8 research outputs found

    Aliasing reduction in clipped signals

    Get PDF
    Most real-world audio devices, particularly those of interest in musical applications, fall under the category of nonlinear systems. Examples of these devices include overdrive and distortion circuits used by guitar and bass players, dynamic range processors, and vintage synthesizer circuits. Nonlinear algorithms are known to expand the bandwidth of the input signal by introducing harmonic and intermodulation distortion. Naive digital emulations of these systems are susceptible to aliasing due to the inherent frequency constraints of discrete systems.  This thesis focuses on new digital signal processing techniques designed to reduce the level of aliasing introduced by memoryless nonlinearities. The underlying motivation of this work is to incorporate these tools within the framework of virtual analog (VA) modeling, an area of study that concentrates on the emulation of analog audio devices in the digital domain. In VA modeling, aliasing reduction has been studied extensive for the case of synthesis of classical oscillator waveforms like those used in subtractive synthesis. However, in audio effects processing oversampling has traditionally been the only available tool to ameliorate this problem. The first part of this work proposes the use of bandlimited correction functions previously used in waveform synthesis, to reduce the aliasing caused by special nonlinearities that introduce discontinuities in the derivatives of a signal. This family of novel methods includes the use of the bandlimited ramp function (BLAMP), its efficient polynomial approximations, and its integrated form. A new VA model of a highly nonlinear wavefolder circuit, which incorporates one of these techniques, is proposed.  The second family of techniques elaborated in this thesis is that of the antiderivative method. This innovative approach to aliasing reduction is based on the discrete differentiation of integrated nonlinearities and can be applied to arbitrary explicit memoryless nonlinearities regardless of their form. The use of the antiderivative forms in VA modeling is proposed by introducing two novel transistor/diode-based wavefolder models, and two static diode clipper models that incorporate these techniques.  Results obtained show the proposed algorithms effectively reduce the level of aliasing in nonlinear processing and can help reduce, and in some cases even eliminate, the oversampling requirements of the system. The proposed algorithms are suitable for real-time software implementations of VA instruments and effects processors

    On Unlimited Sampling

    Full text link
    Shannon's sampling theorem provides a link between the continuous and the discrete realms stating that bandlimited signals are uniquely determined by its values on a discrete set. This theorem is realized in practice using so called analog--to--digital converters (ADCs). Unlike Shannon's sampling theorem, the ADCs are limited in dynamic range. Whenever a signal exceeds some preset threshold, the ADC saturates, resulting in aliasing due to clipping. The goal of this paper is to analyze an alternative approach that does not suffer from these problems. Our work is based on recent developments in ADC design, which allow for ADCs that reset rather than to saturate, thus producing modulo samples. An open problem that remains is: Given such modulo samples of a bandlimited function as well as the dynamic range of the ADC, how can the original signal be recovered and what are the sufficient conditions that guarantee perfect recovery? In this paper, we prove such sufficiency conditions and complement them with a stable recovery algorithm. Our results are not limited to certain amplitude ranges, in fact even the same circuit architecture allows for the recovery of arbitrary large amplitudes as long as some estimate of the signal norm is available when recovering. Numerical experiments that corroborate our theory indeed show that it is possible to perfectly recover function that takes values that are orders of magnitude higher than the ADC's threshold.Comment: 11 pages, 4 figures, copy of initial version to appear in Proceedings of 12th International Conference on Sampling Theory and Applications (SampTA

    FIR Filtering of Discontinuous Signals: A Random-Stratified Sampling Approach

    Get PDF
    This paper presents a novel approach, based on random stratified sampling (StSa) technique, to estimate the output of a finite impulse response (FIR) filter when the input signal is either a piecewise-continuous function having first-derivative discontinuities (FDDs), or a piecewise-discontinuous function, i.e. having zero-derivative discontinuities (ZDDs). The proposed approach investigates the implications of such discontinuities on the output signal and its statistical properties. Mainly, we devise mathematical expressions for the variance of the StSa estimator in the two cases above, along with other minor special cases. It is found that the uniform convergence rate of the estimator, in the FDDs case, is N^{-3}, where N is the number of random samples. However, the variance in the ZDDs case is adversely affected by the existence of discontinuities. We prove that it converges more slowly with a uniform rate of N^{-2}

    Antithetical Stratified Sampling Estimator for Filtering Signals with Discontinuities

    Get PDF
    A novel approach to signal filtering using digital alias-free signal processing (DASP) is presented in this paper. We propose an unbiased, fast-converging estimator of the output of a finite impulse response (FIR) continuous-time filter. The estimator processes 2N signal samples collected with the use of random antithetical stratified (AnSt) sampling technique. To assess the estimator convergence rate as the function of N, we consider various forms of smoothness of the input signal, filter impulse response and windowing function. The cases are piecewise-continuous second-order derivative (SOD), piecewise-continuous first-order derivative (FOD) and piecewise-continuous zero-order derivative (ZOD). In each case we assume that the respective derivative has a finite number of bounded discontinuities. We prove that the proposed estimator converges to the true filter output at the rate of N^(-5) in the first case. But for the other two the rate drops to N^(-4) and N^(-2) respectively

    Novel Digital Alias-Free Signal Processing Approaches to FIR Filtering Estimation

    Get PDF
    This thesis aims at developing a new methodology of filtering continuous-time bandlimited signals and piecewise-continuous signals from their discrete-time samples. Unlike the existing state-of-the-art filters, my filters are not adversely affected by aliasing, allowing the designers to flexibly select the sampling rates of the processed signal to reach the required accuracy of signal filtering rather than meeting stiff and often demanding constraints imposed by the classical theory of digital signal processing (DSP). The impact of this thesis is cost reduction of alias-free sampling, filtering and other digital processing blocks, particularly when the processed signals have sparse and unknown spectral support. Novel approaches are proposed which can mitigate the negative effects of aliasing, thanks to the use of nonuniform random/pseudorandom sampling and processing algorithms. As such, the proposed approaches belong to the family of digital alias-free signal processing (DASP). Namely, three main approaches are considered: total random (ToRa), stratified (StSa) and antithetical stratified (AnSt) random sampling techniques. First, I introduce a finite impulse response (FIR) filter estimator for each of the three considered techniques. In addition, a generalised estimator that encompasses the three filter estimators is also proposed. Then, statistical properties of all estimators are investigated to assess their quality. Properties such as expected value, bias, variance, convergence rate, and consistency are all inspected and unveiled. Moreover, closed-form mathematical expression is devised for the variance of each single estimator. Furthermore, quality assessment of the proposed estimators is examined in two main cases related to the smoothness status of the filter convolution’s integrand function, \u1d454(\u1d461,\u1d70f)∶=\u1d465(\u1d70f)ℎ(\u1d461−\u1d70f), and its first two derivatives. The first main case is continuous and differentiable functions \u1d454(\u1d461,\u1d70f), \u1d454′(\u1d461,\u1d70f), and \u1d454′′(\u1d461,\u1d70f). Whereas in the second main case, I cover all possible instances where some/all of such functions are piecewise-continuous and involving a finite number of bounded discontinuities. Primarily obtained results prove that all considered filter estimators are unbiassed and consistent. Hence, variances of the estimators converge to zero after certain number of sample points. However, the convergence rate depends on the selected estimator and which case of smoothness is being considered. In the first case (i.e. continuous \u1d454(\u1d461,\u1d70f) and its derivatives), ToRa, StSa and AnSt filter estimators converge uniformly at rates of \u1d441−1, \u1d441−3, and \u1d441−5 respectively, where 2\u1d441 is the total number of sample points. More interestingly, in the second main case, the convergence rates of StSa and AnSt estimators are maintained even if there are some discontinuities in the first-order derivative (FOD) with respect to \u1d70f of \u1d454(\u1d461,\u1d70f) (for StSa estimator) or in the second-order derivative (SOD) with respect to \u1d70f of \u1d454(\u1d461,\u1d70f) (for AnSt). Whereas these rates drop to \u1d441−2 and \u1d441−4 (for StSa and AnSt, respectively) if the zero-order derivative (ZOD) (for StSa) and FOD (for AnSt) are piecewise-continuous. Finally, if the ZOD of \u1d454(\u1d461,\u1d70f) is piecewise-continuous, then the uniform convergence rate of the AnSt estimator further drops to \u1d441−2. For practical reasons, I also introduce the utilisation of the three estimators in a special situation where the input signal is pseudorandomly sampled from otherwise uniform and dense grid. An FIR filter model with an oversampled finite-duration impulse response, timely aligned with the grid, is proposed and meant to be stored in a lookup table of the implemented filter’s memory to save processing time. Then, a synchronised convolution sum operation is conducted to estimate the filter output. Finally, a new unequally spaced Lagrange interpolation-based rule is proposed. The so-called composite 3-nonuniform-sample (C3NS) rule is employed to estimate area under the curve (AUC) of an integrand function rather than the simple Rectangular rule. I then carry out comparisons for the convergence rates of different estimators based on the two interpolation rules. The proposed C3NS estimator outperforms other Rectangular rule estimators on the expense of higher computational complexity. Of course, this extra cost could only be justifiable for some specific applications where more accurate estimation is required
    corecore