In other words: there
is one don’t care position in the middle of the pattern, flanked by n match positions. For
example, if n = 4 the pattern looks like 111101111. They call the nucleotides at the match
positions context (C) and the nucleotide at the don’t care position the object (O), hence
the name CO-phylog. An example for a word match between two sequence S1 and S2 with
the pattern P = 111101111 is given below

S1 A T G A C A T A T C C T A
S2 C G A C A G A T C C C
P 1 1 1 1 0 1 1 1 1
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In the example above, GACA*ATCC is the context, colored blue, and T in S1, respectively
G in S2, is the object, colored red. In this case, there is a mismatch at the don’t care
position, i.e. the object is different. In general, the nucleotides at the don’t care position
can also match. Therefore, the fraction of spaced-word matches with different objects
compared to the total number of spaced-word matches is an estimate of the number of
mismatches between the sequences. And this is exactly how the CO-phylog distance is
defined. For example, if there are 5000 spaced-word matches between the sequences of
which 500 have a mismatch at the don’t care position, i.e. the object differs, and the other
4500 have a match at the don’t care position, i.e. the same object, then the distances
is calculated as 500

5000 = 0.1. Since this distance estimates the p-distances, the authors
could have turned it into an evolutionary distance by using the Jukes&Cantor model, but
they did not do that. The reason might be that this approach was designed for closely
related genomes and for small substitution rates, the mismatch rate nearly coincide with
the number of substitutions.

There remains one issue with this approach that needs to be addressed: what if there are
multiple spaced-word matches with the same context but different objects? For example
lets consider the sequence S1 = AATGCTGTCCATCCTC and S2 = AGATGCTTATA
and the pattern 11011

S1 A A T G C T G T C A T C C T C
S2 A G A T G C T T A T A

The word AT*CT occurs two times in S1 with different objects and match one word in S2.
In such a case, it is not possible to determine whether a mutation has happened or not
because it remains unknown which word match is due to homology and which occurred
just by chance (or due to genomic events). Therefore, the authors defined that the word
AT*CT is not a context and ignored it. To reduce such incidences it is important to keep
the number of background matches low which is achieved by using patterns with 18 match
positions. However, as mentioned in the word count section, this also reduces the signal
which makes their program better for closely related genomes.
The implementation of CO-phylog is as simple as standard word count methods. Similar
to other word count methods, spaced-word matches have to be identified first and then
it is straight forward to determine the fraction of shared or different objects. Therefore,
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CO-phylog has the same time and space complexity as other word count methods. Finally,
it is notable that CO-phylog can work with unassembled reads.

In the following, I point out the differences between standard word count methods and CO-
phylog. The major difference is that CO-phylog does not define distances based on word
frequency vectors as standard word count methods but estimates distances directly from
spaced-word matches. That means they consider spaced-word matches explicitly as short
local gap-free alignments. If spaced-word matches are interpreted as alignments which rep-
resent homologies then is obvious that the mismatch rate can be directly estimated based
on the aligned nucleotides at the don’t care positions. However, one might wonder why
methods are called alignment-free if they defines distances based on micro-alignments. The
reason is that these methods do not align sequences over their entire length and also do
not include gaps. Therefore, they are as fast and versatile as other alignment-free methods.

The second approach, andi [38] which stands forANchor DIstance, identifies micro-alignments
based on pairs of exact maximal unique matches, called anchors. The mismatch rate is
calculated based on the aligned nucleotides between those anchors. An example is shown
below

S1 A T A C A T G T A G G C G G
S2 G C C A T C T C G G C T A A

In this example, two anchors are found: CAT and GGC, colored in blue. Both are unique
and maximal, i.e. they occur only once in each sequence and they can not be extended to
the left or right without mismatches. The segment between both anchors, colored in red,
has the same length in both sequences, i.e. they are equidistant, and the mismatch rate
can be directly calculated based on the aligned nucleotides of this segment. However, the
segments can have different lengths as shown in the example below:

S1 A T A C A T G T A A G G C G G
S2 G C C A T C T C G G C T A A

There are two reasons why this can happen: either the segment between the anchors contain
indels or at least one anchor occurred by chance and not due to homology. In both cases
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no meaningful distance can be calculated and the authors ignore such segments. However,
the chance of random anchors increases with increasing sequence divergence and also two
non homologous anchors can be equidistant to each other. In this case, the mismatch
rate between unrelated parts of the sequences are calculated which distorts the estimated
distance. To reduce the chance of random anchors, the authors defined a minimum anchor
length. Instead of a fixed minimal anchor length, they derived the probability density
distribution of anchor lengths for unrelated sequences and defined the minimum length
to be the 97.5% quantile of this distribution. The implementation of andi is based on
enhanced suffix arrays and range minimum queries [27]. Compared to other alignment-
free programs, the run time and the memory requirement of andi is very low. In fact, andi
is one of the fastest alignment-free method available.

Andi and CO-phylog share the same underlying idea to estimate distances based on short
local gap-free alignments. The difference between both methods is how the segments, from
which the distances are estimated, are found. CO-phylog searches for spaced-word matches
which have a predefined fixed length and one single wildcard character in the middle of
the match. Andi, on the other hand, aligns segments of varying lengths and can be seen
as a generalization of CO-phylog. Both methods determine the fraction of the mismatches
of the aligned segments to estimate the number of mismatches. Andi turns this mismatch
rate into an evolutionary distances by using the Jukes&Cantor model. The distances are
estimated very accurately up to 0.5 substitutions per site. For higher substitution rates
no anchors are found anymore that fulfill the minimal length or equidistant criteria. CO-
phylog, on the other hand, does not correct for back substitutions, i.e. no substitution
model is used to turn the mismatch rate into an evolutionary distance. Therefore, these
distances rather reflect the p-distance than the number of substitutions per site.

Methods which calculate distances based on micro-alignments have some favorable proper-
ties over word count and match lengths methods. They estimate the number of substitu-
tions between sequences without a simplified model of evolution which rely on unrealistic
a priori assumptions such as that the sequences under study are related over their entire
length. For example, the estimator based on Equation 1 assumes that for each position
in the first sequence, there is exactly one match in the other sequence due to homology.
However, if the sequences are only partially related, i.e. they only share local homologies,
fewer word matches are found which leads to an overestimation of the substitution rate.
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CO-phylog, on the other hand, is not dependent on the number of word matches because
the distances are estimated from the aligned nucleotides at the don’t care position. If one
assumes that no or only few word matches are found in unrelated parts of the sequence,
then the substitution rate is well approximated. But here is the problem: how to ensure
that most spaced-word matches reflect homologies and not background matches? Both,
andi and CO-phylog solve this issue by using long exact word matches to reduce back-
ground hits. However, as pointed out before, this also reduce the signal from which the
distances are estimated. Consequently, both programs work well for smaller substitution
rates but reach their limits if more divergent sequences are to be analysed.

1.2 Objectives and overview

The objective of this work is the development of a new alignment-free method for whole
genome phylogeny reconstruction. The new approach should estimate the number of sub-
stitutions per position without sequence alignment. Current alignment-free estimators are
either based on unrealistic a priori assumptions or are limited to closely related sequences.
The new approach must overcome these limitations and an efficient implementation is nec-
essary to keep the run time low.
In the first publication (see Chapter 2) a new approach to alignment-free whole genome
phylogeny reconstruction, called filtered spaced-word matches (FSWM) is introduced. This
approach is based on micro-alignments and uses a filtering procedure to remove spaced-
word matches that are assumed not to be homologous.
The second publication (see Chapter 3) describes how the filtered spaced-word matches
can be used as anchor points in genome alignments. To this end, a modified version of the
FSWM approach was integrated into the multiple-sequence-alignment pipeline mugsy [6].
In Chapter 4, the Prot-SpaM approach is introduced. Prot-SpaM is a modification of
FSWM and designed to calculate pairwise distances between whole proteoms. The calcu-
lated distances approximate the PAM distance [19] and is the first alignment-free program
that estimates evolutionary distances between protein sequences without sequence align-
ments.
The overall results of the publications are discussed in Chapter 5 and an outlook is given
in Chapter 6 which describes how the FSWM approach could be developed further.
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2 Fast and accurate phylogeny reconstruction using filtered spaced-
word matches
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Abstract

Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny recon-

struction and genome comparison, since they are much faster than traditional approaches that are

based on full sequence alignments. Existing alignment-free programs, however, are less accurate

than alignment-based methods.

Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to es-

timate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern

of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input

sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and

with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide

substitutions per site by considering the nucleotides aligned at the don’t-care positions of the iden-

tified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering

procedure where we discard all spaced-word matches for which the overall similarity between the

aligned segments is below a threshold. We show that our approach can accurately estimate substi-

tution frequencies even for distantly related sequences that cannot be analyzed with existing

alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality.

A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes.

Availability and Implementation: The program source code for FSWM including a documentation,

as well as the software that we used to generate artificial genome sequences are freely available at

http://fswm.gobics.de/

Contact: chris.leimeister@stud.uni-goettingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogeny reconstruction is one of the most fundamental tasks in

computational biology. Traditionally, phylogenetic trees are inferred

from multiple sequence alignments, by considering substitutions

that may have occurred since the aligned sequences have evolved

from a hypothetical common ancestor. While this procedure is still

standard in phylogeny analysis, approaches based on word statistics

have become popular in recent years, since they circumvent various

difficulties involved in multiple alignment (Bernard et al., 2016;

Reinert et al., 2009; Song et al., 2014; Vinga, 2014; Wan et al.,

2010). The main advantage of these methods is that they are much

faster than alignment-based approaches. Under most scoring

schemes, calculating an optimal alignment of two sequences takes

time proportional to the product of their lengths and is therefore

limited to rather short sequences. By contrast, the word composition

of sequences can be calculated in linear time. Another difficulty with
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traditional phylogeny approaches is that sets of orthologous genes

must be identified first, before multiple alignments can be calcu-

lated. Word-based methods, on the other hand, can be directly

applied to genomic sequences, and even to unassembled reads. Since

these approaches do not require global alignments of the sequences

under study, they are often called alignment free. Strictly spoken,

this is not quite correct, as most word methods compare—i.e.

align—subwords of the sequences to each other. We use the term

alignment-free anyway, since it is now commonly used for word-

based approaches to sequence comparison.

Alignment-free methods are not only used in phylogenetic stud-

ies (Bromberg et al., 2016; Didier et al., 2007; Hatje and Kollmar,

2012), but also for protein classification (Comin and Verzotto,

2011; Leslie et al., 2002; Lingner and Meinicke, 2006, 2008), read

alignment (Ahmadi et al., 2011; Langmead et al., 2009; Li et al.,

2008), isoform quantification from RNAseq reads (Patro et al.,

2014), sequence assembly (Zerbino and Birney, 2008), metagenom-

ics (Chatterji et al., 2008; Leung et al., 2011; Meinicke, 2015;

Tanaseichuk et al., 2012; Teeling et al., 2004; Wang et al., 2012;

Wu and Ye, 2011), analysis of regulatory elements (Federico et al.,

2012; Kantorovitz et al., 2007; Leung and Eisen, 2009; Wang et al.,

2012) and to identify biomarkers in diagnostic tests (Drouin et al.,

2016). Most authors divide alignment-free approaches into two

classes: methods based on word count and methods based on match

lengths (Haubold, 2014). For a fixed word length, word-count

methods transform the input sequences into word-frequency vectors;

the distance between two sequences can then be defined as the dis-

tance between the corresponding word-frequency vectors, for ex-

ample under the Euclidean norm (Chor et al., 2009; Sims et al.,

2009; Vinga et al., 2012; Zuo and Hao, 2015).

Match-length approaches, in contrast, estimate phylogenetic dis-

tances from the length of substring matches between two sequences

(Comin and Verzotto, 2012; Haubold et al., 2005; Thankachan

et al., 2016; Ulitsky et al., 2006). Since the length of exact substring

matches between two homologous sequence regions depends on the

mismatch frequency, substitution rates can be estimated, in turn,

from the average length of exact common substrings (Domazet-Loso

and Haubold, 2009). The program Kr (Haubold et al., 2009) is

based on this idea; to our knowledge, this was the first alignment-

free approach that estimates phylogenetic distances based on an ex-

plicit model of molecular evolution.

Recently, we proposed to use so-called spaced words, instead of

contiguous subwords of the input sequences, to quantify the similar-

ity or dissimilarity between two sequences (Leimeister et al., 2014).

Spaced words are words containing wildcard characters at positions

specified by a predefined binary pattern of match and don’t-care

positions. The main advantage of spaced words, compared to con-

tiguous words, is that occurrences of neighbouring spaced words are

statistically less dependent on each other; we have shown that better

phylogenies can be obtained if spaced-word frequencies are used in-

stead of the contiguous word frequencies used by traditional word-

based methods (Horwege et al., 2014; Leimeister et al., 2014). As

with most word-based methods, however, distances calculated from

spaced-word-frequency vectors are not based on stochastic models

of evolution; they do not try to estimate the ‘true’ distance between

two sequences in a rigorous way, but provide only a rough measure

of dissimilarity between the compared sequences.

Three other word-based methods have been proposed in recent

years to estimate the mismatch frequency or number of substitutions

per site between DNA sequences, namely Co-phylog (Yi and Jin,

2013), andi (Haubold et al., 2015) and an estimator that is based on

the number of spaced word matches between two sequences

(Morgenstern et al., 2015). Co-phylog uses so-called micro align-

ments, consisting of a single pair of aligned nucleotides, flanked on

both sides by exact word matches of a fixed length ‘. With our nota-

tion, a micro alignment can be seen as a match between two identi-

cal spaced-words of length 2‘þ 1 with a single wildcard character

at the middle position. To estimate the mismatch frequency between

two sequences, Co-phylog calculates the fraction of micro align-

ments where the middle position is a mismatch.andi searches for

pairs of maximal unique word matches within a certain distance to

each other, and on the same diagonal in the comparison matrix of

two sequences. The program then uses the implied gap-free align-

ments of the sequence segments between these word matches to esti-

mate the number of substitutions per position. This can be seen as a

generalization of Co-phylog, with more than one wildcard character

in the middle, and with flanking word matches of varying length.

Finally, we proposed in a previous paper to estimate evolutionary

distances based on the number of (spaced) word matches between

the sequences (Morgenstern et al., 2015). This approach is more ac-

curate than other alignment-free approaches. It is limited, however,

to homologies extending over the full length of the input sequences,

therefore this previous approach cannot be applied to compare dis-

tantly related genomes.

To accurately estimate the number of substitutions per position

between two sequences, programs such as Kr, andi and Co-phylog

have to consider (spaced) word matches between homologous seg-

ments of the input sequences. In order to exclude random back-

ground matches, they use cut-off values for the length of the

matching word pairs—or, with our terminology, for the number of

match positions in the matched spaced words. A difficulty with this

approach is that a high cut-off is necessary if long sequences are

compared, since the number of background matches increases quad-

ratically with the sequence length, while the number of homologous

matches increases only linearly. Thus, with cut-off that is sufficiently

high to reduce the noise of random similarities, many homologous

word matches will be discarded as well, which reduces the amount

of information available for phylogeny inference.

In this paper, we propose filtered spaced-word matches (FSWM),

an alternative alignment-free approach to estimate phylogenetic dis-

tances between DNA sequences. FSWM first identifies all matching

spaced words between two sequences, with respect to a fixed pattern

of match and don’t-care positions. Similar to Co-phylog and andi,

we look at the aligned nucleotides at the don’t-care positions of

those spaced-word matches to estimate the average number of sub-

stitutions per sequence position. The fundamental difference be-

tween our method and these earlier methods is the way we filter out

random background spaced-word matches. Instead of using a high

number of match positions in the underlying pattern, we define a

similarity score for spaced-word matches, considering the similarity

between aligned nucleotides at the don’t-care positions, and we dis-

card all spaced-word matches with a score below a certain thresh-

old. The fraction of mismatches at the don’t care positions of the

remaining spaced-word matches is then used to estimate the number

of substitutions per position since two sequences diverged from a

common ancestral sequence.

Using simulated and real genomic sequences, we show that

FSWM can accurately estimate phylogenetic distances between gen-

omic sequences. If distance matrices produced by FSWM are used as

input for Neighbor-Joining, accurate phylogenetic trees can be ob-

tained, even for large, distantly-related sequences. Calculating the

evolutionary distance between two bacterial genomes of 3.3 Mb

each takes around 0.2 s with our approach; for a pair of eukaryotic

genomes of 340 Mb each, the runtime is around 320 s.
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2 Algorithm

2.1 Spaced words and spaced-word matches
To describe our algorithm, we are using the terminology from our

previous papers (Leimeister and Morgenstern, 2014; Morgenstern

et al., 2015). For an alphabet R, a sequence S of length L and 0 < i

� L; S ½i� denotes the ith symbol of S. A (binary) pattern is a word

over {0, 1}; a position k in a pattern P is called a match position if

P½k� ¼ 1, it is called a don’t-care position if P½k� ¼ 0. The number of

match positions in a pattern is called its weight. If ‘*’ is a ‘wildcard’

character, � 62 R, a spaced word with respect to a pattern P is a

word s over R [ f�g of the same length as P, with s½i� 2 R if i is a

match position of P and S½i� ¼ � if i is a don’t-care position of P. We

say that a spaced word s with respect to some pattern P occurs in a

sequence S at position i if s½k� ¼ S½iþ k� 1� for all match positions

k of P.

For sequences S1 and S2 over R, with lengths L1 and L2, respect-

ively, a pattern P of length ‘, and positions i, j,

1 � i � L1 � ‘þ 1;1 � j � L2 � ‘þ 1, we say that there is

spaced-word match between S1 and S2 at (i, j) with respect to P if

the same spaced word s occurs at position i in S1 and at position j in

S2. In other words, the requirement is that for all match positions k

in P, one has S1½iþ k� 1� ¼ S2½ jþ k� 1�. Below is a spaced-word

match between two DNA sequences S1 and S2 at (5, 2) with respect

to the pattern P¼1100101:

S1 : G C T G T A T A C G T C

S2 : G T A C A C T T A T

P : 1 1 0 0 1 0 1

By definition, nucleotides in S1 and S2 corresponding to a match pos-

ition of P are identical, while at the don’t-care positions mismatches

are possible. Throughout this paper, we use a single pattern P if two

sequences are compared, as opposed to the multiple-pattern ap-

proach that we previously used (Leimeister et al., 2014).

If one wants to estimate phylogenetic distances between genomic

sequences based on spaced-word matches between them, one needs

to distinguish between matches representing true homologies and

random background matches (Devillers and Schbath, 2012). One

possible way of reducing the number of background spaced-word

matches would be to use a sufficiently high weight w, i.e. number of

match positions, for the underlying pattern. Such an approach has

been taken, for example, by andi and Co-phylog. For long, divergent

input sequences, however, this approach is problematic. To see this,

consider two sequences of length L under a model of evolution with-

out insertions and deletions (indels), with a match probability p for

pairs of homologous nucleotides and a background match probabil-

ity q. With a pattern of length ‘ and weight w, the expected number

of homologous spaced-word matches would be ðL� ‘þ 1Þ � pw,

while the expected number of background matches would be

ðL� ‘Þ � ðL� ‘þ 1Þ � qw. That means that, in order to obtain N

times as many homologous spaced-word matches than background

matches, one would have to use a weight w satisfying

w � logp
q
½N � ðL� ‘Þ�

For two sequences of length 5 Mb, for example, with p¼0.8 and

q¼0.25, a weight of w¼16 would be necessary to keep the fraction

of background spaced-word matches below 10 % ðN ¼ 9Þ; in this

case, one would obtain around 140 000 homologous spaced-word

matches and around 5800 background matches. By contrast, with

the same L and q, but with p¼0.6, a weight of w¼21 would be

necessary to have<10% background matches. With these param-

eter values, as few as 114 expected spaced-word matches would be

left as a basis for phylogeny reconstruction, 109 homologous and

5 background matches. With p¼0.5, it would be unlikely to find

even a single spaced-word match with this approach.

2.2 Filtered spaced-word matches
Herein, we propose an alternative solution to distinguish between

homologous and background spaced-word matches as a basis of

phylogeny reconstruction. To identify all spaced-word matches be-

tween two sequences with respect to a pattern P, we sort the spaced

words in the sequences lexicographically, such that matching

spaced-words appear next to each other. A score is calculated for

each spaced-word match using the following substitution matrix

(Chiaromonte et al., 2002)

A C G T

A 91 �114 �31 �123

C 100 �125 �31

G 100 �114

T 91

Here, we define the score of a spaced-word match as the sum of the

substitution scores of the nucleotide pairs aligned at the don’t-care

positions. The spaced-word match shown in the previous section,

for example, has three don’t-care positions where the nucleotide

pairs ðT;CÞ; ðA;AÞ and (G, T) are aligned; the score of this spaced-

word match would thus be �31þ 91� 114 ¼ �54. Our algorithm

discards all spaced-words matches with scores below a certain cut-

off. Experimental results show that a cut-off value of zero is ad-

equate to filter out most background similarities, see Table 1 and

Figure 1, so our software uses this value by default.

For a sequence pair and a pattern P, one can plot the number of

spaced-word matches against the similarity scores, i.e. for each pos-

sible score value, one plots the number of spaced-word matches

with this score. We call such a plot a spaced-words histogram, ex-

amples are given in Figure 1. Under an i.i.d. model of molecular evo-

lution, the scores of both homologous and background spaced-word

matches are approximately normally distributed, with mean values

ð‘�wÞ � sh and ð‘�wÞ � sb, respectively, where sh and sb are the ex-

pected substitution scores for homologous and background nucleo-

tide pairs. If, in addition, we consider a model without insertions

and deletions, a spaced-word match at (i, j) is ‘homologous’ if and

only if i¼ j, and each spaced-word match is either completely hom-

ologous or completely background. In this case, a spaced-words

histogram is approximately the sum of two normal distributions.

Figure 1 shows that, for real-world sequences too, the background

spaced-word matches are roughly normally distributed. The distri-

bution of the homologous spaced-word matches is more complex,

Table 1. Proportion of ‘homologous’ spaced-word matches re-

tained after our ‘filtering procedure’—i.e. after discarding all

spaced-word matches with scores smaller or equal than zero—for

gap-free simulated sequence pairs of different length and with 0.2–

1.0 substitutions per site

0.2 0.4 0.6 0.8 1.0

5 mb 1.00000 0.99998 0.99986 0.99769 0.98723

50 mb 0.99994 0.99950 0.99599 0.97795 0.86791

100 mb 0.99989 0.99898 0.99258 0.95765 0.79022
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A B
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G H

Fig. 1. Spaced-word histograms for simulated and real-world sequence pairs. The number of spaced-word matches is plotted against the spaced-word score as

defined in the main text. The plots show the remaining spaced-word matches after the greedy one-to-one mapping explained in the main text. Thus, a spaced

word at a certain position can be involved in at most one spaced-word match. (A) simulated indel-free sequence pairs of length 5 mb under an i.i.d. substitution

model with a transition/transversion ratio of 2:1 and 0.1 substitutions per sequence position on average; (B) same model with 0.3 substitutions per position;

(C) Sagittula stellata E37 vs Rhodobacterales bacterium HTCC2255; (D) Octadecabacter arcticus 238 vs Octadecabacter antarticus 307; (E) Escherichia coli strain

S88 vs Escherichia coli strain 536; (F) Phaeobacter gallaeciensis 2.10 vs Rhodobacterales bacterium Y4I, (G) Saccharomyces mikatae vs Saccharomyces cerevi-

siae, (H) Spizellomyces punctatus vs Batrachochytrium dendrobatidis. For all sequence pairs, the scores of the background spaced-word matches are approxi-

mately normally distributed. For the real-world sequences, the peaks of the homologous matches are more complex, due to varying degrees of sequence

conservation within the genomes. In E, the background peak is not visible since the two E.coli genomes are so closely related that there are much more homolo-

gous than background spaced-word matches. In H, we used a logarithmic scale because, for these two sequences, there are many more background than hom-

ologous spaced-word matches and the homologous peak would not be visible with a linear scale. For all sequence pairs, we used a pattern P with the default

weight of w¼ 12 and 100 don’t-care positions, so the pattern length was 112
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however, reflecting different degrees of sequence similarity in differ-

ent parts of the sequences.

A well-known problem in phylogenomics are duplications in

genomes, since only orthologous sequences can be used for phyl-

ogeny reconstruction (Huerta-Cepas et al., 2016; Schreiber et al.,

2009; Waterhouse et al., 2013). We address this issue by selecting a

one-to-one matching of spaced words when comparing two se-

quences. If a spaced word s occurs at m positions in the first se-

quence and at n positions in the second sequence, there are m�n

spaced-word matches involving s. To find a one-to-one mapping be-

tween the occurrences of s, we use a greedy approach: after our fil-

tering procedure, we sort the remaining spaced-word matches

according to their similarity scores, we pick the one with the highest

score and remove the corresponding two occurrences of s from our

list. Next, we select the highest scoring one among the remaining

spaced-word matches etc. By picking high-scoring spaced-word

matches first, we increase the probability of matching orthologous

segments of the compared genomes.

As an example, consider the two sequences below and the pat-

tern P¼10 011.

S1 : G G A T A G G G T A T A T T A

S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Here, the spaced word s¼G��TA occurs three times in S1, at pos-

itions 1, 6 and 8, and twice in S2, at positions 2 and 9, so we obtain

6 spaced-word matches involving s, namely at (1,2), (1,9), (6,2),

(6,9), (8,2) and (8,9). The one at (8,2) has a negative score, as it

aligns nucleotide pairs (T, G) and (A, G) at the don’t-care pos-

itions, the same is true for the one at (8,9) that aligns (T, G) and

(A, A). Thus, with our default cut-off value of zero, these two

spaced-word matches will be discarded in our initial filtering pro-

cedure. To obtain a one-to-one mapping, we sort the remaining

four spaced-word matches involving s according to their scores.

Here, the one at (6,2) would be selected first as it aligns two nu-

cleotide pairs (G, G) at the don’t-care positions, so it would have a

score of 100þ100¼200. Next, the one at (1,9) would be selected

that aligns (G, G) and (G, A), with a score of 100þ91¼191. The

third and fourth spaced-word match would be at (1,2) and (6,9),

respectively, both aligning (G, G) and (A, G), so each one would

have score of 100 – 31¼69. We do not accept them in our one-to-

one matching, however, since these occurrences of the spaced

word s have already been used in the previously accepted, higher-

scoring spaced-word matches.

After a set of spaced-word matches has been selected for a pair

of genomic sequences as described, we estimate the evolutionary dis-

tance between the sequences by considering all don’t-care positions

of these spaced-word matches. From the aligned nucleotides at these

positions, we estimate the match probability p and apply the usual

Jukes-Cantor correction (Jukes and Cantor, 1969) to estimate the

average number of substitutions per sequence position. Note that

the spaced words that are finally selected can overlap so, in theory, a

position in one sequence can be assigned to up to ‘ – w positions in

the second sequence when p is estimated. For the above shown se-

quence pair, for example, there would be an additional spaced-word

match with a positive score, namely the one at (7, 10) involving the

spaced word G � �AT. As a result, the G at position 7 in S1 would

be assigned by two different spaced-word matches—the ones at (6,

2) and (7, 10)—to two different positions in S2, positions 3 and 11.

In the interest of program runtime, we do not remove such double

assignments.

The runtime of our program depends on the number of spaced-

word matches between the input sequences with grows quadratically

with the sequence length. Since matches involving the same spaced

word s are sorted to obtain a one-to-one matching, the worst-case

complexity of our algorithm is OðL2 � log LÞ. For realistic data,

however, this worst-case estimate is hardly relevant, since the real

number of spaced-word matches is only a tiny fraction of the theor-

etical maximum. Moreover, in real-world sequences not too many

spaced words appear more than once, and only small sets of spaced-

word matches need to be sorted for the greedy one-to-one matching.

To further decrease the runtime for very long genomes, the weight w

of the underlying pattern can be increased, to decrease the number

of spaced-word matches. The runtime of our program on real-world

and simulated sequences is reported in the next section. In addition

to the weight w, the user can adjust the threshold for the spaced-

word matches in the filtering procedure which is, by default, set to

zero. By contrast, the number of don’t-care positions is hard-coded

in the current implementation, we use patterns with 100 don’t care

positions. With our default value of w¼12, spaced words have

therefore a length of ‘¼112.

3 Test results

To evaluate the accuracy of the evolutionary distances estimated

with FSWM, we performed systematic test runs on simulated and on

real-world genomes. In all these test runs, we used the default weight

w¼12 and a threshold of zero for the spaced-word scores in the fil-

tering procedure. With some sequences we did additional test runs

with alternative values of w. Binary patterns were generated with

our software tool rasbhari (Hahn et al., 2016).

3.1 Simulated sequences
As a first set of test data, we generated semi-artificial sequence pairs.

Here, we used the genome sequence of E. coli, strain K12, as ances-

tral sequence and evolved it into pairs of descendant synthetic gen-

omes by randomly generating an average number of d substitutions

per site; we varied d between 0 and 1 in steps of 0.05 and used a

transition/transversion ratio of 2:1. For each value of d, we gener-

ated 500 pairs of simulated genomes, estimated their distances with

the methods under study and computed the standard deviations of

the estimated distances. For a first set of sequence pairs, we did not

include insertions and deletions. To make the simulation more real-

istic we generated a second set of sequence pairs where insertions

and deletions were included with a probability of 0.5% at every pos-

ition. The length of indels was randomly chosen between 1 and 100

with uniform probability. In Figure 2, the distances estimated with

Co-phylog, andi and FSWM for these simulated sequence pairs, with

and without indels, are plotted against the corresponding ‘real’ dis-

tances, i.e. the average number d of substitutions per site used to

generate them. As mentioned, we used the default weight of w¼12,

but with other values for w, similar results were achieved.

As can be seen in In Figure 2, FSWM estimates phylogenetic dis-

tances accurately for distances up to around 0.85 substitutions per

position; for larger substitution rates, distances are slightly underes-

timated. The distance estimates of the program are hardly affected

by insertions and deletions in the sequences. andi, by comparison,

returns accurate distances in the range up to around 0.6 substitu-

tions per position for our indel-free sequence pairs; this confirms

previous results published by the authors of the program who also

used indel-free sequence pairs in their program evaluation (Haubold

et al., 2015). For sequences with insertions and deletions, however,
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the results of the program are reliable only for distances up to

around 0.35 substitutions per positions. Co-phylog, finally, pro-

duces reasonably good distance estimates in the range between 0

and around 0.75 substitutions per position, although this program is

less accurate and produces statistically less stable results than

FSWM. For larger substitution rates, the distances estimated by Co-

phylog level out. As with FSWM, insertions and deletions hardly af-

fect the performance of Co-phylog on these test data.

Next, we simulated sets of gene sequences with the Artificial Life

Framework (ALF) developed by Dalquen et al. (2012). ALF evolves

gene sequences based on a probabilistic model along a random tree,

starting with a common ancestral sequence. During this process,

evolutionary events are logged such that the ‘true’ phylogeny is

known for each simulated sequence set and can be used as a refer-

ence in benchmark studies. We generated a series of 35 datasets con-

taining 50 ‘species’ each with a minimum gene length of 1000 and

with default settings for all other parameters. Each dataset com-

prises 1500 simulated gene families with one gene for each of the 50

species, generated along the same tree. The total length of the se-

quences in one dataset is between 225 Mb and 463 Mb, the largest

distance between two sequences in this dataset is around 0.4 substi-

tutions per position.

For each dataset, we calculated distance matrices with FSWM,

Co-phylog and andi. We then applied the Neighbor Joining (NJ) al-

gorithm (Saitou and Nei, 1987) from the PHYLIP package

(Felsenstein, 1993) to these distance matrices to calculate phylogen-

etic trees. Finally, we compared the obtained trees to the reference

trees using the Robinson-Folds (RF) metric (Robinson and Foulds,

1981) to assess their quality. The smaller the RF distances are, the

better are the reconstructed trees. The sum of the RF distances over

all 35 datasets was 470 for the distances calculated by andi, 446 for

the Co-phylog approach and 424 for our FSWM method.
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Fig. 2. Distances estimated with Co-phylog (top), andi (middle) and FSWM (bottom) for pairs of simulated DNA sequences, without indels (left-hand side) and

with indels (right-hand side), plotted against the ’real’ distances, measured in substitutions per site. Sequence pairs were generated as explained in the main text,

Section 3.1, by inserting random mutations into the E. coli K12 genome sequence. Error bars represent standard deviations
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3.2 Real genomes
To see if similar results can be achieved on real-world genomes, we

first used a set of 13 bacterial genomes from the Brucella genus. As

a reference, we used a tree that has been previously published by

Foster et al. (2009) which is based on orthologous SNPs, discovered

by the alignment program MUMmer (Kurtz et al., 2004). The total

size of this dataset is about 43.5 Mb; the 13 genomes are closely

related, the largest distance between two genomes in this set is

around 0.002 substitutions per position. All three programs, Co-

phylog, andi and FSWM, precisely produced the topology of the ref-

erence tree, i.e. the RF distances between the reconstructed trees and

the reference tree are all zero. For the pattern weight in FSWM, we

used not only the default value of w¼12, but also w¼10,11,13,14.

With all these values for w, we obtained exactly the same correct

tree topology; these trees are shown in the supplementary material.

As a third benchmark set for phylogeny reconstruction, we used

a set of 14 plant genomes with a total size of about 4.8 Gb which is

frequently used as a test case in alignment-free studies (Hatje and

Kollmar, 2012; Leimeister and Morgenstern, 2014). These se-

quences are rather distantly related, the maximum distance between

two genomes in this set is 0.633 substitutions per position. Figure 3

shows a previously published tree that has been calculated using

Maximum Likelihood based on manually improved multiple se-

quence alignments of CAP and Arp2/3 protein sequences (Hatje and

Kollmar, 2012), a tree obtained with andi and three trees obtained

with FSWM using parameter values w¼12, w¼13 and w¼14.

The trees obtained with our approach are similar to the tree pub-

lished by Hatje and Kollmar (2012), with only minor differences in

the Brassicales clade: with w¼12 and w¼13, Brassica rapa has a

slightly different position in the FSWM tree, compared to the tree

based on protein alignments, while with w¼14, Capsella rubella is

placed at a different position. andi did not produce a reasonable

phylogeny for these genomes, since this program works best on se-

quences with lower substitution rates. We also tried to run Co-phy-

log on this dataset, but the program did not terminate, so we were

unable to include its results in our evaluation. As reported in the lit-

erature, other alignment-free methods were also unable to calculate

meaningful phylogenies for this dataset (Hatje and Kollmar, 2012;

Leimeister and Morgenstern, 2014).

3.3 Runtime
We ran all programs on 10 x Intel(R) Xeon(R) CPU E7-4850 with

2.00 GHz with 4 cores each summing up to 40 cores (80 threads)

A B

C

E

D

Fig. 3. Trees reconstructed from 14 plant genomes. (A) tree based on multiple protein alignments and Maximum Likelihood (Hatje and Kollmar, 2012); (B) tree cal-

culated with distances from andi; (C–E) trees calculated with distances from FSWM with weights w¼12 (C), w¼ 13 (D) and w¼14 (E), respectively
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and 1000 GB RAM. Co-phylog took around 1200 s for one of the

simulated ALF datasets, andi 22 s and FSWM 180 s. For the

Brucella genomes the runtime was 3 s for andi, 59 s for Co-phylog

and 15 s for FSWM. For the plant genomes, the runtime was 1740 s

for andi, for FSWM the runtime was 129 540 s with w¼12, com-

pared to 28 980 s with w¼13 and 10 260 s with w¼14.

4 Discussion

In this paper, we proposed Filtered Spaced-Word Matches (FSWM),

a new alignment-free approach to estimate phylogenetic distances

between genomic sequences. Similar to the recently published meth-

ods andi and Co-phylog, FSWM rapidly identifies pairwise local

gap-free alignments where pairs of identical nucleotides are aligned

to each other at certain, pre-defined positions, while mismatches are

possible elsewhere. Phylogenetic distances between genomes can

then be estimated by considering those positions of the identified

local alignments where mismatches are allowed. While andi and Co-

phylog use local alignments bounded by matching word pairs of

a certain length, our approach uses spaced-word matches with re-

spect to an arbitrary binary pattern of match and don’t-care

positions.

The main difference between FSWM and these previous methods

is in how we distinguish between local homologies and spurious ran-

dom similarities. andi and Co-phylog use exact word matches of a

certain length to reduce the background noise. A disadvantage of

this approach is that, this way, many true homologies are discarded

as well. By contrast, we use patterns with a rather low number w of

match positions, the default value in FSWM is w¼12. This allows

us to identify sufficiently many local homologies, even for remotely

related sequences. To filter out random similarities, we then look at

the nucleotides aligned at the don-t care positions, and we discard

all spaced-word matches for which the overall similarity is below a

certain threshold. We use patterns with 100 don’t care positions, so

the default length of our spaced-word matches is 112 nt. To deal

with duplications, we select a one-to-one mapping of spaced words

from the compared sequences.

Our approach is able to rapidly detect homologies among gen-

omic sequences, as a basis for phylogeny reconstruction. At the

same time, our filtering procedure allows us to distinguish between

true homologies and spurious random similarities. This way, FSWM

can accurately estimate substitution frequencies, even for long, dis-

tantly related sequences where established alignment-free methods

fail to produce reasonable results.

For closely related sequences, our filtering approach can separate

homologous spaced-word matches from background matches with

almost 100% accuracy. For distantly related sequences, there is a

certain twilight zone where the distributions of the homologue and

background matches in the spaced-word histograms have some

overlap, as can be seen in the comparison of Spizellomyces puncta-

tus and Batrachochytrium dendrobatidis in Figure 1H. If longer pat-

terns with more don’t-care positions would be used, the split

between homologous and background spaced-word matches would

become clearer, but the pattern length cannot be too long because

this would reduce the number of spaced-word matches in homolo-

gous regions too much.

In the current version of FSWM, the main parameter that is to be

adjusted by the user is the weight w of the underlying binary pattern.

By default, we are using a low weight to obtain sufficiently many

‘candidate’ spaced-word matches that are then filtered based on the

similarity between the aligned segments. If large genomes are com-

pared, it is advisable to increase w to reduce the number of

‘candidate’ spaced-word matches, since this decreases the program

runtime. Note that the value of w has no systematic influence on the

estimated distances; in our test runs we obtained similar distance

values and phylogenetic trees with different values of w; see also the

supplementary material to this paper.

To clearly separate homologous from background spaced-word

matches in our filtering procedure, we are using a relatively high

number of don’t care positions; in our implementation, the number

of 100 don’t care positions is hard-coded. A certain disadvantage of

this approach is that we miss homologies containing insertions or

deletions since, by definition, spaced-word matches are gap-free

local alignments. Therefore, input sequences for FSWM must be

long enough to ensure that sufficiently many homologous spaced-

word matches are found, even for remotely related input sequences

with frequent indels.

To separate homologous from background spaced-word matches,

a suitable threshold needs to be defined for the similarity between

matching spaced words. If the chosen threshold is too low, too many

random similarities are accepted, and our approach overestimates dis-

tances between compared sequences. If the threshold is too high, the

noise is reduced, but this way, low-scoring homologous spaced-word

matches are also discarded and distances are underestimated. In

FSWM, we use a nucleotide substitution matrix and, by default, we

discard all spaced-word matches for which the total score over all

don-t-care positions is negative. With this cut-off criterion, our

method is able to accurately estimate substitution frequencies even for

highly divergent genomic sequences. For very large substitution rates,

however, our method slightly underestimates phylogenetic distances,

so it is possible that FSWM discards too many low-scoring homolo-

gies. More sophisticated statistical methods may be applied to better

distinguish between true homologies and random similarities in our

approach to further improve its accuracy.
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Abstract

Motivation: Most methods for pairwise and multiple genome alignment use fast local homology

search tools to identify anchor points, i.e. high-scoring local alignments of the input sequences.

Sequence segments between those anchor points are then aligned with slower, more sensitive

methods. Finding suitable anchor points is therefore crucial for genome sequence comparison;

speed and sensitivity of genome alignment depend on the underlying anchoring methods.

Results: In this article, we use filtered spaced word matches to generate anchor points for genome

alignment. For a given binary pattern representing match and don’t-care positions, we first search

for spaced-word matches, i.e. ungapped local pairwise alignments with matching nucleotides at

the match positions of the pattern and possible mismatches at the don’t-care positions. Those

spaced-word matches that have similarity scores above some threshold value are then extended

using a standard X-drop algorithm; the resulting local alignments are used as anchor points. To

evaluate this approach, we used the popular multiple-genome-alignment pipeline Mugsy and

replaced the exact word matches that Mugsy uses as anchor points with our spaced-word-based

anchor points. For closely related genome sequences, the two anchoring procedures lead to mul-

tiple alignments of similar quality. For distantly related genomes, however, alignments calculated

with our filtered-spaced-word matches are superior to alignments produced with the original

Mugsy program where exact word matches are used to find anchor points.

Availability and implementation: http://spacedanchor.gobics.de

Contact: chris.leimeister@stud.uni-goettingen.de or bmorgen@gwdg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The most fundamental task in biological sequence analysis is to align

two or several nucleic-acid or protein sequences—either globally,

over their entire length, or locally, by restricting the alignment to a

single region of homology. Standard approaches to global alignment

assume that the input sequences derived from a common ancestor,

and that evolutionary events are limited to substitutions and small

insertions and deletions. In this case, sequence homologies can be

represented by global sequence alignments, that is, by inserting gap

characters into the sequences such that evolutionarily related se-

quence positions are arranged on top of each other. Under most

scoring schemes, calculating an optimal alignment of two sequences

takes time proportional to the product of their lengths and is there-

fore limited to rather short sequences (Durbin et al., 1998; Gotoh,

1982; Morgenstern, 2002; Needleman and Wunsch, 1970; Smith

and Waterman, 1981).
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With the rapidly increasing number of partially or fully

sequenced genomes, alignment of genomic sequences has become an

important field of research in bioinformatics, see Earl et al. (2014)

for a recent review and evaluation of some of the most popular

approaches. Here, the first challenge is the sheer size of the input

sequences which makes it impossible to use traditional algorithms

with quadratic run time. A second challenge is the fact that related

genomes often share multiple local homologies, interrupted by non-

conserved parts of the sequences where no significant similarities

can be detected. This means that neither global alignment methods

(Needleman and Wunsch, 1970) nor strictly local methods (Altschul

et al., 1990; Smith and Waterman, 1981) are appropriate to repre-

sent the homologies between entire genomes. Finally, homologies do

not generally occur in the same relative order in different genomes,

because of duplications and large-scale genome rearrangements.

Since it is not possible, in general, to represent homologies among

genomes in one single alignment, advanced genome aligners return

alignments of so-called Locally Collinear Blocks, i.e. blocks of seg-

ments of the input sequences where orthologous genes appear in the

same linear order.

Since the late 1990s, efforts have been made to a address the

above issues, and many approaches to genome-sequence alignment

have been published. One of the first multiple-alignment programs

that could be applied to genomic sequences was DIALIGN

(Morgenstern et al., 1996, 2002). This program composes multiple

alignments from chains of local pairwise alignments, and it does not

penalize gaps; it is therefore able to align sequences where local

homologies are separated by non-homologous regions. The program

was initially not designed for large genomic sequences, though, and

it is limited to sequences up to around 10 kb. Moreover, DIALIGN

is not able to deal with duplications, rearrangements or homologies

on different strands of the DNA double helix.

To align longer sequences, most programs for genomic align-

ment rely on some sort of anchoring (Huang et al., 2006;

Morgenstern et al., 2006). In a first step, they use a fast local align-

ment method to identify high-scoring local homologies, so-called an-

chor points. Next, chains of such local alignments are calculated

and, finally, sequence segments between the selected anchor points

are aligned with a slower but more sensitive alignment method. For

multiple sequence sets, either pairwise or multiple local alignments

can be used as anchor points. A pioneering tool to find anchor

points for genomic alignment is MUMmer (Delcher et al., 1999); the

current version of the program is considered the state-of-the-art in

alignment anchoring (Kurtz et al., 2004). MUMmer uses maximal

unique matches as pairwise anchor points. The genome aligner

MGA, by contrast, uses maximal exact matches involving all input

sequences (Höhl et al., 2002). Both MUMmer and MGA use suffix

trees (Kurtz, 1999) and related data structures to rapidly identify the

pairwise or multiple word matches. MUMmer and MGA can rapidly

align entire bacterial genomes; MUMmer was also used in the A.

thaliana genome project (The Arabidopsis Genome Initiative, 2000).

However, since the number of exact word matches decreases with

increasing evolutionary distances, these approaches are most useful

if closely related genomes are to be compared, such as different

strains of E. coli.

Other approaches to genome alignment are OWEN (Ogurtsov

et al., 2002), AVID (Bray et al., 2003), MAVID (Bray and Pachter,

2003), LAGAN and Multi-LAGAN (Brudno et al., 2003b),

CHAOS/DIALIGN (Brudno et al., 2003a), the VISTA genome pipe-

line (Dubchak et al., 2009), TBA (Blanchette et al., 2004) and

Mauve (Darling et al., 2004), see Dewey and Pachter (2006) and

Batzoglou (2005) for review. All of these methods use anchor points,

and most of them are able to deal with duplications and genome

rearrangements. Some genome aligners use statistical properties of

the sequences (Bradley et al., 2009; Darling et al., 2004); other

methods are based on graphs, for example on A-Bruijn graphs

(Raphael et al., 2004) or on cactus graphs (Paten et al., 2011). A fur-

ther development of Mauve, called progressiveMauve (Darling

et al., 2010), uses palindromic spaced seeds (Darling et al., 2006) in-

stead of exact word matches as anchor points. Spaced seeds are used

for sequence-analysis tasks such as database searching (Choi et al.,

2004; Ma et al., 2002; Noé, 2017; Xu et al., 2006), read mapping

(B�rinda et al., 2015; David et al., 2011; Langmead et al., 2009; Noé

et al., 2010; Ounit and Lonardi, 2015), alignment-free sequence

comparison (Leimeister et al., 2014) or pathogen detection Deneke

et al. (2017). Such pattern-based approaches are often superior to

methods based on contiguous words or word matches, see for ex-

ample Li et al. (2006). In Mauve, palindromic patterns are used to

cover both DNA strands of the input sequences.

Mugsy (Angiuoli and Salzberg, 2011) is a popular software pipe-

line for multiple genome alignment. In a first step, this program uses

nucmer (Kurtz et al., 2004) to construct all pairwise alignments of

the input sequences. Nucmer, in turn, uses MUMmer to find exact

unique word matches which are used as alignment anchor points.

An alignment graph is constructed from these pairwise alignments

using the SeqAn software (Döring et al., 2008), and Locally

Collinear Blocks are constructed. Finally, a multiple alignment is

calculated using SeqAn:: TCoffee (Rausch et al., 2008). Mugsy has

been designed to rapidly align closely related genomes, such as dif-

ferent strains of a bacterium. Here, it produces alignments of high

quality. On more distantly related genomes, however, the program

is often outperformed by other multiple aligners (Earl et al., 2014).

Finding anchor points is the most important step in whole-

genome sequence alignment. Here, a trade-off between speed, sensi-

tivity and precision has to be made. A sufficient number of anchor

points is necessary to reduce the run time of the subsequent, more

sensitive alignment routine. Wrongly chosen anchor points, on the

other hand, can substantially deteriorate the quality of the final out-

put alignment. They may not only lead to misalignments of non-

homologous parts of the sequences but may also prevent biologically

relevant, true homologies from being aligned. Also, if the number of

anchor points is too large, finding optimal chains of anchor points

can become computationally expensive.

In this article, we apply the filtered spaced word matches

(FSWM) approach (Leimeister et al., 2017) to find pairwise anchor

points for genomic alignment. We use a hit-and-extend approach

where high-scoring spaced-word matches are used as seeds. More

precisely, for a given binary pattern of length ‘ representing match

and don’t care positions, we identify spaced-word matches—i.e.

pairs of length-‘ segments from the input sequences with matching

nucleotides at the match positions and possible mismatches at the

don’t care positions. For each such spaced-word match, we then cal-

culate a similarity score, and we keep only those spaced-word

matches that have a score above a certain threshold. These matches

are then extended to gap-free alignments, similar as in BLAST

(Altschul et al., 1990). To evaluate the anchor points generated by

our approach, we modified the Mugsy pipeline by using our anchor-

ing procedure instead of the original anchor points in Mugsy that

are based on exact word matches. For closely related input sequen-

ces, these two different anchoring procedures lead to alignments of

similar quality. Our anchor points are clearly superior, however, if

distal sequences are to be aligned, where most other alignment

approaches either fail to produce meaningful alignments or require

an unacceptable amount of time.
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Through our website at http://spacedanchor.gobics.de, we pro-

vide the modified Mugsy pipeline with our anchoring approach, as a

pipeline for genome-sequence alignment that can be readily

installed. In addition, we provide a stand-alone version of our soft-

ware, such that software developers can integrate our anchor points

into their own sequence-analysis pipelines.

2 Results

2.1 Filtered spaced word matches
For a sequence S of length L over an alphabet R and 0 < i � L; S½i�
denotes the ith symbol of S, and jSj denotes the length of S.

Throughout this article, a pattern is a word over {0, 1}. For a pattern

P, a position i is called a match position if P½i� ¼ 1 and a don’t-care

positions otherwise. The number of match positions in a pattern P is

called the weight of P. For an alphabet R, a pattern P, and a wild-

card character ‘*’ not contained in R, a spaced word with respect to

P is a word w over R [ f�g, such that w½k� ¼ � if and only if k is a

don’t-care position, see also Leimeister et al. (2014) and Horwege

et al. (2014). We say that a spaced word w with respect to a pattern

P occurs in a sequence S at some position i, if i � jSj � jPj þ 1, and

if S½iþ k� 1� ¼ w½k� for all match positions k of P.

For sequences S1 and S2, a pattern P, and positions i and j, we

say that there is spaced-word match between S1 and S2 at (i, j) with

respect to P if the same spaced word occurs at i in S1 and at j in S2—

in other words, if for all match positions k in P, one has

S1½iþ k� 1� ¼ S2½jþ k� 1�:

For the two sequences S1 and S2 below, for example, there is a

spaced-word match with respect to the pattern P ¼ 1100101 at (5,

2):

S1 : G C T G T A T A C G T C

S2 : A T A C A C T T A T

P : 1 1 0 0 1 0 1

as the same spaced word ‘TA � �C � T’ occurs at positions 5 in S1

and at position 2 in S2.

In a previous article, we used spaced-word matches to estimate

phylogenetic distances between genomic sequences, by considering

at the nucleotides aligned to each other at the don’t care positions of

selected spaced-word matches (Leimeister et al., 2017). To remove

spurious random spaced-word matches, we applied a simple filtering

procedure. Based on the following substitution matrix

(Chiaromonte et al., 2002)

A C G T

A 91 �114 �31 �123

C 100 �125 �31

G 100 �114

T 91

we calculated for each spaced-word match the sum of substitution

scores of the nucleotide pairs aligned at the don’t-care positions, and

we removed all spaced-word matches with a score below zero; com-

pare also Brejova et al. (2005).

A graphical representation of the spaced-word matches between

two sequences shows that this procedure can clearly separate ran-

dom spaced-word matches from true homologies. If we plot for each

possible score value s the number of spaced-word matches with

score equal to s, we obtain a bimodal distribution with one peak for

random matches and a second peak for true homologies. We call

such a plot a spaced-words histogram, see Figure 1 for an example.

For simulated sequence pairs under a simple model of evolution,

and with a sufficient number of don’t-care positions in the underly-

ing pattern, both peaks are approximately normally distributed. For

real-world sequences, the random peak is still normally distributed,

but the ‘homologous’ peak is more complex. Even so, using a suit-

able cut-off value, one can easily distinguish between random

matches and true homologies; for the above matrix, a cut-off of zero

works well. More examples for spaced-words histograms are given

in Leimeister et al. (2017).

Herein, we propose to use spaced-word matches to calculate an-

chor points for pairwise alignment of genomic sequences. To distin-

guish between spaced-word matches representing true homologies

and random background matches, we use the above filtering criter-

ion. More precisely, our approach to find anchor points for genomic

alignment is as follows. For given parameters ‘ and w, we first calcu-

late a pattern P with length ‘ and weight w—i.e. with w match posi-

tions—using our recently developed software rasbhari (Hahn et al.,

2016). We then identify all spaced-word matches with respect to P.

Based on the above substitution matrix, we calculate the score of

each spaced-word match, and we discard all spaced-word matches

with a score below zero, as we did in our previous article

(Leimeister et al., 2017). By default, our program uses only unique

spaced-word matches. That is, if a spaced word w occurs n times in

one sequence and m times in a second sequence, we only use the

best-scoring of the n�m resulting spaced-word matches. But as an

alternative, it is also possible to use all spaced-word matches with a

score above zero.

To find homologies even for distantly related sequences, we use

patterns with a low weight; by default, we use a weight of w ¼ 10.

On the other hand, we use a large number of don’t-care positions,

since this makes it easier to distinguish true homologies from ran-

dom spaced-word matches. By default, we use a pattern length of

‘ ¼ 110, so our patterns contain 10 match positions and 100 don’t-

care positions.

Next, we do gap-free extensions of the identified local similar-

ities in both directions using a standard X-drop approach. As start-

ing points for these extensions, we do not use the full spaced-word

matches, but their midpoints. The reason for this is that, with our

long patterns, even high-scoring spaced-word matches may not rep-

resent true homologies over their entire length. It often happens that

parts of a spaced-word aligns homologous nucleotides, but one or

both ends of the aligned segments extend into non-homologous

regions. There is a high probability, however, that the midpoint of a

long, high-scoring spaced-word match is located within a region of

true homology. As a result, it is possible that an ‘extended’ match in

our approach is shorter than the initial spaced-word match that was

used to define the starting point for the X-drop extension. Also, it

can happen that a spaced-word match is located within the ‘exten-

sion’ of a previously processed match. Such matches are redundant

and are therefore discarded by our algorithm. Finally, we use the

extended gap-free alignments as anchor points for alignment.

2.2 Evaluation
To evaluate FSWM and to compare it to a state-of-the-art approach

to alignment anchoring, we used the Mugsy software system. Here,

we used the default version of FSWM with unique matches, i.e. for

each distinct spaced word, only the highest-scoring spaced-word

match is used. As mentioned above, the original Mugsy uses

MUMmer to find pairwise anchor points. We replaced MUMmer in

Spaced word matches as alignment anchor points 3

 2018



the Mugsy pipeline by our FSWM-based anchor points and eval-

uated the resulting multiple alignments. In addition, we compared

these alignments to alignments produced by the multiple genome

aligner Cactus (Paten et al., 2011). Cactus is known to be one of the

best existing tools for multiple genome alignment; it performed ex-

cellently in the Alignathon study (Earl et al., 2014). To measure the

performance of the compared methods, we used simulated genomic

sequences as well as three sets of real genomes. To make MUMmer

directly comparable to FSWM, we used a minimum length of 10 nt

for maximum unique matches, corresponding to the default weight

(sum of match positions) used in Spaced Words. Note that, by de-

fault, MUMmer uses a minimum length of 15 nt. With this default

value, however, we obtained alignments of much lower quality.

Cactus was run with default values.

2.2.1 Simulated genomic sequences

To simulate genomic sequences, we used the artificial life frame-

work (ALF) developed by Dalquen et al. (2012). ALF generates arti-

ficial gene families along a randomly generated tree, according to a

probabilistic model of evolution. During this process, evolutionary

events are logged so the true MSA is known for each simulated gene

family and can be used as reference to assess the quality of automat-

ically generated alignments.

We generated a series of 14 datasets, each one based on a ran-

domly generated tree with 30 leaves, representing different species.

Each dataset consists of 750 simulated gene families, evolved along

the respective tree, such that exactly one gene from each family is

present in each of the 30 ‘species’. Within each dataset, we used a

fixed mutation rate for all gene families, but we used different muta-

tion rates for different datasets. For all other parameters in ALF, we

used the default settings. We varied the mutation rates between an

average of 0.1013 substitutions per position for the first dataset to

an average of 0.8349 substitutions per position for the 14th dataset.

Here, the average is taken over all pairs of ‘species’ within the re-

spective dataset. The maximal pairwise distance between all pairs of

sequences within a dataset ranges from 0.1640 for the first to

1.0923 for the 14th dataset. The simulated genes have an average

length of about 1500 bp, summing up to a total size of about 32 MB

per dataset.

For simplicity, we did not concatenate the 750 genes in one ‘spe-

cies’. Instead, we applied the alignment programs that we evaluated

to compare all genes from one ‘species’ to all genes from all other

‘species’ within the same dataset. Concatenating the sequences

would have led to the same results. To assess the quality of the pro-

duced alignments, we calculated recall and precision values in the

usual way. If, for one given dataset, S is the set of all positions of the

30�750 simulated gene sequences, we denote by A � S
2

� �
the set

of all pairs of positions aligned to each other by the alignment that

is to be evaluated, while R � S
2

� �
denotes the set of all pairs of posi-

tions aligned to each other in the reference alignment. Recall and

precision are then defined as

Recall ¼ jA \ Rj
jRj ; Precision ¼ jA \ Rj

jAj (1)

The harmonic mean of recall and precision is called the balanced

F-score and is often used as an overall measure of accuracy; it is thus

defined as

Fscore ¼ 2� Precision�Recall

PrecisionþRecall

To estimate these three values, we used the tool mafComparator

which was also used in the Alignathon study (Earl et al., 2014).

Since it is prohibitive to consider all pairs of positions of the test

sequences, we sampled 10 million pairs of positions for each dataset.

This corresponds to the evaluation procedure used in Alignathon.

For the simulated sequence sets, their recall and precision values

are shown in Figures 2 and 3. For datasets with smaller mutation

rates, the quality of alignments obtained with FSWM and MUMmer

is comparable (Fig. 4). However, if the mutation rate increases, our

spaced-words approach clearly outperforms the original version of

Mugsy where exact word matches are used to find anchor points.

With FSWM, not only more homologies are detected, compared to

Mummer, but also the precision of Mugsy is slightly improved.

2.2.2 Real-world genome sequences

For real-world genome families, it is usually not possible to calculate

the precision of MSA programs because it is, in general, not known

which sequence positions exactly are homologous to each other and

which ones are not. If there are core blocks of the sequences for

which biologically correct alignments are known, at least recall val-

ues can be calculated for these core blocks. For most genome

Fig. 1. Spaced-words histogram for a comparison of two bacterial genomes, Phaeobacter gallaeciensis 2.10 and Rhodobacterales bacterium Y4I. All possible

spaced-word matches with respect to a given binary pattern P are identified, and their scores are calculated as explained in the main text. The number of spaced-

word matches with a score s is plotted against s. Two peaks are visible, an approximately normally distributed peak for background spaced-word matches, and a

more complex peak for spaced-word matches representing homologies. With a cut-off value of zero, background and homologous spaced-word matches can be

reliably separated
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sequences, however, not even such core blocks are available. To

evaluate Mugsy, the authors of the program therefore used the num-

ber of core columns of the produced alignments as a criterion for

alignment quality (Angiuoli and Salzberg, 2011). Here, a core col-

umn is defined as a column that does not contain gaps, i.e. a column

in which nucleotides from all of the input sequences are aligned. In

addition, the authors of Mugsy used the number of pairs of aligned

positions of the aligned sequences as an indicator of alignment qual-

ity. In this article, we use the same criteria to evaluate multiple align-

ments of real-world genomes.

As a first real-word example, we used a set of 29 E. coli/Shigella

genomes that has been used in the original Mugsy paper, see

Supplementary Material for details; these sequences have also been

used to evaluate alignment-free methods (Haubold et al., 2015;

Morgenstern et al., 2015; Yi and Jin, 2013). The total size of this

dataset is about 141 MB. As a second test set, we used another pro-

karyotic dataset, namely a set of 32 complete Roseobacter genomes

(details in the Supplementary Material); these genomes are more dis-

tantly related than the E. coli/Shigella strains. The total size of this

dataset is about 135 MB. To test our approach on eukaryotic

genomes, we used as a third test case a set of nine fungal genomes,

namely Coprinopsis cinerea, Neurospora crassa, Aspergillus terreus,

Aspergillus nidulans, Histoplasma capsulatum, Paracoccidioides

brasiliensis, Saccharomyces cerevisiae, Schizosaccharomyces pombe

and Ustilago maydis (genbank accession numbers are given in the

Supplementary Material). The total size of this third dataset is about

253 MB.

The results of Mugsy with MUMmer and FSWM, respectively,

for the three real-world datasets are shown in Table 1, together with

the results obtained with Cactus. In addition to the number of core

columns and the number of aligned pairs of positions, the table con-

tains the number of core Locally Collinear Blocks, i.e. the number

of Locally Collinear Blocks involving all of the input sequences, and

the total number of Locally Collinear Blocks returned by the align-

ment programs. For the E. coli/Shigella sequences, the two anchor-

ing methods, MUMmer and FSWM, led to alignments of

comparable quality when used with Mugsy; the genome sequences

in this dataset are very similar to each other. For the Roseobacter

and fungal genomes, however, the FSWM anchor points led to much

better alignments than the default anchor points generated with

MUMmer. The sequences in these sets are far more apart from each

other than the sequences in the E. coli/Shigella set, so the results on

these three datasets confirm our above results on simulated

sequences.

2.2.3 Program run time

Table 2 reports the program run times of Mugsy with FSWM,

Mugsy with MUMmer and Cactus on the above three real-world se-

quence sets. In addition, the table contains the run times for FSWM

and MUMmer alone. A program run of Mugsy with FSWM on a set
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Table 1. Evaluation of multiple alignments of 29 E. coli/Shigella

genomes, 32 Roseobacter genomes and 9 fungal genomes,

obtained with Mugsy, using anchor points calculated with FSWM

and with MUMmer, respectively

Core

LCBs

Aligned

pairs

Core

col.

LCBs

29 E. coli/Shigella genomes

Mugsy þMUMmer 539 1,61Eþ09 2,827,115 4138

Mugsy þ FSWM 664 1,63Eþ09 2,867,432 5906

Cactus 20,163 1,48Eþ09 2,663,750 56,592

32 Roseobacter genomes

Mugsy þMUMmer 39 3,63Eþ08 13,654 13,501

Mugsy þ FSWM 859 7,15Eþ08 824,054 30,836

Cactus 5984 4,95Eþ08 280,085 337,320

9 fungal genomes

Mugsy þMUMmer 9 5,88Eþ06 2097 4252

Mugsy þ FSWM 2590 1,18Eþ08 718,176 89,555

Cactus 31,589 1,33Eþ08 828,680 848,242

Note: As a comparison, the table contains the results obtained with Cactus.

The first column contains the number of core columns, i.e. the number of col-

umns in the multiple alignments that do not contain gaps; the second column

contains the total number of aligned pairs of positions in the alignment. The

third column contains the number of core Locally Collinear Blocks (LCBs)

i.e. the number of LCBs that involve all of the aligned genomes (‘core LCBs’),

while the last column contains the total number of LCBs.
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of five mammalian sequences of length 200 mb each from Earl et al.

(2014) took around 7 days, and 5 h with k ¼ 10 and two days with

k ¼ 12.

3 Discussion

In this article, we proposed a novel approach to calculate anchor

points for genome alignment. Finding suitable anchor points is a

critical step in all methods for genome alignment, since the selected

anchor points determine which regions of the sequences can be

aligned to each other in the final alignment. A sufficient number of

anchor points is necessary to keep the search space and run time of

the main alignment procedure manageable, so sensitive methods are

needed to find anchor points. Wrongly selected anchor points, on

the other hand, can seriously deteriorate the quality of the final

alignments, so anchoring procedures must also be highly specific.

Earlier approaches to genomic alignment used exact word

matches as anchor points (Delcher et al., 1999; Höhl et al., 2002),

since such matches can be easily found using suffix trees and related

indexing structures. These approaches are limited, however, to sit-

uations where closely related genomes are to be aligned, for example

different strains of a bacterium. In modern approaches to database

searching, spaced seeds are used to find potential sequence homolo-

gies (Buchfink et al., 2015; Hauswedell et al., 2014; Li et al., 2003).

Here, binary patterns of match and don’t care positions are used,

and two sequence segments of the corresponding length are consid-

ered to match if identical residues are aligned at the match positions,

while mismatches are allowed at the don’t care positions. Such

pattern-based approaches are more sensitive than previous methods

that relied on exact word matches.

We previously proposed to apply the ‘spaced-seeds’ idea to

alignment-free sequence comparison, by replacing contiguous words

by so-called spaced words, i.e. by words that contain wildcard char-

acters at certain pre-defined positions (Leimeister et al., 2014).

More recently, we introduced FSWM (Leimeister et al., 2017) to es-

timate the average number of substitutions per sequence position be-

tween two genomes. In the latter approach, we first identify spaced-

word matches using relatively long patterns with only few match

positions. For the identified matching segments, we look at the

nucleotides that are aligned to each other at the don’t-care positions,

and we discard spaced-word matches for which the similarity at the

don’t-care positions is below a threshold. Substitution frequencies

are then estimated based on the aligned nucleotides at the don’t-care

positions of the remaining spaced-word matches. We showed that

this procedure is fast and highly sensitive, and it can reliably distin-

guish between true homologies and spurious sequence similarities.

In the present study, we used FSWM to calculate anchor points

for genomic sequence alignment. Instead of using the selected

spaced-word matches directly as anchor points, we extend the iden-

tified hits into both directions, similar to the hit-and-extend

approach to database searching. In view of speed and accuracy, this

approach is somewhere between exact word matching and gapped

local alignment. As in our previous paper on filtered spaced words

(Leimeister et al., 2017), we use binary patterns with a large number

of don’t-care positions. This way, the ‘homologous’ and ’back-

ground’ peaks in the spaced-word histograms (Fig. 1) are far enough

apart, since the distance between them is proportional to the number

of don’t-care positions in the underlying patterns. With a large num-

ber of don’t-care positions, it is therefore easier to distinguish be-

tween homologous and background spaced-word matches.

One might think that, with our long patterns, we might miss too

many shorter local homologies. We do not see this as a problem,

though. Our goal is not to find all local homologies between two

sequences, but to output a sufficient number of anchor points to

make the final alignment procedure feasible. Moreover, our algo-

rithm is well able to find gap-free homologies that are shorter than

the specified pattern length, as long as the sequence similarity be-

tween these homologies is strong enough. As explained above, we

do not start the X-drop extension at the end positions of the identi-

fied hits, but in the middle; this way we can find spaced-word

matches that cover short homologies, but reach into gapped or non-

homologous sequence regions to the left and to the right. In such

cases, it can happen that the ‘extended’ hits are shorter than the re-

spective initial spaced-word matches.

To evaluate these anchor points, we integrated them into the

popular genome-alignment pipeline Mugsy. Test runs on simulated

genome sequences show that, for closely related sequences, Mugsy

produces alignments of high quality with both types of anchor

points. For more distantly related sequences, however, the recall val-

ues of the program drop dramatically if anchor points are calculated

with MUMmer while, with our spaced-word matches, one observes

recall values close to 100% for distances up to around 0.7 substitu-

tions per position.

For real-world genomes, it is more difficult to evaluate the per-

formance of genome aligners since there is only limited information

available on which positions are homologous to each other and

which ones are not. Angiuoli and Salzberg (2011) therefore used the

number of aligned pairs of positions as an indicator of alignment

quality, together with the size of the ‘core alignment’, i.e. the num-

ber of alignments columns that do not contain gaps. At first glance,

these criteria might seem questionable; it would be trivial to maxi-

mize these values, simply by aligning sequences without internal

gaps, by adding gaps only at the ends of the shorter sequences.

However, as shown in Figure 3, all MSA programs in our study

have high precision values, i.e. positions aligned by these programs

are likely to be true homologs. In this situation, the number of

aligned position pairs and size of the ‘core alignment’ can be consid-

ered as a proxy for the recall of the applied methods i.e. the propor-

tion of homologies that are correctly aligned.

As shown in Table 2, the program run time to generate anchor

points is comparable for FSWM and MUMmer. For distantly related

sequence sets, however, the total run time of Mugsy is much higher

with our FSWM anchoring approach than with anchor points from

MUMmer. A possible explanation for the difference in run time is

that FSWM is more sensitive, so a larger number of anchor points

are produced. Table 1 shows that, with our FSWM, more Locally

Collinear Blocks are found than with the exact word matches that

are found with MUMmer—especially for distantly related sequences

where exact word matching is not very sensitive. One way of reduc-

ing the program run time would be to apply a cut-off value to reduce

the number Locally Collinear Blocks that are to be aligned in the

main alignment procedure. Further research efforts are necessary to

Table 2. Run time in minutes for three different multiple genome-

alignment methods applied to the three test datasets that we used

in our program evaluation

E. coli/Shigella Roseobacter fungal genomes

FSWM 59 83 110

FSWM þMugsy 638 6428 1488

MUMmer 73 63 43

MUMmer þMugsy 286 1099 63

Cactus 714 1775 775

6 C.-A.Leimeister et al.
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balance speed and accuracy of multiple genome alignment

algorithms.
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Abstract

Word-based or ‘alignment-free’ sequence comparison has become an
active research area in bioinformatics. While previous word-frequency
approaches calculated rough measures of sequence similarity or dis-
similarity, some new alignment-free methods are able to accurately
estimate phylogenetic distances between genomic sequences. One of
these approaches is Filtered Spaced Word Matches. Herein, we ex-
tend this approach to estimate evolutionary distances between com-
plete or incomplete proteomes; our implementation of this approach
is called Prot-SpaM. We compare the performance of Prot-SpaM to
other alignment-free methods on simulated sequences and on various
groups of eukaryotic and prokaryotic taxa. Prot-SpaM can be used to
calculate high-quality phylogenetic trees for dozens of whole-proteome
sequences in a matter of seconds or minutes and often outperforms
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other alignment-free approaches. The source code of our software is
available through Github: https://github.com/jschellh/ProtSpaM

1 Introduction

Evolutionary relationships between species are usually inferred by compar-
ing homologous gene or protein sequences to each other. Here, groups of
orthologous sequences have to be identified first, for which then multiple
alignments are to be calculated. There are generally two different strate-
gies of resolving phylogenies based on multiple alignments. In the so-called
supermatrix approach, multiple sequence alignments of single genes or pro-
teins are concatenated. A phylogenetic tree is inferred from the resulting
matrix, e.g., using Maximum Likelihood [63] or Bayesian inference [57]. Al-
ternatively, gene or protein trees are inferred for every single multiple se-
quence alignment and the resulting phylogeny is inferred using coalescent
models [46] or supertree [4] approaches.

All these steps are time consuming, and often manual intervention is
required. Therefore, word-based or alignment-free alternatives have been
proposed recently, which are much faster and which require much less data
preparation. Most alignment-free methods compare the word composition
of sequences [11, 20, 31, 59, 65, 69], with some approaches also considering
background word frequencies [53, 54, 60, 70], see [55] for a review of these
latter approaches. More recently, the spaced-word composition of sequences
has been used for sequence comparison [32,42,48,50]. Other alignment-free
methods are based on the so-called matching statistics, that is they use the
length of maximal common subwords [12, 68]. This has been extended to
maximal common subwords with a certain number of mismatches [43, 52,
66, 67]. Alignment free approaches have been recently reviewed in detail
[2, 27,75].

Accurate alignment-free tools are urgently needed because of the huge
volume of data generated by new sequencing techniques. Another advantage
of alignment-free methods, compared to alignment-based approaches, is the
fact that they can be applied to incomplete data, for example to unassem-
bled sequencing reads or to partially sequenced genomes [18]. Note that
some of the so-called ‘alignment-free’ approaches are based on comparing
words of the input sequences to each other. So, strictly spoken, they are
not ‘alignment-free’ since they align these words to each other. The term
alignment-free is used nevertheless by most researchers, since these word-
based approaches circumvent the need to calculate full pairwise or multiple
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alignments of the sequences under study.
The above mentioned approaches to alignment-free sequence comparison

calculate ad-hoc measures of sequence similarity or dissimilarity. They are
not based on stochastic models of molecular evolution, and they do not try
to estimate distances between sequences in a statistically rigorous way. More
recently, some alignment-free approaches have been proposed that are based
on explicit models of DNA evolution. These methods are able to estimate the
number of substitutions per site that have happened since two nucleic-acid
sequences have evolved from their last common ancestor [14,28,29,44,47,72].

A main application of alignment-free approaches is comparison of whole
genomes. Consequently, most alignment-free methods have been designed
to work on DNA sequences. If distantly related species are studied, though,
phylogenetic trees are usually inferred from protein sequences rather than
from DNA sequences. The reason for this is that protein sequences are
more conserved than DNA sequences, as synonymous substitutions are not
visible in proteins. Thus, for distal species, it may be hard to detect simi-
larities between genes at the DNA-sequence level, while homologies may be
still detectable among protein sequences. It is therefore highly desirable to
have accurate alignment-free software tools that work on protein sequences,
in addition to the available tools for DNA sequence comparison. Generic
word-frequency methods can be applied to both DNA and protein sequences;
the program FFP, for example, has been used to whole-proteome compar-
ison [35]. As mentioned above, however, these methods do not estimate
phylogenetic distances in a rigorous way. So far, there are no alignment-free
approaches available that can accurately estimate evolutionary distances
between protein sequences.

In this paper, we propose an alignment-free method which estimates the
number of substitutions protein sequences since they evolved from their last
common ancestor. Our approach is based on Filtered Spaced Word Matches
(FSWM), a concept we introduced recently for whole-genome sequence com-
parison [44], see [28,72] for related approaches. We call the implementation
of this new approach Proteome-based Spaced-Word Matches (Prot-SpaM).
The basic idea is to use gap-free pairwise alignments of fixed-length words
with matching amino-acid residues at certain pre-defined positions. Such
spaced-word matches can be rapidly identified and, after discarding random
background matches, the remaining ‘homologous’ spaced-word matches can
be used to estimate the phylogenetic distance between two taxa. To our
knowledge, this is the first approach that accurately estimates evolution-
ary distances between protein sequences without the need to calculate full
sequence alignments.
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To evaluate our approach, we used simulated protein sequences and real-
world whole proteomes. Test runs on the simulated sequences show that
our distance estimates are very close to the true distances, for distance
values of up to around 2.0 substitutions per sequence position. On the
real-world sequences, we evaluated our approach indirectly, by phylogenetic
analysis, as is common practice in the field. We used Prot-SpaM to estimate
pairwise distances for various sets of taxa, and we applied the Neighbor-
Joining algorithm [58] to calculate phylogenetic trees from the resulting
distance matrices. These trees were finally evaluated by comparing them
to reference trees that were determined by standard methods and can be
considered to be reliable. We show that the trees obtained with our approach
are often of high quality, and they are generally more similar to the respective
reference trees than trees generated with other alignment-free approaches.

2 Method

We consider sequences over an alphabet A. In this paper, A consists of 20
characters representing the 20 different amino acids. Prot-SpaM is based on
so-called spaced-word matches between sequences. For a wildcard character
‘∗’ with ∗ 6∈ A and a binary pattern P of length ` – i.e. for a length-` word
P over {0, 1} –, a spaced-word with respect to P is a length-` word W over
the alphabet A ∪ {∗} such that W (i) = ∗ if and only if P (i) = 0. An index
i ∈ {1, . . . , `} is called a match position of P or W , respectively, if P (i) = 1,
and a don’t care position otherwise. The number of match positions in a
pattern or spaced-word is called its weight w. We say that a spaced word
W with respect to P occurs in a sequence S at some position i if one has
W (k) = S(i+ k− 1) for all k ∈ {1, . . . , `} with P (k) = 1 – i.e. for all match
positions of P .

Moreover, we say that there is a spaced-word match w.r.t. P between
two sequences S1 and S2 at (i1, i2) if the same spaced word w.r.t P occurs
at position i1 in S1 and at position i2 at S2. In other words, there is a
spaced-word match between S1 and S2 at (i1, i2), if and only if one has
S1(i1 + k − 1) = S2(i2 + k − 1) for all match positions k of P . Below is an
example for a spaced-word match between two sequences S1 and S2 at (2, 3)
with respect to the pattern P = 1100101; the spaced word TN ∗ ∗D ∗ P
occurs at position 2 in S1 and at position 3 in S2:
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S1 : T T N Q I D L P P C Y N
S2 : A C T N L I D I P Q N
P : 1 1 0 0 1 0 1

Similar to our original FSWM approach, we estimate distances between
protein sequences based on selected spaced-word matches between them,
with respect to one or several pre-defined patterns. Distance values are
obtained by comparing the amino-acid residues that are aligned to each
other at the don’t-care positions of the selected spaced-word matches. This
is similar to estimating distances in standard alignment-based approaches –
the only difference to those standard approaches is that we are using don’t-
care positions of spaced-word matches instead of full sequence alignments.

To estimate distances in this way, one has to make sure that only those
spaced-word matches are selected that represent homologies, i.e. that the
involved spaced-word occurrences go back to the same origin in the last
common ancestor of the two proteins that are compared. To distinguish
such ‘homologous’ spaced-word matches from random background matches,
we calculate a score for each spaced-word match using the BLOSUM62 sub-
stitution matrix [30]. Similar to the previous version of our program for
nucleic-acid sequences, we define the score of a spaced-word match as the
sum of substitution scores of the aligned amino acids at the don’t-care po-
sitions. Based on this score, our algorithm decides if a spaced-word match
is homologous or not: if its score is below a certain threshold T , then a
spaced-word match is considered a random match and is not further con-
sidered. As default we use a threshold value of T = 0. To see that this
threshold accurately separates homologous from background spaced-word-
matches, one can plot the number of spaced-word matches with a score s
against s, see Figure 1; we call such a plot a Spaced-word-Match histogram or
spamogram, for short. In these plots, two peaks are typically visible, a peak
on the right-hand side representing homologous spaced-word matches and a
peak on the left-hand side representing background matches. By default, we
are using patterns with a weight of w = 6 and with 40 don’t-care positions,
i.e. with a length of ` = 46.

Moreover, we use a one-to-one mapping of spaced-word occurrences.
Note that, if sequences S1 and S2 are compared and a spaced word W oc-
curs n time in S1 and n′ times in S2, than this gives rise to a total of n×n′

spaced-word matches. Taking all these spaced-word matches into account
for phylogeny reconstruction, would over-emphasize repeated regions where
the same spaced words occur multiple times. Instead of using all possible
spaced-word matches, we therefore use a one-to-one mapping of spaced-
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word occurrences in the compared sequences. That is, we ensure, that each
spaced word occurrence is involved in most one of the selected spaced-word
matches. Formally, if there are two spaced word matches, at (i1, i2) and at
(j1, j2), respectively, then we can include both of them simultaneously in
our list of selected spaced-word matches, only if i1 6= j1 and i2 6= j2 hold.
To achieve this, we use the same greedy algorithm that we described in our
previous paper [44]: for a given spaced word W , we calculate the scores of
all spaced-word matches involving W . We then select them one-by-one in
descending order of their scores – always ensuring that each occurrence of W
is used in at most one of the selected spaced-word matches.

Finally, in order to estimate pairwise distances between two input se-
quences, we consider the pairs of amino acids aligned to each other at the
don’t-care positions of the selected spaced-word matches. Here, we are using
the Kimura model [38] that approximates the PAM distance [13] between
sequences based on the number of mismatches per position. We are using
these two different models since the Kimura model is commonly used to infer
distances from the number of mismatches per position in alignments. The
BLOSUM matrices, on the other hand, are standard in homology searching.
Generally, our procedure to filter out background spaced-word matches is
rather robust since the homologous and background regions in our spamo-
grams can be easily distinguished as can be seen, for example, in Figure 1. So
the choice of the substitution matrix to distinguish homologous from back-
ground spaced-word matches does not affect the results of our approach too
much.

The accuracy and statistical stability of the described approach depends
on the number of selected spaced-word matches: the more matches we ob-
tain, the more accurate and stable the results of our method will be. To
increase the number of spaced-word matches, the default version of our pro-
gram uses multiple patterns, instead of one single pattern P . More precisely,
we are using a set P = {P1, . . . , Pm} of m binary patterns, such that all pat-
terns in P have the same length ` and the same weight w, but have their
match and don’t-care positions arranged differently; we then use spaced-
word matches with respect to all patterns Pi ∈ P. By default, our program
uses sets of m = 5 patterns. To find suitable patterns sets, we integrated
the tool rasbhari [25] into our implementation. rasbhari uses a hill climbing
algorithm to optimize pattern sets according to a user-defined criterion. In
our program, we use rasbhari to minimize the overlap complexity [33] of pat-
tern sets. Note that rasbhari uses a probabilistic algorithm. It is therefore
possible that different program runs of rasbhari return different pattern sets,
even if the same parameter values are used. Consequently, different runs of
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Prot-SpaM on the same sequences and with the same parameter setting can
produce slightly different distance estimates.

3 Results

To assess the quality of our new approach and to compare it to other
alignment-free methods, we used artificially generated as well as real-world
protein sequences. For the test runs we used the default parameters of our
program, namely 6 match positions and 40 don’t care positions – i.e. a total
pattern length of 46 –, a threshold of T = 0 to discard background spaced-
word matches, and sets of m = 5 patterns. We compared our program to
four other alignment-free methods that can be run on protein sequences,
namely ACS [68], FFP [35, 59], kmacs [43] and CVTree [53]. Here, we used
version 3.19 of FFP, the other programs that we evaluated did not have
version numbers at the time of writing. Since the original implementation
of ACS is not publicly available, we used our own implementation of this
approach by running kmacs with k = 0. The competing tools, too, were
used with their default parameters. In addition to evaluating these tools on
protein sequences, we ran Filtered Spaced Word Matches on the complete
genome sequences of the same taxa. All test runs were done on a 10 x In-
tel(R) Xeon(R) CPU E7-4850 with 2.00GHz with 4 cores each summing up
to 40 cores and 1000GB RAM.

3.1 Distance Estimation on Simulated Sequences

To evaluate the distances estimated by our program, we simulated sequences
with the tool pyvolve [61]. Pyvolve simulates sequences along an evolution-
ary tree using continuous-time Markov models. It can use various substitu-
tion models such as JTT [34] and other models. Since there are no reliable
stochastic models for insertions and deletions in protein sequences, the pro-
gram produces indel-free sequences. We simulated pairs of sequences of
length 100,000 with distances between 0 and 2 substitutions per position, in
steps of 0.05, using the JTT model. To evaluate the estimated distance val-
ues, we generated 1,000 sequence pairs for each distance value and plotted
the average of the estimated distances against the real Kimura distance of
the respective sequence pairs, calculated with the program protdist from the
phylip package [19]. To study the robustness of the estimated distances, we
added error bars representing standard deviations to the plot. In addition
to running Prot-SpaM with default parameters – i.e. with sets P of m = 5
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patterns –, we did a second series of test runs with m = 1, i.e. with single
patterns. Figure 2 shows the results of these test runs.

3.2 Phylogenetic tree reconstruction

Next, we applied the above alignment-free methods to calculate phylogenetic
trees from real-world protein sequences. For four different groups of species,
we downloaded all available protein sequences from GenBank [1]; within each
group, we calculated all pairwise distances between the species. We used the
distance matrices obtained in this way as input for Neighbor-Joining [58] and
compared the resulting trees to reference trees which we assume to reflect
the respective correct phylogeny for each group. The Robinson-Foulds (RF)
distances [56] between the reconstructed trees and the respective reference
trees are shown in Table 2.

As mentioned above, Prot-SpaM uses a probabilistic algorithm to gener-
ate pattern sets, so the results of different program runs on a sequence set
can slightly differ, even if the same parameter values are used. We there-
fore performed 100 program runs on each data set, and Table 2 reports the
average RF distances for these 100 program runs. An exception was the
large prokaryotic data set where we only performed one single program run.
Since absolute RF distances are not easy to interpret, Table 2 also reports
the relative RF distances, which are obtained from the absolute RF distances
by dividing by the maximum possible RF distance for a given data set. The
maximal possible RF distances for a set of n taxa is 2·n−6 [9]. Program run
times for the different approaches are shown in Table 3. Trees were visual-
ized with iTOL [45]. Neighbor-Joining trees and Robinson-Foulds distances
were calculated with the phylip package [19].

E. coli / Shigella

Our first data set consists of 29 strains of Escherichia coli and Shigella. For
each strain, we were able to download about 4,000-5,000 protein sequences;
the total size of this data set is around 41 MB. Figure 5 shows the reference
tree that we used and the tree obtained with the algorithm described in
this paper. The reference tree was published by Zhou et al. [74] and is
based on a multiple sequence alignment of 2,034 core genes and a Maximum
Likelihood method. As can be seen in Table 2, our approach produced a
tree with a topology almost identical to the reference tree. All of the 100
program runs that we performed with Prot-SpaM produced the same tree
topology; the RF distance between these trees and the reference tree was 4.
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The other protein-based alignment-free methods led to phylogenies with RF
distances to the reference tree between 24 and 42, while the genome-based
tree obtained with FSWM had a RF distance of 6 to the reference tree.
These trees are shown in the supplementary material.

Wolbachia

As a second test case for benchmarking, we analysed the phylogeny of Wol-
bachia strains, a group of Alphaproteobacteria which are intracellular en-
dosymbionts of arthropods and nematodes [71]. Within Wolbachia, 16 dis-
tinct genetic lineages (supergroups) are currently distinguished (named by
capital letters A-F and H-Q), which may differ in host specificity and type
of symbiosis [24]. We re-analyzed a phylogenomic data set by [22], thereby
focusing on relationships of strains within supergroups (Wolbachia I). A tree
generated with Prot-SpaM from this data set is shown Figure 4.

For a second Wolbachia benchmarking data set, we analysed relation-
ships between supergroups based on available (draft) genomes, see below
(Wolbachia II). For within supergroup relationships (Wolbachia I), a pro-
gram run of Prot-SpaM on the whole proteome recovered a tree which is
largely congruent in topology and branch lengths in comparison to a phy-
logenomic supermatrix analysis of 252 single-copy orthologs which excluded
genes which showed signs of recombination. A comparison based on RF dis-
tances showed that our new method out-competes other available alignment-
free programs (Table 2). Interestingly, when only analysing the 252 ortholog
data set of [22] instead of whole proteomes, RF distances become bigger, and
other alignment-free method perform better (Table 2).

Analysing relationships between supergroups has been historically re-
garded as difficult phylogenetic problem [5, 23]. Analysing all annotated
proteins from available genomes with Prot-SpaM supported the monophyly
of all supergroups. Moreover, this analysis found the same Wolbachia strains
basally branching as recent analyses suggested. Surprisingly, the phyloge-
nomic supermatrix analysis analysis of 252 single-copy orthologs which ex-
cluded genes which showed signs of recombination of this data set recovered
a topology which differs to previous study in not supporting the sister group
relationship of supergroups A and B. In contrast, as found in previous anal-
yses, the sister group relationship of supergroups A and B is supported
by the Prot-SpaM analysis. The Prot-SpaM analysis also recovered some
relationships between supergroups which differ from the topologies of our
phylogenomic analysis or expectations from a recently published phyloge-
nomic study [7]. However, it is known that supergroups differ in their base
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(and amino acid) composition, and it is currently unknown how this may
impact alignment free methods. More sophisticated evolutionary models
could alleviate these differences in future studies. Nevertheless, in this test
case Prot-SpaM also outperforms other alignment free methods when com-
paring the resulting phylogenetic tree with a phylogenomic analyses based
on a concatenated supermatrix (Table 2).

For the Wolbachia II data set, we downloaded (if available) proteomes
for all available Wolbachia draft and fully assembled genomes (47 in to-
tal, see supplementary material for details). Proteins for Wolbachia strains
which were lacking this information on NCBI GenBank were derived from
translations using GeneMark version 2.5 [3]. We predicted groups of orthol-
ogous genes between these proteomes using Orthofinder version 2.1.2 [17]
running under default parameters. Single copy genes present in all anal-
ysed strains (83 in total) were aligned using MAFFT version 7.271 with
the L-INS-i algorithm [37], and tested for evidence of recombination using
the pairwise homoplasy index (PHI) [8] with window sizes of 10, 20, 30,
and 50. Recombining loci were subsequently removed from the data set
and the remaining loci concatenated using FasConCat version 1.0 [39]. The
resulting supermatrix (68 loci, 20,787 amino acid positions) was subject to
partitioned Maximum Likelihood analysis following best model and partition
scheme selection in IQ-TREE version 1.6.2 [10,36,49];

For the whole-proteome sequences of the data set Wolbachia I, the RF
distance to the reference tree was 6 for each of the 100 program runs. By
contrast, for the 100 runs on the selected protein sequences of the same set
of taxa, the average RF distance was 7.68, the standard deviation was 0.736.
For Wolbachia II, the average RF distance was 19.62; the standard deviation
was 0.89.

Large-scale microbial phylogeny reconstruction

In 2013, J. Eisen’s group published a paper on the phylogeny of the microbial
genomes that were available at the time [40]. As a basis of their study, they
selected 24 single-copy marker genes and a non-redundant subset of taxa. To
obtain such a subset, they used a greedy algorithm by M. Steel [64], making
sure that marker genes from different taxa in the resulting subset had a
distance to each other of at least 2 substitutions per 100 positions. This
way, they obtained a non-redundant subset of 841 bacterial and archeal
genomes from the more than 3,000 microbial genomes that were publicly
available. Multiple sequence alignments of the marker genes were calculated
with hmmalign [16] and were concatenated to a supermatrix which was used
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as input for the phylogeny programs RAxML [62] and MrBayes [57]. In
addition, the authors used the Bayesian tree-reconciliation program BUCKy
[41] to the same set of marker genes. The trees they obtained with these
different methods were found to be similar to trees obtained based on 16S
RNA genes.

To evaluate Prot-SpaM, we used the 841 microbial genomes from Lang
et al. [40]. and downloaded all protein sequences from these taxa that were
available through GenBank. For 28 out of the 841 taxa, we were unable to
obtain protein sequences, so we obtained a slightly reduced subset of 813
taxa, compared to the taxa used by Lang et al. First, we applied Prot-SpaM
to all available protein sequences from these 813 taxa. In addition, we ran
Prot-SpaM on the protein sequences encoded by the 24 marker genes from
Lang et al. and, finally, we applied our previous approach Filtered Spaced
Word Matches [44] to the 841 genome sequences. The trees that we obtained
with our different alignment-free approaches are shown in Figure 6, together
with the Maximum Likelihood tree from [40] which we considered as a reliable
reference. Clades from this reference tree are color-coded in Figure 6. As
can be see from the color coding, the tree obtained with Prot-SpaM from
the available protein sequences contains essentially the same clades as the
reference tree. There are some differences within the clades, though, that
should be further investigated (J. Eisen, personal communication). The RF
distance between the tree obtained with Prot-SpaM and the reference tree
was 1,020.

Plants

Next, we used a set of plant taxa that has been previously studied by Hatje
and Kollmar [26] and that we had already used in previous studies to evalu-
ate alignment-free approaches to genome sequence comparison [42–44]. The
data set that we used in these previous papers consisted of 14 brassicales
species. In GenBank, however, the proteomes could be downloaded only for
11 of the 14 species, so we had to limit our test runs to these 11 species. To
obtain a reference tree, we used a tree that has been obtained with multi-
ple sequence alignment and maximum likelihood as published by Hatje and
Kollmar [26], Figure 3 B. From this tree, we removed the three species for
which we could not obtain the proteome sequences in GenBank. Figure 7
shows the reference tree of the 14 original species, together with trees of
the 11 species with available proteomes, calculated with the alignment-free
methods that we evaluated in this paper. For the 100 program runs with
Prot-SpaM, the average RF distance between the resulting trees and the
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# taxa total size [MB] Source

E. coli / Shigella 29 56.41 Zhou et al. [74]
Wolbachia I, 252 proteins 19 1.15 Gerth et al. [23]
Wolbachia I, whole proteomes 19 7.96 Gerth et al. [23]
Wolbachia II 47 14.78 See supplementary material
Plants 11 245.05 Hatje and Kollmar [26]
Prokaryotes 813 784.86 Lang et al. [40]
Metazoa 36 585.0 Borowiec et al. [6]

Table 1: Data sets used in this study to evaluate alignment-free methods,
with number of taxa, total size and source of the reference tree.

reference tree from [26] was 0.82; the standard deviation was 0.9.

Metazoa

Finally, we used a set of 36 proteomes from 34 metazoan and two choanoflag-
ellate taxa. These taxa have been previously used by Borowiec et al. [6] to
study the position of the Ctenophora within the phylogenetic tree of the
metazoan kingdom. The same set of taxa has also been used in a study
by Zhou et al [73] to evaluate Maximum-Likelihood programs for phylogeny
reconstruction. As a reference tree, we used the tree published in [6]. The
average RF distance of the Prot-SpaM trees to this reference tree was 27.1,
with a standard deviation of 1.51.

Parameter values and number of selected spaced-word matches

Prot-SpaM has four major parameters which can be adjusted by the user: the
weight w (=number of match positions) of the binary patterns and spaced
words, their length `, the number m of different binary patterns used by the
program and the cut-off value T to separate homologous from background
spaced-word matches. To see how these parameters influence the results
of our software, and to find suitable default values, we ran Prot-SpaM with
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RF distances
E. coli / Shigella 4.00 6 24 40 42 38
Wolbachia I, 252 proteins 7.68 8 6 4 8 4
Wolbachia I, whole proteomes 6.00 6 8 16 8 12
Wolbachia II 19.62 20 44 54 26 16
Plants 0.82 0 6 8 2 6
Prokaryotes 1,020 1,348 886 1,452 880 960
Metazoa 27.1 - 40 62 30 36

Relative RF distances
E. coli / Shigella 0.08 0.12 0.46 0.77 0.81 0.73
Wolbachia I, 252 proteins 0.24 0.25 0.19 0.13 0.25 0.13
Wolbachia I, whole proteomes 0.19 0.19 0.25 0.50 0.25 0.38
Wolbachia II 0.23 0.23 0.50 0.61 0.30 0.18
Plants 0.05 0.00 0.37 0.50 0.12 0.37
Prokaryotes 0.63 0.83 0.55 0.90 0.54 0.59
Metazoa 0.41 - 0.61 0.94 0.45 0.55

Table 2: Robinson-Foulds (RF) distances and relative RF distances between
trees generated with alignment-free methods and the respective reference
trees for various sets of taxa, see the main text for details. Since Prot-SpaM
uses a probabilistic algorithm, different program runs may produce slightly
different results. Therefore, we performed 100 program runs on each data
set and report the average RF distances, except for the large prokaryote
data set where we did only one single program run. All programs were run
on protein sequences or whole proteomes, respectively, except for Filtered
Spaced Word Matches (FSWM), which was run on whole-genome sequences
of the same species (or on the gene sequences coding for the 252 selected
proteins from Wolbachia I). We were unable to run FSWM on the whole
genomes of the 31 metazoan species, since this data set was too large. Since
the original implementation of ACS is not publicly available, we ran our own
implementation, kmacs, with k = 0 instead.
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E. coli / Shigella 55 110 125 10 2,518 193
Wolbachia II 19 68 46 9 5,302 135
Wolbachia I, 252 proteins 3 5 2 1 36 3
Wolbachia I, whole proteomes 11 22 21 2 178 26
Plants 464 1,107,720 365 17 17,693 850
Prokaryotes 5,502 244,139 5,492 1,929 915,635 123,520
Metazoa 1,719 - 1,973 43 151,612 9,512

Table 3: Program run time in seconds for different alignment-free approaches
on our benchmark data sets. Prot-SpaM and FSWM were run on 40 threads.
The other tools do not support multi-threading, therefore they were run
single threaded.

varying values of these four parameters. Here, we modified one parameter at
a time, using the respective default values of the remaining three parameters.
The results are summarized in Tables 4 and 5. As can be seen from these
tables, there are no values for w, ` an T that work best for all data sets, but
our default values seem to be a reasonable compromise. Using sets of m = 5
binary patterns does not improve the quality of the produced trees in terms
of their RF distances to the reference trees, compared to program runs with
single patterns. Table 3 shows, however, that the distance values estimated
by Prot-SpaM become statistically more stable if multiple patterns are used.

The number of spaced-word matches in a pairwise sequence comparison
depends on how similar the two sequences are to each other, see [48] for
details. Consequently, the number of spaced-word matches that are selected
by our program to estimate phylogenetic distances also depends on the de-
gree of similarity between the compared sequences. We found two extreme
cases with our test data, one in the E. coli/Shigella data set where most taxa
are closely related to each other, and another one in the Metazoan data set
that contains taxa with very large evolutionary distances. In the pairwise
comparison of E. coli O157:H7 strain EDL933 with E. coli O157:H7 Sakai
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(EHEC), Prot-SpaM selected more than 6,000,000 spaced-word matches.
These two proteomes have less than 1,600,000 amino acids each, so in this
case > 3.75 spaced-word matches per sequence position were selected. By
contrast, less than 13.000 spaced-word matches were selected in the compar-
ison of Brugia malayi and Homo sapiens. The latter proteome has a length
of more than 75.000.000 amino acids, so here less than 0.00017 spaced-word
matches per sequence position were selected.

4 Discussion

A number of so-called ‘alignment-free’ approaches have been proposed in
recent years to rapidly calculate phylogenetic distances between genomic
sequences. Earlier approaches are based on k-mer frequencies or on the
length of common substrings; these approaches have been applied not only
to DNA, but also to protein sequences. A draw-back of these methods is
that they can only calculate rough measures of sequence similarity or dissim-
ilarity, they do not estimate phylogenetic distances in a rigorous way. More
recently, word-based methods have been developed that can accurately esti-
mate phylogenetic distances between genomic sequences based on stochastic
models of DNA evolution. One of these approaches is Filtered-Spaced Word
Matches (FSWM).

In this study, we introduced Prot-SpaM, a new implementation of FSWM
to compare complete or incomplete proteome sequences to each other. To our
knowledge, Prot-SpaM is the first tool that can accurately estimate phyloge-
netic distances between protein sequences without the need to calculate full
sequence alignments. Our benchmark results show that distance estimates
obtained with our approach are accurate for a large range of phylogenetic
distances. Distances calculated with CVTree, ACS, FFP and kmacs, by
comparison, are monotonously increasing with the number of substitutions
between the compared sequences. The obtained distance values are far from
proportional to the real distances, though, and they flatten out somewhere
between 0.5 and 1.5 substitutions per position, see Figure 2. By contrast,
Prot-SpaM estimates distances with high accuracy for up to around 2.0 sub-
stitutions per position. For higher distance values, the calculated distances
become less stable, as can be seen from the error bars in Figure 2. Moreover,
for large distances, our program tends to slightly overestimate distances.

In our program evaluation, we used all competing software tools with
their respective default parameters, if such default values were recommended
by their developers. It should be mentioned, however, that some of the eval-
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E. coli/Shigella

Weight w 6 8 10
Runtime [s] 55.4 47.4 46.9
RF distance 4 6.02 6.76

Length ` 36 46 56 66
Runtime [s] 47.5 55.4 60.3 66.9
RF distance 4 4 4.02 4.84

# patterns m 1 3 5 7
Runtime [s] 13.5 34.4 55.4 75.94
RF distance 4.12 4.02 4 4

Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 55.2 55.4 55.4 55.1 55.3 55.3 55.1 55.2
RF-Distance 11.92 12 4 12 12 12 12 12

Wolbachia II

Weight w 4 6 8 10
Runtime [s] 112.4 19.4 18 17.8
RF distance 20.38 19.68 22 22

Length ` 36 46 56 66
Runtime [s] 17 19.4 21.5 23.9
RF distance 19.78 19.68 19.7 19.78

# patterns m 1 3 5 7
Runtime [s] 5.4 12.5 19.4 26.5
RF distance 19.06 19.12 19.68 19.82

Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 19.6 19.6 19.4 19.4 19.4 19.4 19.4 19.4
RF-Distance 22.18 18 19.68 19.86 20.16 20.7 21.04 22

Table 4: Program runtime and Robinson-Foulds distances to reference trees
for different parameter values with Prot-SpaM for the E. coli/Shigella and
Wolbachia proteomes. We ran our program with different values for the
weight w and length ` of the spaced-words, for different numbers of patterns
and for different values of the threshold T . Here, we modified the value
of one of these parameters at a time and used the default values for the
remaining three parameters. Default values of the modified parameters and
the resulting runtimes and RF distances are shown in bold font. Since Prot-
SpaM uses a probabilistic algorithm to generate pattern sets, we performed
100 program runs for each set of parameters; the table reports the average
RF distances of these 100 runs.
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Plants

Weight w 4 6 8 10
Runtime [s] 57,578 464 320 325
RF distance 2 0 4 6

Length ` 36 46 56 66
Runtime [s] 383 464 441 494
RF distance 2 0 0 0

# patterns m 1 3 5 7
Runtime [s] 91 255 464 572
RF distance 0 0 0 2

Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 383 402 464 409 391 459 439 430
RF-Distance 2 2 0 0 0 0 2 4

Metazoa

Weight w 6 8 10
Runtime [s] 1719 1584 1518
RF distance 30 26 30

Length ` 36 46 56 66
Runtime [s] 1351 1719 1584 2089
RF distance 26 30 24 26

# patterns 1 3 5 7
Runtime [s] 427 890 1719 2078
RF distance 24 28 30 26

Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 2539 2337 1719 2269 2150 1906 1783 1797
RF-Distance 30 24 30 26 28 28 30 34

Table 5: Program runtime and Robinson-Foulds distances to reference trees
for different parameter values with Prot-SpaM for the plant and metazoan
proteomes; parameter values as in Table 4. Because of the size of these data
sets, we performed only one program run per parameter set.

17



uated programs might produce better results with different parameter set-
tings. The program FFP, for example, uses a default k-mer length of k = 4,
so we used this value in our study. It has been reported, however, that FFP
may perform better on protein sequences if larger values of k are used [35].
A comprehensive investigation of the effects of different parameters on the
software programs evaluated in this study would be beyond the scope of
the present paper. Interested readers are encouraged to run these programs
with different parameter values so see if their results on our benchmark data
can be improved.

Prot-SpaM produced high-quality trees and was superior to other align-
ment-free methods for the E.coli/Shigella and the plant data sets, as shown
in Table 2. On the Wolbachia data sets, it still performed reasonably well
and was again superior to competing approaches on the whole-proteome se-
quences, but it was outperformed by word-frequency methods on the 252
selected orthologous proteins. A possible explanation of this result is dis-
cussed below. On the large prokaryote data set and for the metazoan set,
by contrast, none of the compared programs could reproduce the reference
trees that we used in our evaluation. These are difficult data sets since they
span very large evolutionary distances; also it should be mentioned that
there are no absolutely reliable reference trees available for these data sets.
For the metazoan data set, for example, the positions of the ctenophores is
still a matter of debate [15,21,51]. On the metazoans, Prot-SpaM performed
better than other alignment-free approaches, while on the large prokaryote
data set, CVTree, ACS and kmacs were superior.

An interesting result is the performance of Prot-SpaM, compared to our
previous approach FSWM that takes genomic sequences as input. For most
groups of taxa in our study, the results of Prot-SpaM and FSWM were of
similar quality, in the sense that the RF distances to the reference trees were
comparable for both approaches. However, for the set of 813 prokaryote
taxa, our new spaced-words approach performed better on whole-proteomes
than our previous approach on whole genomes, as is shown in Figure 6
and Table 2. This discrepancy is most likely due to the large phylogenetic
distances in this data set; for such distantly related sequences, homologies
are generally better detectable at the protein level than at the DNA level.

‘Alignment-free’ methods to phylogeny reconstruction can be directly
applied to whole-genome or whole-proteome sequences, without the need to
select orthologous genes or proteins in a first step. This is generally seen
as an advantage over more traditional, alignment-based approaches, since
the task of finding orthologs is time-consuming and often involves manual
intervention. On our data set Wolbachia I, we actually obtained better
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RF distances with Prot-SpaM and FSWM when we applied these programs
to the whole-protein or whole-genome sequences, respectively, than when
we applied them to the 252 selected orthologous proteins or to the genes
coding for those proteins, see Table 2. These results are in contrast to
the more traditional alignment-free methods FFP, CVtree and ACS that
are based on word-frequencies or on the length of common substrings. The
latter programs performed better on the selected orthologous proteins of the
Wolbachia I data set than on the corresponding whole-proteome sequences.

A possible explanation of this phenomenon is that Prot-SpaM and FSWM
can reliably distinguish between homologous and background spaced-word
matches and use only homologous matches for phylogenetic inference. With
the one-to-one spaced-word matching, they can also reduce the number of
paralogous spaced-word matches. Therefore, they can be applied to whole
proteomes or whole genomes without being too much confused by paralogs or
by non-related parts of the sequences. Here, the benefits of using larger input
sequence sets seem to outweigh the disadvantage of including possible non-
related sequences, paralogs or sequences with recombinations. Previously
introduced word-frequency or substring-length methods, by contrast, do not
distinguish between homologous and non-homologous parts of the sequences.
Therefore, these approaches tend to be confused by input sequences that
contain paralogs or are only locally related to each other.

Table 3 shows that the run time of Prot-SpaM is superior to CVtree
and ACS on protein sequences. By far the fastest alignment-free method
on whole proteomes was FFP, the slowest one was kmacs. On the plant
proteomes, Prot-Spam was three orders of magnitude faster than FSWM on
the genome sequences of the same species. This is not surprising, given the
fact that in eukaryotes only a small part of the genome is protein-coding
sequence. The total size of the 11 plant genomes was 3.8 GB, compared
to 245 MB for the corresponding proteome sequences (note that, for the
genome sequences, both strands are considered and the number of back-
ground spaced-word matches scales quadratically with the sequence length).

Prot-SpaM has four major parameters that can be adjusted by the user:
the weight w and the length ` of the patterns and spaced-words, respectively,
the cut-off value T to distinguish homologous from random spaced-word
matches and the number m of different patterns used to generate spaced-
word matches. We provide default values for these parameters, but Tables 4
and 5 show that reasonable results can be obtained with a rather broad
range of parameter values. These tables also show that the quality of the
produced trees, as measured by the RF distances to the reference trees, could
not be improved by using m = 5 patterns, compared to the single-pattern
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option, i.e. m = 1. The statistical stability of our distance estimates,
however, is increased if multiple patterns are used; therefore, we are using
m = 5 patterns by default. But since runtime and memory usage of our
program increase with the number m of pattern, it may be advisable to use
the single-pattern option if very large data sets are to be analyzed.

It should be mentioned that traditional approaches to phylogeny re-
construction that are based on multiple sequence alignment are still more
accurate than alignment-free approaches that have been proposed in recent
years. The main advantage of these novel approaches is their high speed,
with makes it possible to apply them to the large sequence data sets that are
now available; a program run of Prot-SpaM on whole-proteome sequences of
the set Wolbachia II that consists of 47 taxa, took only 19 seconds. Another
advantage of our approach is that it can reliably distinguish between local
homologies and random background similarities. It can, thus, be applied to
complete or incomplete proteomes, and it is not necessary to select orthol-
ogous genes or proteins in a first step. Therefore, we think that Prot-SpaM
should be a useful addition to existing approaches to phylogeny reconstruc-
tion.

Availability of source code and requirements

• Project name: Prot-SpaM

• Project home page: https://github.com/jschellh/ProtSpaM

• Operating system(s): linux

• Programming language: C++

• Other requirements: none

• License: GNU GPL

• Any restrictions to use by non-academics: none

Availability of supporting data

The sequence data sets and trees used for the program evaluation can be
downloaded here: http://projects.gobics.de/data/protspam/paperData.tgz
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A B

C D

Figure 1: Spaced-word histograms (‘spamograms’) for different data sets.
(A) and (B) are based on simulated indel-free protein sequences with a
total length of of 1.6× 106 amino-acid residues each, and with 0.3 (A) and
0.75 (B) substitutions per position, respectively. (C) and (D) are from a
whole-proteome comparisons of plants, (C) comparing Eucalyptus grandis
with Capsella rubella and (D) comparing Gossypium raimondii with Carica
papaya.
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Figure 2: Distances calculated by Prot-SpaM and four other alignment-
free methods calculated for pairs of simulated protein sequences, plotted
against their distances calculated with the Kimura model. Error bars denote
standard deviations. Note that Prot-SpaM estimates phylogenetic distances
in terms of substitutions that have happened since two sequences evolved
from their lasts common ancestor. The programs kmacs, CVTree, FFP and
ACS, by contrast, do not estimate distances in a rigorous way, but rather
use ad-hoc measures of sequence dissimilarity that are not linear functions
of the real distances. Also, the absolute values of these distance measures
are rather arbitrary for these four other programs. We therefore normalized
the distances calculated by kmacs, CVTree, FFP and ACS such that they
have a value of one for sequence pairs with a Kimura distance of one.
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Figure 3: Distances calculated by Prot-SpaM for pairs of simulated protein
sequences with a single binary pattern (m = 1, left) and with the default
multiple-pattern option (m = 5, right). We performed 1000 program runs
for each value of m. The plot shows the average of the calculated distances;
standard deviations are shown as error bars.
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Figure 4: Reference tree for our data set Wolbachia I (above) and tree
calculated with Prot-SpaM using whole-proteome sequences of the same taxa
(below), see main text for details. Topological differences between the two
trees are shown in red in the Prot-SpaM tree.
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Figure 5: Reference tree (A) from [74] and tree calculated with Prot-SpaM
with default parameters (B) for a set of 29 Escherichia coli and Shigella
strains. Differences in the topologies between the two trees are marked in
red.
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Figure 6: Phylogenetic trees for a large set of microbial taxa studied by Lang
et al. [40]. (A) Maximum-Likelihood tree constructed by Lang et al. based
on a super alignment of 24 selected genes, (B) tree constructed with our
approach, as described in this paper, for 813 taxa for which the proteomes
are available in GenBank, (C) tree constructed with our approach based on
the proteins corresponding to the 24 genes selected by Lang et al. and (D)
tree reconstructed using our program FSWM [44] on the 841 whole-genome
sequences.
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Figure 7: Phylogenetic trees of plant taxa. (A) reference tree from [26],
and trees constructed with (B) the approach described in this paper, (C)
ACS [68], (D) FFP [59], and (E) kmacs [43]. The original data set contained
14 taxa, but only for 11 taxa, the proteomes could be downloaded through
GenBank. For completeness, we show the reference for all 14 taxa.
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5 Discussion

In this work, I introduced the filtered spaced-word matches approach (FSWM), a new
alignment-free method for fast and accurate genomic phylogeny reconstruction (see Chap-
ter 2). Similar to other methods based on micro-alignments (see Table 1), FSWM esti-
mates substitution rates based on short local gap-free alignments. To this end, spaced-word
matches are identified and the fraction of non-matching nucleotides at the don’t-care posi-
tions are determined which are turned into an evolutionary distance. To reduce noise from
random matches, I proposed a simple but effective filtering procedure to separate back-
ground matches and homologous matches. The results showed that this filter removes most
of the unwanted background noise and consequently the estimated distances based on the
remaining word matches are very accurate. Moreover, I performed a phylogenetic analysis
of multiple real-word data sets and showed that the resulting phylogenies were in most
cases superior to the phylogenies of competing alignment-free approaches. I implemented
FSWM in C++ and used the OpenMP library [86] for parallelization. FSWM is available
as command line tool and through our web server at http://www.fswm.gobics.de/.
Furthermore, I investigated if a slightly modified version of FSWM can be used as an-
chor points for genome alignments (see Chapter 3). To do so, I integrated FSWM into
the popular multiple-genome-alignment pipeline mugsy [6] and found out that the anchor
points based on FSWM outperformed the default anchoring procedure of mugsy. When
FSWM was used to identify anchor points, more homologies were found and aligned and
the alignments were of higher quality. Especially for distantly related organisms, a signifi-
cant improvement was achieved with FSWM as anchors.
Moreover, I explored the possibility to transfer the basic FSWM idea to protein sequences.
Together with a bachelor student, I developed a tool called Prot-SpaM (see Chapter 4)
which calculates evolutionary distances between whole proteoms within a few seconds. To
our knowledge, our tool is the only alignment-free approach that estimates evolutionary
distances between protein sequences. Systematic tests on simulated and real-word data
showed that the estimated distances approximated the substitution rate very well and also
the reconstructed phylogenies based on these distances were of high quality.

87

http://www.fswm.gobics.de/


5.1 Applications for filtered spaced-word matches

Sequence comparison is a central task in biology. Traditionally, sequence alignments are
used to identify similarities between biological sequences. Perhaps the most famous tool to
identify local homologies is BLAST [3] and its derivatives as for example PSI-BLAST [4].
Later, faster high-throughput programs were developed such as DIAMOND[12] and MM-
seq [39, 109, 110]. These tools are designed to rapidly align reads to a reference database
but they are usually not used to compare pairs of whole genomes. Therefore, I developed
the filtered spaced-word matches approach which is an efficient and effective tool to identify
similarities between sequences without the computationally expensive alignment step. At
first, FSWM was developed for fast alignment-free whole genome phylogeny reconstruction
(see Chapter 2) but later, I identified two more applications where FSWM can be used
(see Chapter 3 4). In the following three sections, I discuss each application separately.

5.1.1 Whole genome phylogeny reconstruction

Alignment-free sequence comparison has become a vibrant field of research in bioinformat-
ics and a large variety of different approaches were proposed over the past decades. Most
traditional alignment-free methods are either based on word counts (see Section 1.1.2) or
on match lengths (see Section 1.1.3). Recently, a new idea to estimate distances emerged
which is based on micro-alignments (see Section 1.1.4). I discussed the advantages of these
methods compared to other alignment-free approaches but also pointed out that current
approaches are limited to closely related organisms.
In my research, I focused on the development of a new alignment-free method for phy-
logeny reconstruction that overcomes the limitation of current approaches (see Chapter 2).
Similar to CO-Phylog [133] and andi [38], FSWM is based on micro-alignments. Both com-
peting approaches use a minimal length criteria of the matching word pairs to distinguish
between background and homologous hits. This approach, however, becomes increasingly
imprecise the longer the sequences are. The relationship between the sequence length and
the number of homologous and background matches was pointed out in Section 1.1.2. To
alleviate this problem both approaches use additionally a uniqueness criteria, as described
in Section 1.1.4. The effectiveness is, however, limited. Instead of filtering matches by
length and uniqueness, I proposed a new filtering procedure which calculates a score for
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each spaced-word match and discards matches with a score below a threshold. To in-
vestigate which threshold should be used, I plotted the number of spaced-word matches
against their score. We called these plots spamograms (spaced-word match histograms)
(see Chapter 4). These spamograms showed that a threshold of 0 separates most homolo-
gous matches from background matches (see Chapter 2 Figure 1) and therefore I used this
as default parameter. If background matches are filtered out, patterns with fewer match
positions can be used without losing the signal between the sequences due to noise. This
is especially important if the sequences are more distantly related because the number of
homologous word matches decrease with increasing sequence divergence but the number of
background matches remain the same. Consequently, the FSWM approach is competitive
with CO-Phylog and andi for closely related sequences but outperforms both for more dis-
tantly related sequences. I showed that FSWM is able to estimate substitution rates up
to about 0.9 and is less influenced by insertions and deletions then other approaches (see
Chapter 2 Figure 2). Moreover, the resulting phylogenies based on distances calculated
with FSWM were more accurate then the phylogenies based on distances calculated by
other alignment-free approaches (see Chapter 2 Figure 3).
One notorious problem associated with whole genome comparison are repetitive regions
and gene duplications. For example, a spaced-word can occur at position i in sequence S1

and the same spaced-word occurs in sequence S2 at position j and j′, i.e. there are two
matches, and both matches have a positive score. In this scenario one could assume that
only one match occurs due to orthology and the other match occurs due to duplication.
For phylogeny reconstruction, the orthologs are used to estimate distances and must be
identified first [98, 126, 45]. To this end, I proposed to use a greedy one-to-one mapping
of spaced-word matches which works as follows: at first all spaced-word matches with a
positive score are stored in a list. Then, the spaced-word match with the highest score
is picked. Next, the number of matching and non-matching nucleotides at the don’t care
positions of this spaced-word match is determined and this match and all other matches
that start at the same positions in S1 or S2 are removed from the list. This procedure
is repeated with the next highest-scoring spaced-word match in the list until the list is
empty. CO-Phylog and andi, on the other hand, implicitly deal with duplications by their
respective uniqueness criteria, i.e. word matches where no clear assignment is possible are
ignored.
The run time of FSWM is sufficiently fast to compare large pairs of sequence in reasonable
time. For example, it took FSWM about one and a half day to calculate all pairwise
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distances of a large eukaryotic data, consisting of 14 taxa with a total size of 4.8 gb. In the
study presented in Chapter 2, FSWM was considerably slower than andi but faster than
CO-Phylog . Complexity-wise, however, CO-Phylog should be much faster than FSWM
but the published implementation leaves room for improvements. The issue of the run
time of FSWM is discussed in Section 5.2.

Web server

To make the FSWM approach accessible to a broad range of researchers, I developed a
user-friendly web server. Users can upload a set of sequences in Multi-FASTA format and
the number of match positions of the pattern, called the weight, can be specified. Then,
the job is executed on a powerful server and the user can track the progress of the job
via the assigned id. After the calculations are finished the spamograms are visualized on

Figure 2: Screenshot of the FSWM web server, available at http://fswm.gobics.de
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the website and the user can switch between them. The visualization of the spamograms
helps the user to identify a good cut-off value between random and homologous matches
if the default threshold does not separate them properly. The threshold can be changed
independently for each spamogram with the scroll bar at the bottom. If the threshold
is changed for one sequence pair, the resulting distance is dynamically recalculated and
shown on the website. Once the user is satisfied with the selected thresholds, the distance
matrix and corresponding tree, calculated with Neighbor-Joining, can be downloaded. Also
the spamograms can be saved as an image.
There are some restrictions on the web server to prevent server overload. The total file
size is limited to 512 mb and the number of sequences is restricted to 100. If large-scale
data sets are to be analysed or for researchers with knowledge in linux, it is preferable
to use the command line version of FSWM. The command line tool, however, does not
provide a visualization of the spamograms. A solution to this problem could be to upload
a smaller subset of sequences on the web server to assess which threshold works best for
most sequences pairs.

5.1.2 Anchor points for whole genome alignments

Pairwise or multiple sequence alignments are usually limited to rather short sequences
such as single genes or mitochondrial genomes, due to their run time. However, since
the late 1990s efforts have been made to align longer sequences. To circumvent the run
time problem, it is necessary to reduce the search space to the most promising regions
where homologies can be found. Such high-scoring local homologies are usually identified
by fast word-based methods and are called anchor points [79]. After a sufficient number
of local homologies are identified they are ordered and the segments between these an-
chor points are aligned with a more sensitive but slower alignment method. Perhaps the
first approach which was used to identify anchor points for whole genome alignments was
MUMmer [21, 57]. MUMmer rapidly identifies maximal unique matches between pairs of
sequences. Another genome alignment program, called MGA [43], uses maximal unique
matches across all input sequences as anchor points. Both tools work very well on closely
related sequences but for more distantly related sequences they reach their limits. This is
due to the fact that with increasing sequence divergence the number of maximal unique
matches decrease. The performance of genome aligners is strongly dependent on the num-
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ber and quality of the anchor points.
In Chapter 3, I showed that FSWM can be used to identify high quality anchor points for
genome alignments. The idea to use spaced-word matches as anchor points is generally
not new and there are already tools available that implemented that approach, e.g. pro-
gressiveMauve [17] and cactus [88]. These tools, however, do not remove spurious random
spaced-word matches. Therefore, I proposed to use the filtering technique from FSWM.
But before FSWM can be used as anchor points, two problems must be solved. One issue
is that filtered spaced-word matches overlap and another problem is that a spaced-word
match can reach into a non-homologous or gapped region. The second problem is solved
by performing a gap-free extension of the spaced-word matches from the middle position
in both directions instead of extending the matches from the start and end position. This
extension also solves the problem of overlapping spaced-word matches because if a spaced-
word match is located within an extension, it is redundant and ignored. This procedure is
computationally slightly more demanding but still competitive compared to other anchor-
ing procedures.
To evaluate this new anchoring approach, I integrated it into the genome aligner mugsy [6].
By default, mugsy uses MUMmer, i.e. maximal unique matches, to identify anchor points
between pairs of genomes. I replaced MUMmer with the adjusted version of FSWM and
left the subsequent alignment procedure untouched. I showed that FSWM as anchor points
are far superior compared to maximal unique matches if the sequences are distantly re-
lated. For very similar sequences both anchoring procedures were equally good. Moreover,
mugsy with the anchor points from FSWM is competitive with cactus [88], one of the best
genomes aligners available. For some data sets, it even outperformed cactus (see Chapter 3
Figures 2-4).
Additionally, I compared the run time of FSWM and MUMmer with and without the
subsequent alignment procedure (see Chapter 3 Table 2). The run time of FSWM as stan-
dalone program is comparable to MUMmer but the run time of the subsequent alignment
pipeline differs substantially. If FSWM is used to identify anchor points, the run time
of the alignment procedure is much higher. This is primarily due to the fact that more
anchor points are found by FSWM and thus more regions must be aligned. In conclusion,
FSWM is a good alternative to standard anchoring procedures. The resulting alignments
are of very high quality and the run time is within an acceptable range.
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5.1.3 Prot-SpaM: whole proteome phylogeny reconstruction

In Chapter 4, I introduced the Proteome-based Spaced-Word Matches (Prot-SpaM) ap-
proach. I transferred the idea of FSWM from genomic sequences to protein sequences.
Using protein sequences for phylogeny reconstruction has some advantages over nucleotide
sequences. For example, protein sequences are more conserved than DNA sequences. Ho-
mologies between distal protein sequences can be still found even if they are almost not
detectable anymore on the DNA level. Therefore, it is desirable to have alignment-free
methods for protein sequences. Current alignment-free methods for protein comparison
are not based on a stochastic model of evolution. Prot-SpaM, on the other hand, is able to
estimates the number of substitutions between protein sequences. Similar to FSWM for
DNA sequences, Prot-SpaM searches for local gap-free alignments from which the distances
are estimated. To calculate an evolutionary distance we used the Kimura model [54] which
approximates the PAM distance [20]. Spurious random matches are identified based on
a score which is calculated with the BLOSUM62 substitution matrix [40] based on the
aligned amino acids at the don’t care positions.
The Prot-SpaM distances were evaluated based on simulated data (see Chapter 4 Figure
2-3) while the phylogeny analysis was performed on real-word proteoms (see Chapter 4 Fig-
ures 4-7 and Table 2). The correct phylogeny of real-world organisms is often unknown.
To circumvent this issue, we worked together with experts for some data sets to assess
the quality of the resulting phylogenies. I showed that the estimated distances reflect the
number of substitutions very accurately up to 2.0 substitutions per site. Moreover, for
most data sets, the resulting phylogenies were better compared to the trees based on other
alignment-free approaches. The run time of Prot-SpaM is much lower compared to the
nucleotide version of FSWM. This is due to the fact that the sequence length of protein
sequences is substantially shorter than DNA sequences. Additionally, no reverse comple-
ment of the sequences must be taken into account. Prot-SpaM is usually faster compared
to other alignment-free approaches, except for FFP [49] (see Chapter 4 Table 3).
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5.2 Limitations

I identified three different applications where FSWM can be used (see Chapter 2 3 4). In
most cases, FSWM outperformed current state-of-the art methods. There are, however,
limitations which I discuss in this section.
As described in the introduction (see Chapter 1.1.2), it is a challenge to distinguish signal
from noise between pairs of sequences. Instead of filtering word-matches by their lengths,
I proposed to calculate a score for each spaced-word match and then discard those which
have a score below a threshold. As I demonstrated in chapter 2, the results of FSWM
are very good but the score calculation is computationally expensive. The problem is that
if a certain spaced-word occurs n times in sequence S1 and m times in sequence S2 then
there are n × m matches that involve this spaced-word and n × m calculations must be
performed. Consequently, the run time is dependent on the number of matches that in-
volve occurrences of the same spaced-word. Therefore, the distribution of the spaced-words
must be investigated to evaluate the complexity of FSWM. For two sequences with inde-
pendent and identically distributed characters, the spaced-words are equally distributed,
i.e. each spaced-word occurs with about the same frequency in both sequences. This is
computationally the best case scenarios because the score calculation of the matches which
involve a certain spaced-word takes time proportional to the product of the occurrences
of this spaced-word in S1 and S2. The worst case scenario, on the other hand, would be
if two sequences of length L consist of repetitions of the same letter. In this case, O(L2)
computations must be executed which takes as much time as to calculate an optimal align-
ment with the Needleman-Wunsch algorithm [84]. Empirically, most real-world sequences
are somewhere between these two extremes and I demonstrated that FSWM can calculate
distances between pairs of eukaryotic genomes of a few hundred mb within a few minutes.
However, such a low run time can not be guaranteed for all data sets. Especially high
repetitive segments can cause a steep increase in the run time because many matches are
found in such regions. Such regions could be marked and removes from further downstream
analysis. However, no such tool is integrated in FSWM yet.
The run time of FSWM also depends on the number of match positions of the underlying
pattern. The smaller the number of match positions, the more matches are found and
the more time is required to calculate the score between all matches. Tests showed that
the accuracy of the distances are not systematically influenced by the number of match
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positions. Therefore, it is preferable to use patterns with more match positions for larger
sequences because it reduces the run time significantly.
Another issue that needs to be discussed is that FSWM, by default, uses patterns with 100
don’t care and 12 match positions. Such long patterns are necessary to clearly separate
homologous from background matches. The disadvantage is that homologies are missed
which contain insertions or deletions. Missing spaced-word matches is generally not an
issue as long as a sufficient number of matches are found such that the distances can be
still estimated properly. It is more problematic if spaced-word matches are found that are
partially homologous and partially random but still have a score above the threshold. In
such cases, a higher mismatch rate is calculated from the spaced-word matches and the
resulting distances are overestimated. Empirically, such incidences are fairly low and do
not have a large impact on the distances. Therefore, I ignored them. For the anchoring
approach (see Chapter 3), I solved this issue by extending the spaced-word matches from
their midpoint with a standard X-drop approach. This procedure, however, increases the
run time and therefore I did not use it for the distance estimation for phylogeny recon-
struction.
FSWM can precisely estimate distances up to 0.9 substitutions per site, then the curve
begins to flatten out (see Chapter2 Figure 2). This is due to the fact that the score of the
homologous matches decreases with increasing substitution rate. At about 0.9 to 1.0 sub-
stitutions per site homologous matches and background matches become indistinguishable
by the score and the distance accuracy drops rapidly. If more than 100 don’t care positions
are used, distances between more distantly related sequences can be estimated but the
underlying sequences must have longer regions without insertion or deletions. If less than
100 don’t care positions are used more homologous matches can be found in gapped regions
but only smaller substitution rates can be estimated. Empirically, 100 don’t care positions
work well for most data sets but for some data, the default parameters might need to be
adjusted.
The patterns in FSWM are generated and optimized with rasbhari [32] to ensure a lower
statistical dependency between overlapping spaced-words. The optimization procedure in
rasbhari is not deterministic and the results of FSWM vary slightly in each program run.
This is a clear disadvantage. The alternative to set a fixed pattern is also problematic
because there is no single pattern that works best for all data sets. For the nucleotide ver-
sion of FSWM the influence of the pattern is very low and in most cases negligible. Also
the resulting phylogenies are very stable for different patterns. In contrast, Prot-SpaM is
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strongly dependent on the underlying pattern. The distances and the resulting phyloge-
nies vary significantly for different patterns. In order to reduce the variance, we use sets of
multiple patterns. The effect that multiple patterns lead to much better and more stable
results for protein sequences was already shown in a previous study [60]. However, even
if multiple patterns are used, the variance of Prot-SpaM still remains higher compared to
the nucleotide version.
In the last part of this section, I discuss the general evaluation procedure of alignment-free
methods and point out their weaknesses. Alignment-free methods are usually evaluated
based on simulated sequence data as well as on real-world sequences. The advantage of
simulated data is that the evolutionary truth is known which makes benchmarking easy.
The disadvantage is that sequence simulators usually use simplified models of evolution
which can not cover the whole spectrum of evolutionary events. Consequently, the assess-
ment of the results of simulated data sets is limited. For real-word sequences, on the other
hand, the correct phylogeny is often unknown or there are even disagreements between
research groups. Therefore, developers of alignment-free methods often rely on published
phylogenies that are often inferred based on selected marker genes or sometimes even based
on 16S rRNA. The quality of these trees are often unknown and therefore it is often prob-
lematic to evaluate the performance of alignment-free methods. In our Prot-SpaM paper,
we tried to circumvent this problem by working closely together with experts to evaluate
the resulting phylogenies. A good solution would be standard benchmark data sets where
experts provide reliable phylogenies such that the accuracy of alignment-free methods can
be investigated properly.

6 Outlook

The outlook section is divided into two parts. In the first part, I describe ideas how FSWM
could be improved and in the second section I suggest other possible application for FSWM.
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6.1 Possible improvements

I showed that FSWM estimates substitution rates between unaligned genomes more accu-
rately than other alignment-free methods. This accuracy, however, comes at a price: the
run time is in most cases higher compared to competing approaches. Given the fact, that
in the future much more biological data will be produced [111] the biggest improvement of
FSWM would be a reduction of the run time. The bottleneck of FSWM is the exhaustive
score calculation of each spaced-word match. This problem could be overcome if not scores
of all the spaced-word matches are calculated but only of a fraction of them, i.e. some
spaced-word matches are sampled. This strategy would not affect the estimated distances
because the distances are calculated based on the aligned nucleotides at the don’t care po-
sitions of the spaced-word matches and not based on the number of spaced-word matches.
For the anchoring application of FSWM, on the other hand, some homologies could be
missed if spaced-word matches are sampled. But this effect might be limited because of
the extension of the spaced-word matches. It would be sufficient if one single match is
found within a homologous region.
In the following, I describe three different sampling strategies that could be used to de-
crease the run time. The first sampling strategy works as follows: one spaced-word from
sequence S1 is randomly picked and compared the same spaced-word occurring somewhere
in sequence S2, i.e. the score of this spaced-word match is calculated. If this match has a
positive score, the fraction of non-matching nucleotides (or amino acids) at the don’t care
positions are determined and this spaced-word match is deleted. If the score is negative,
another position in S2 is randomly picked where the same spaced-word occurs and the score
is calculated again. This procedure is repeated either until a match with a positive score is
found, a user defined limit of comparisons is reached or until the scores for all spaced-word
matches are calculated. Then, the next spaced-word from S1 is picked, which can either
be the same spaced-word occurring at another position or a different spaced-word. Once a
sufficient number of spaced-word matches are sampled, i.e. until the estimated distances
are stable, the algorithm stops. This strategy is similar to the sampling procedure in
Multi-Spam [22].
The second sampling strategy does not randomly select spaced-words to calculate a score
but instead spaced-word matches are picked that have a higher chance for a positive score.
To this end, all equal spaced-words from S1 and S2 are determined and sorted together
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in one list according to their don’t care positions. Then, only the scores of neighboring
spaced-words in this list are calculated. The chance of a positive score for neighboring
spaced-words is higher because equal nucleotides at the don’t care positions are next to
each other in the sorted list. A similar idea was implemented in the UProC approach for
ultra-fast protein domain classification [78].
The third and last sampling idea is to sample spaced-words from the sequences directly.
That means not all spaced-words occurring in a sequence are determined but only a pre-
defined fraction. One simple rule could be, for example, that only spaced-words from even
positions are used. On top of this sampling, the other two strategies described above could
be used additionally.
Besides the run time, there are two more ideas how FSWM for whole genome phylogeny
reconstruction could be developed further. The first idea is to use another substitution
model than Jukes&Cantor [48] to calculate substitution rates. For example, the Kimura
two parameter model [53] could be used because the fraction of transversions and tran-
sitions can be determined easily by comparing the aligned nucleotides at the don’t care
positions. This is, however, a very fine-grained tuning whose effect might be limited. A
more promising improvement could be to calculate distances only based on so called sin-
gleton matches. These are spaced-words that only match one position in each sequence
with a positive score. This would be an alternative to the one-to-one mapping and the
distances may be less influenced by repeats. However, for all of these ideas new studies
must be conducted to evaluate which strategies yield the best results.

6.2 Further applications

In this section, I describe two other potential applications for FSWM. Perhaps one of the
most popular topic in bioinformatics is metagenomic classification, see [11] for a recent
review. One established tool for taxonomic classification is called Kraken [129]. It rapidly
identifies all reads in a metagenomic sample by comparing them to a database of known
genomes. To do so, Kraken uses long exact word matches of a fixed length instead of
computationally more expensive alignments. If one read matches to multiple genomes
in the database, then the read is assigned to the lowest common ancestor of those taxa.
Therefore, it is important to avoid random matches which they achieve by using word
matches of length 31. The disadvantage is that only matches between closely related
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organisms can be found. This problem could be solved if FSWM is used instead, because
it can distinguish between background and homologous hits. There are, however, some
problems that must be addressed first. One issue is that reads are short and FSWM by
default uses patterns of length 112. Shorter patterns seem to be preferable but it needs
to be explored how much the length can be reduced until homologous matches cannot
be distinguished from background matches anymore. Another problem is that the run
time might be too high for very large metagenomic samples. This could be solved by
the sampling strategies proposed above. The same two problems also apply if distances
between two organisms are to be calculated based on unassembled reads.
Another application of FSWM could be the identification of regions where horizontal gene
transfers happened. The homologous peak of the spamograms reflects different degrees of
sequence similarity in different regions of the sequences (e.g. see Chapter 2 Figure 1D).
Regions with a considerably higher score compared to the rest of the genome could be
an indication of horizontal gene transfer. With FSWM such regions could be very quickly
identified and further investigated with either slower but more precise methods or manually
by experts.
In this thesis, I conducted three studies in which FSWM could be applied with great effect
and I described two more possible application in this section. This highlights the generality
and versatility of FSWM which could serve as foundation of further alignment-free research
and development.
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