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Abstract 

 

This thesis aims at developing a new methodology of filtering continuous-time 

bandlimited signals and piecewise-continuous signals from their discrete-time 

samples. Unlike the existing state-of-the-art filters, my filters are not adversely 

affected by aliasing, allowing the designers to flexibly select the sampling rates of the 

processed signal to reach the required accuracy of signal filtering rather than meeting 

stiff and often demanding constraints imposed by the classical theory of digital signal 

processing (DSP). The impact of this thesis is cost reduction of alias-free sampling, 

filtering and other digital processing blocks, particularly when the processed signals 

have sparse and unknown spectral support. 

Novel approaches are proposed which can mitigate the negative effects of aliasing, 

thanks to the use of nonuniform random/pseudorandom sampling and processing 

algorithms. As such, the proposed approaches belong to the family of digital alias-free 

signal processing (DASP). Namely, three main approaches are considered: total 

random (ToRa), stratified (StSa) and antithetical stratified (AnSt) random sampling 

techniques. 

First, I introduce a finite impulse response (FIR) filter estimator for each of the three 

considered techniques. In addition, a generalised estimator that encompasses the three 

filter estimators is also proposed. Then, statistical properties of all estimators are 

investigated to assess their quality. Properties such as expected value, bias, variance, 

convergence rate, and consistency are all inspected and unveiled. Moreover, closed-

form mathematical expression is devised for the variance of each single estimator. 

Furthermore, quality assessment of the proposed estimators is examined in two main 

cases related to the smoothness status of the filter convolution’s integrand function, 

𝑔(𝑡, 𝜏) ∶= 𝑥(𝜏)ℎ(𝑡 − 𝜏), and its first two derivatives. The first main case is continuous 

and differentiable functions 𝑔(𝑡, 𝜏), 𝑔′(𝑡, 𝜏), and 𝑔′′(𝑡, 𝜏). Whereas in the second main 

case, I cover all possible instances where some/all of such functions are piecewise-

continuous and involving a finite number of bounded discontinuities. 

Primarily obtained results prove that all considered filter estimators are unbiassed and 

consistent. Hence, variances of the estimators converge to zero after certain number 
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of sample points. However, the convergence rate depends on the selected estimator 

and which case of smoothness is being considered. 

In the first case (i.e. continuous 𝑔(𝑡, 𝜏) and its derivatives), ToRa, StSa and AnSt filter 

estimators converge uniformly at rates of 𝑁−1,  𝑁−3, and 𝑁−5 respectively, where 2𝑁 

is the total number of sample points. More interestingly, in the second main case, the 

convergence rates of StSa and AnSt estimators are maintained even if there are some 

discontinuities in the first-order derivative (FOD) with respect to 𝜏 of 𝑔(𝑡, 𝜏) (for StSa 

estimator) or in the second-order derivative (SOD) with respect to 𝜏 of 𝑔(𝑡, 𝜏) (for 

AnSt). Whereas these rates drop to 𝑁−2 and 𝑁−4 (for StSa and AnSt, respectively) if 

the zero-order derivative (ZOD) (for StSa) and FOD (for AnSt) are piecewise-

continuous. Finally, if the ZOD of 𝑔(𝑡, 𝜏) is piecewise-continuous, then the uniform 

convergence rate of the AnSt estimator further drops to 𝑁−2. 

For practical reasons, I also introduce the utilisation of the three estimators in a special 

situation where the input signal is pseudorandomly sampled from otherwise uniform 

and dense grid. An FIR filter model with an oversampled finite-duration impulse 

response, timely aligned with the grid, is proposed and meant to be stored in a lookup 

table of the implemented filter’s memory to save processing time. Then, a 

synchronised convolution sum operation is conducted to estimate the filter output.  

Finally, a new unequally spaced Lagrange interpolation-based rule is proposed. The 

so-called composite 3-nonuniform-sample (C3NS) rule is employed to estimate area 

under the curve (AUC) of an integrand function rather than the simple Rectangular 

rule. I then carry out comparisons for the convergence rates of different estimators 

based on the two interpolation rules. The proposed C3NS estimator outperforms other 

Rectangular rule estimators on the expense of higher computational complexity. Of 

course, this extra cost could only be justifiable for some specific applications where 

more accurate estimation is required. 
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𝑎 = 2𝐶𝑗 − 𝜏𝑗 , (for AnSt only) 

𝐾𝑗  The ratio 𝐷𝑗 ∆𝑗⁄ , i.e. 0 ≤ 𝐾𝑗 ≤ 1. 
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Introduction 

1.1. Overview 

An inherent feature of all digital signal processing (DSP) algorithms is that the 

processed signals are sampled. This means that the values of these signals are only 

known at discrete time instants, whereas in-between there is no information collected. 

Many signal processing applications rely on full knowledge of the processed signals. 

Therefore, a common requirement is that the collected samples of some processed 

signal should somehow provide the complete required information about it. This is a 

challenging requirement that in practice can rarely be fulfilled. 

A classical approach defined by Shannon is to use uniform sampling of the processed 

signal not less than a specific rate known as the Nyquist rate = 𝐹𝑠_𝑁𝑦𝑞 [1], [2]. For a 

bandlimited signal, the Nyquist rate is two times the highest frequency present in it. If 

this is satisfied, then it can be uniquely represented by interpolating an infinite number 

of equally spaced signal samples and the sinc kernel (basis). 

However, even in this case there are practical limitations. It is impossible to collect an 

infinite number of samples over a limited period of time. So, the infinite summation 

of the interpolation has to be truncated to a finite summation, meaning that we 

indirectly assume the signal is zero outside the time window of observation. But it is 

well-known that signals with finite support in the time domain have infinite 

bandwidth. Consequently, the assumption that they could be sampled at a finite rate is 

not entirely true. 

In practice, signals are oversampled, then after truncating them to a finite window, 

reconstruction errors can be upper-bounded and dealt with. While Shannon sampling 

theorem states a sufficient condition for signal reconstruction; it is by no means 

necessary. 

CHAPTER 1
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An interesting observation was made by Landau who formulated a necessary 

condition [3]. He proved that if the processed signal is a multiband signal and has 

single-sided spectrum sub-bandwidths 𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑀, then the minimum sampling 

rate that allows the perfect reconstruction of the signal is equivalent to the sum of all 

positive and negative sub-bandwidths, i.e. 𝐹𝑠_𝑚𝑖𝑛_𝐿 = ∑ 2𝐵𝑘
𝑀
𝑘=1 , provided that the 

number and locations of such sub-bandwidths are a priori known. 

Unfortunately, this theorem does not state what sampling scheme should be used, or 

how to reconstruct the signal from the samples if they are correctly collected. Uniform 

sampling often fails in this case, because of the wide spectrum support of the signal 

and the distortion effects of aliasing phenomenon. Hence, suitable nonuniform random 

sampling schemes could be the best sampling approach to consider in this case. 

Some special cases that use Landau rate, rather than Nyquist-Shannon’s, are solved, 

and some are widely used in practice. So-called bandpass sampling allows users to 

sample high-frequency signals, e.g. multiband and communication signals, at the rates 

being many times slower than those recommended by Nyquist [4]. Multiband signals 

with known spectrum support can be tackled with by the use of periodic nonuniform 

sampling (PNS) (or multicoset sampling) patterns [5]–[7], where the minimum 

Landau sampling rate is approached. Additional challenges come when the spectrum 

support function of the processed signal is not fully known. In this case, blind 

spectrum multiband sub-Nyquist sampling and reconstruction techniques, such as the 

emerging compressed sensing (CS) framework, are exploited [8]–[10]. Though, such 

techniques are not completely “blind”, as they assume that the number of bands and 

their widths are known in advance. It has been shown that the minimum achievable 

rate for blind spectrum-based sampling and perfect signal reconstruction is twice the 

minimum Landau sampling rate [9], i.e. 𝐹𝑠_𝑚𝑖𝑛_𝐵𝑆𝑆 = 2𝐹𝑠_𝑚𝑖𝑛_𝐿. 

However, all the methods mentioned above, except for the last one in the previous 

paragraph (i.e. CS and blind spectrum techniques), use regular sampling schemes, 

which means that the classes of processed signals have to be heavily constrained in 

order to avoid aliasing. In this thesis, I understand aliasing as a scenario when two 

different continuous-time signals, belong to the class of the processed signal, have 

identical sampled (discrete-time) versions. Of course, this understanding takes into 
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account those cases where aliasing may partially occur in specific spectral 

component(s) of, for example, a composite signal. In this case, the discrete-time 

sequence obtained using insufficient uniform sampling rate (i.e. slightly less than the 

required Nyquist rate) is interpolated back to a new continuous-time signal which is 

really different from the original processed one, albeit this difference is sometimes 

insignificant, especially if the aliased component is a single sinusoid with negligible 

amplitude compared to the rest of the signal.   

Digital alias-free signal processing (DASP) is an innovative technology that utilises 

random/pseudorandom sampling and/or quantising techniques and subsequent 

suitable algorithms to digitise and process analog signals without the bounds and 

restrictions imposed by the classical DSP theory and practice. Definitely, this novel 

technology, if properly understood and well-implemented, exhibits a considerable 

gain over conventional techniques, especially in mitigating the destructive effects of 

aliasing phenomenon and expanding the bandwidth of processed analog signals [11, 

p. 54]. 

This significant advantage of DASP in suppressing aliasing while tackling with 

signals beyond the Nyquist limit, despite being considered unachievable from DSP 

perspective, is a direct result of correctly employing randomisation in signal digitising 

and processing. In effect, proper randomised sampling and/or quantising leads, under 

certain conditions, to the fact that different analog signals are converted to different 

sequences of digital data. Meaning, the mapping between continuous-time domain and 

random discrete-time domain is unique [8], [12, pp. 101–103]. 

However, a new problem emerges resulting from the fact that the random discrete-

time signal is not known, and it can be observed usually through a single realization. 

Therefore, the question arises about the quality of signal processing obtained from 

such single realization. The problem is, then, shifted from avoiding aliasing to 

statistical estimation and accuracy of the estimation. 

DASP is heavily used to solving problems related to spectrum estimation, spatial 

signal processing, instrumentation, and some others [11, pp. 55–60]. But there is no 

much research done so far in DASP environment about signal filtering, or in general, 
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about the response of continuous-time linear time-invariant (CT LTI) systems. This 

thesis addresses such scarcity and explores different aspects that exist in this area. 

1.2. Objectives and Scope 

The thesis aims at developing a new methodology of filtering continuous-time 

bandlimited signals and piecewise-continuous signals (= having a finite number of 

bounded discontinuities) from their discrete-time samples. Such filters are used in 

many areas including communication systems, dynamic spectrum access, data 

collections, audio processing and satellite navigation. Unlike the existing, state-of-the-

art filters, my filters are not adversely affected by aliasing, letting the designers 

flexibly select the sampling rates of the processed signal to reach the required accuracy 

of signal filtering rather than meeting stiff and often demanding constraints imposed 

by the classical theory of digital signal processing. The impact of this research is cost 

reduction of digital alias-free filtering and introducing applicable nonuniform 

random/pseudorandom approaches to filtering estimation where the traditional DSP 

solutions fall short for economical or technical reasons, particularly when the 

processed signals have sparse and unknown presence in the frequency domain. Said 

this, DASP should not be deemed as a replacement for the classical DSP, rather, DASP 

complements it and provide viable and promising alternatives.  

The theory and practice of DASP technology is evolving rapidly, with new random 

sampling and quantisation techniques, algorithms, designs and implementations 

continuously emerge in research and application environments. However, the scope 

of this thesis does not cover all areas and applications under the nonuniform sampling 

and quantisation. For example, reconstruction of randomly sampled signals, 

compressed sensing, periodic nonuniform sampling and random quantisation 

techniques are not deeply discussed. Though, brief demonstrations of such 

applications and schemes are included in the literature review chapter (Chapter 2) for 

comparison purposes and comprehensiveness. 

Now, regarding the thesis’s title, although it includes the words “FIR Filtering”, the 

scope of the thesis is neither about the various design characteristics of analog and 

digital filters, nor about the practical implementation (i.e. building hardware testbeds 
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on FPGA kits or other electronic devices). Numerous publications exist in the research 

literature, as well as many design software, about this well-established topic despite 

the fact that the vast majority of it is related to uniform sampling. Real-life applications 

involving filtering (analog or digital) are uncountable. Therefore, I am not going to 

discuss the detailed features, types, pros and cons, and other aspects related to filter 

design as a device. 

The main goal associated with the term “FIR Filtering Estimation” in the title is to 

indicate that I am going to study the FIR filtering process, i.e. the convolution 

operation, as a system response to an input signal with specific features (randomly 

sampled, continuous or piecewise continuous, bandlimited or timelimited, etc). 

Consequently, it focuses on how to carry out the randomised filtering to estimate the 

output signal and investigate its various statistical properties. 

Of course, I will design and use several FIR filters to validate my analytical findings 

through numerical and simulation examples. However, the design of a specific filter 

for a given numerical example is not exclusive or of highly significant importance. 

Meaning that several alternatives for the same filter could be selected, as long as they 

have equivalent bandwidth, centre frequency, passband and stopband(s) attenuations, 

and transition width. Other features could be relaxed with some acceptable tolerance 

depending on the application. 

As is well-known, FIR filters are stable, causal and LTI systems with linear phase 

response, which makes them a good choice for my investigation. Actually, I need to 

explore the effects of employing random sampling techniques on the filter output, and 

how this would mitigate aliasing errors, albeit there will be statistical errors as a result 

of sampling irregularities. Therefore, the filter should have linear phase response, be 

stable and LTI so that it does not introduce extra errors that may affect my 

investigations and results. 

Furthermore, the scope of the thesis includes the statistical impact of the presence of 

a limited number of bounded discontinuities in the argument product function of the 

filter convolution operation and/or its derivatives. Fundamentally, I introduce the use 

of stratification-based filter estimators of randomly sampled signals and analyse the 

variance and the convergence rate of the estimators. This does not involve how such 
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discontinuities could be detected in real-time applications or what suggested 

techniques are there to eliminate them. I abandoned this as a future research work to 

expand upon this thesis, although there is already some research addressing functions 

discontinuities, especially in audio signal processing [13], but from different 

perspective. 

1.3. Potential Application Scenarios 

Many wideband applications could make use of pseudorandomised filtering based on 

DASP alias-free sampling and processing techniques. While conventional DSP filters 

are usually utilised in such applications; they often entail expensive specialised 

hardware/software implementation devices that require high computational 

complexity. Moreover, there are some specific application areas or situations where 

classical digital filtering based on uniform sampling is not feasible. Hence, using 

nonuniform filtering alternatives bridge this gap, and present lower complexity 

solutions. 

To show the strengths of DASP based filtering, and why I carry out this research in 

the first place, I provide below a non-exhaustive list of possible applications that can 

tolerate the statistical errors of randomised filtering in return for reducing the cost of 

their implementation. 

• Spectrum Management. Regulatory bodies in each country, who are responsible 

for governing the telecommunications systems and licensing frequency bands to the 

end users, monitor the electromagnetic spectrum (or specific bands of it) for 

unauthorised access or harmful interference caused to the licensed users. When it is 

required to scan an especially empty or sparse wideband of the spectrum to detect 

potential unlicensed users, or even unknown signals, then this would be expensive 

using classical DSP uniform sampling and filtering techniques. Indeed, the completely 

blind sampling of a sparse and wide frequency range of the spectrum, in the 

conventional DSP way, requires high-bandwidth analog-to-digital converters (ADCs) 

or a complete system of lower bandwidth interleaved ADCs. The sampling rate of the 

applied high-bandwidth ADC or the total compound sampling rate of the interleaved 
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ADCs system should match the Nyquist rate in this case, which makes this approach 

economically unaffordable.  

By using suitable randomised sampling and filtering DASP approaches, it is possible 

to monitor broad clusters of empty or sparse spectrum without abiding by the Nyquist 

limit on the sampling rate. 

• Software Defined Radios (SDRs). These multi-standard transceiver devices feature 

special importance for DASP sampling and filtering approaches, because of the 

general nature of such devices regarding the wide frequency bands, waveforms and 

techniques they deal with. The embedded ADC can limit the variety of applications 

of the SDR if uniform sampling is the only considered technique. Many SDR designs 

often rely on reconfigurable ADCs and reconfigurable analog filters through switched 

capacitor technology or other techniques [14]–[18]. Despite these sophisticated 

hardware-based reconfigurability properties, these devices are still confined to the 

traditional DSP constraints for each operational wireless standard currently selected 

by the SDR. Coupling such devices with alias-free sampling and filtering capabilities 

would emphasise their strength in terms of adding more communications standards 

and widening the operational bandwidth. 

• Instrumentation. Spectrum analysers’, particularly, and many other digital 

instrumentation devices’ performances can be significantly enhanced with randomised 

signal processing. Mitigating spectral aliases makes such devices operate beyond the 

limits imposed by classical theory of DSP. Some implementations of voltmeters, 

oscilloscopes and spectrum analysers have already been manufactured by commercial 

companies, like Hewlett Packard (hp), many decades ago [11, p. 52]. Further 

improvements and faster performance can always be achieved with statistical 

randomisation-based techniques. 

• Cognitive Radio. In this emerging area of communications, licensed (primary) 

users are those who have been assigned specific frequency bands by the regulatory 

bodies. Temporally or spatially based spectrum white holes normally appear in the 

licensed bands when there is inactivity by the allocated primary user. Such holes could 

be exploited by potential unlicensed (secondary) users under certain conditions that 

guarantee no harmful interference will be caused to the primary users. This criterion 
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allows better utilisation of the naturally limited, yet crowded, resource; the 

electromagnetic spectrum.  

In order for a cognitive radio principle to work efficiently, the secondary users need 

to continuously search a relatively wide spectrum band for possible white spaces. 

Similar to the first item above, Spectrum Management, uniform sampling-based 

approaches that may have to deal with such circumstances, i.e. sampling, digitising 

and processing high-frequency multiband signals, are costly and sometimes 

technically unviable. However, this kind of applications could be conveniently tackled 

with by applying nonuniform pseudorandom sampling schemes. Not only because of 

the beyond-Nyquist-limit capabilities of such randomised schemes, but also there is 

no need to actually detect the very detailed characteristics of the primary signals that 

might exist in the frequency band of interest, as the only required condition for the 

secondary users is to conduct a hypotheses test identifying whether or not there is a 

hole in this specific spectrum band. Traditional dynamic spectrum access techniques, 

e.g. an energy detector [19], [20], are usually used to perform this sort of hypotheses 

testing, which limits the width of the band to be searched at a given time and space to 

half the uniform sampling rate. Nevertheless, it is more efficient to use 

randomised/pseudorandomised techniques in this case, as broader bands could be 

considered while using average random sampling rate approaching the minimum 

Landau rate, or even less for specific types of estimations (e.g. first and second 

moments) and random processes (ergodic, for instance). 

• Wireless sensor networks (WSNs). Imagine a large collection of wireless sensors 

spread across a geographical region to monitor specific natural (physical, chemical, 

optical, …) properties or conditions [21]. Each sensor collects and transmits data to 

either a locally centralised sink station or a globally centralised centre using a 

preassigned narrow bandwidth and centre frequency. All sensors are assumed to be 

event-triggered transmitters. Therefore, it is unknown which sensor would send data 

and when. This application area is also best utilised using nonuniform sampling 

schemes, like the three considered random approaches; ToRa, StSa and AnSt. 

Other applications would include ad hoc networks, radar, and applications intended to 

detect signals with sparse and unknown spectral occupancy. 
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All mentioned scenarios above use deliberate randomised/pseudorandomised 

sampling techniques to extend the bandwidth of detectable signals beyond the 

traditional DSP limits using sub-Nyquist sampling rates. Nonetheless, there are many 

other application areas where unintentional nonuniform sampling is the only 

affordable digitising scheme. This includes, but not limited to, nuclear magnetic 

resonance (NMR) which is used to extract some features of proteins and nucleic acids 

[22], magnetic resonance imaging (MRI), astronomy, missing data from otherwise 

uniformly sampled signals (random skip sampling), sampling with jitter, hardware 

imperfections [11, p. 163]. 

1.4. Original Contribution to Knowledge 

In Chapter 7, I present a detailed list of the novel contributions of this Thesis. Though, 

to get a brief insight, I list below the main contributions. 

• Randomly/Pseudorandomly sampled continuous-time wideband signals and 

piecewise-smooth signals can, under certain conditions, be filtered using DASP-based 

filtering approaches without the negative effects of aliasing even if the average 

sampling frequency is less than the Nyquist rate. Thanks to the sparse spectrum 

occupancy features of the signal of interest, estimating the filter output is practically 

feasible using cost-effective random sampling techniques. 

• Introducing ToRa-, StSa- and AnSt-based consistent filter estimators and identifying 

their statistical advantages and limitations. 

• Devising mathematical expressions for the variances of the estimators and revealing 

their uniform convergence rates in different cases regarding the smoothness of the 

integrand/summand function, and its derivatives, of the filter convolution operation. 

My results prove that filter estimators’ uniform convergence rates are adversely 

affected by the presence of discontinuities in the convolution integrand/summand 

function. 

• Proposing new nonuniform interpolation technique, C3NS, based on Lagrange 

second-degree polynomial, to numerically integrate the area under the curve of the 
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filtering convolution summand function. Compared with the conventional 

Rectangular rule, the proposed method shows performance improvement. 
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Conference (EUSIPCO), Amsterdam, the Netherlands, Jan. 2021, pp. 2244–2248. 

• H. Y. Darawsheh and A. Tarczynski, “FIR Filtering of Discontinuous Signals: A 

Random-Stratified Sampling Approach,” in ICASSP 2020 - 2020 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 

5800–5804. 

• H. Y. Darawsheh and A. Tarczynski, “Comparison Between Uniform and 

Nonuniform Interpolation Techniques for Digital Alias-free FIR Filtering,” in 

International Conference on Digital Image & Signal Processing (DISP’19), Oxford, 

United Kingdom, May 2019, pp. 1–5. 

• H. Y. Darawsheh and A. Tarczynski, “Filtering Nonuniformly Sampled Grid-Based 

Signals,” in 2018 4th International Conference on Frontiers of Signal Processing 

(ICFSP), Sep. 2018, pp. 56–60. 

1.6. Thesis Layout 

The rest of this thesis comprises six chapters. Chapter 2 reviews the research literature 

in the areas of traditional and randomised signal processing to formulate a background 

for this thesis. The core of this thesis is divided into two main parts, Part I: Continuous-

Time Integrand/Summand Functions of the Filter Convolution Operation; and Part II: 
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Non-Smooth Integrand Functions. In the first part, which comprises two chapters, I 

introduce filter estimators, in the case of continuous-time input signal/filter impulse 

response, for the three considered DASP random sampling and processing approaches 

and assess their statistical qualities. Namely, in Chapter 3, I present ToRa-, StSa- and 

AnSt-based filter estimators. Then, I verify their unbiasedness and consistency, and 

devise mathematical expressions for the variance and uniform convergence rate for 

each estimator. While in Chapter 4, I consider a dense and uniform grid on which 

pseudorandomisation of the sampling process is taking place. The three estimators, 

mentioned above, are considered again, this time on practical backgrounds. Moreover, 

I propose a new nonuniform on-grid Lagrange-based interpolation technique to 

calculate the convolution sum besides the well-known Rectangular rule. A comparison 

between the different approaches is also provided. 

In the second part, where discontinuities in the integrand/summand functions of the 

convolution operation and/or their derivatives are considered, there are two chapters, 

too. Chapter 5 demonstrates the impact of such discontinuities on the statistical 

properties of StSa-based estimator, while Chapter 6 considers the AnSt-based 

estimator and its new and different statistical features in the same underlying 

conditions regarding the non-smoothness of the integrand function and its derivatives. 

Finally, conclusion remarks and future research opportunities are listed in Chapter 7. 

Appendices are presented at the end of the thesis. They include proofs of some of the 

proposed theorems throughout the text. References are also provided at the end.
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Processing Uniformly and 

Randomly Sampled Signals 

2.1. Overview 

Many physical properties and phenomena we observe everyday are analog in nature. 

Weather temperature, airplane location, speech volume, light intensity, magnetic field 

strength, car speed, and battery charge are all examples of continuous-time properties. 

If we would like to measure their absolute or relative values in order to build an 

electrical/electronic monitoring and/or controlling system, we somehow need to sense 

such properties in the first place. Fortunately, many types of sensors and transducers 

can easily be manufactured to do this very job. They can map/transform those physical 

properties to measurable quantities, such as electrical voltage or current, which are 

basically considered analog signals. Therefore, we have to design and implement 

either a completely analog system or a mixed (i.e. analog-and-digital) system to 

achieve the requested task. 

In completely analog systems, signals are generated and processed in continuous-time 

domain. Whereas in digital (mixed) systems, we need to convert the analog signals to 

sequences of digital data before further processing, since modern computers, 

processors, microcontrollers, memory storage and other digital encoding/decoding 

blocks cannot deal with analog signals directly. 

The conversion procedure (or digitization), which is normally carried out by an 

analog-to-digital converter (ADC), comprises three main stages: sampling; 

quantisation; and encoding. The digital data is then forwarded to subsequent 

hardware/software units for further processing, storage or transmission. In this thesis, 

I only pay attention to sampling and, to less extent, quantisation, whereas no 

discussion will be provided for encoding, as it is a pure digital representation of the 
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quantised data and therefore has nothing to do with sampling randomisation or aliasing 

mitigation. 

Although ADCs are incredible and indispensable systems in todays’ digital life, 

unfortunately, they have some drawbacks. Indeed, they are power-hungry and 

relatively time-consuming devices. Meaning, for remote or mobile applications with 

no direct or continuous access to main power sources, ADCs must be carefully 

selected to save batteries from rapid discharge. Additionally, being time-consuming 

devices, traditional ADCs have a limited operating bandwidth and, hence, their 

maximum uniform conversion rates cannot be exceeded. On the one hand, for a 

specific bandlimited analog signal with highest frequency component at 𝑓𝑚, for 

example, a considered ADC’s uniform sampling rate must be equal to 2𝑓𝑚, at least, to 

avoid undesired aliasing effects [2]. On the other hand, even if the ADC is technically 

able to oversample the same signal at rates largely higher than 2𝑓𝑚, this means, again, 

more power consumption and more processing time. Hence, there is a trade-off 

between the required/affordable sampling rate of a given ADC and its power 

consumption/computational complexity. 

Nonuniform sampling [23]–[25], including random and pseudorandom forms [12], 

emerged several decades ago to mitigate negative effects of aliasing while reducing 

power consumption and/or computational complexity. Classical restrictions imposed 

on the sampling rate (Nyquist rate) can be relaxed by using suitable random sampling 

techniques and subsequent processing algorithms. Nothing for free! This relaxation 

comes on the expense of other statistical errors due to this irregularity in sampling. 

With this stochastic approach, filter outputs, Fourier transforms, and other processing 

blocks become random and have to be statistically estimated. Now there is a new 

trade-off between the quality of estimates and the power consumption/computational 

complexity of the systems/devices that adopt and manifest sampling randomisation. 

Next section shows a suggested taxonomy of sampling-related terminology normally 

used in the research literature, despite the fact that there is no official standard for such 

classification. Rather, some terminology in this area are used interchangeably, 

ambiguously or even inconsistently. 



14 

Afterwards, I demonstrate how uniform sampling and classical DSP work in order to 

better comprehend and taste the impact of using random sampling in DASP 

applications. By providing comparisons between the two approaches, we know 

exactly what the opportunities and challenges each approach has. Consequently, most 

of this chapter will be devoted to review the research literature on different aspects, 

techniques and algorithms of both approaches. 

In Section 2.3, several uniform sampling-based areas, directly related to this research 

work, are revisited. This includes Shannon sampling theorem, aliasing, Fourier 

transform (FT), signal filtering, Lagrange interpolation and signal reconstruction. 

While in the nonuniform sampling section, Section 2.4, I demonstrate, in addition to 

the aforementioned topics, several random sampling and quantisation techniques 

along with their impact on the aliasing problem. In Section 2.5, I provide a quick 

comparison between common time-based randomisation schemes. Finally, Section 

2.6. explores the literature on processing unsmooth signals, that is signals with limited 

number of discontinuities in their function-representations and/or their derivatives. 

2.2. Sampling Terminology 

Fig. 1 shows a suggested taxonomy of sampling schemes according to the time spacing 

between the sample points. As illustrated, there are different terminology for the same 

sampling scheme used in the research literature. 

Throughout this thesis, I use uniform sampling term to denote equally spaced time 

instants of the samples, whereas the term nonuniform sampling is used to represent 

any irregularly spaced sampling schemes. Thus, nonuniform sampling may refer to 

random, pseudorandom or even hybrid (uniform + random/pseudorandom) sampling. 

The context will implicitly or explicitly assign which one is meant at a particular point. 

Furthermore, by traditional/classical/conventional terms I mean uniform-based 

approaches. Accordingly, traditional DSP refers to the concepts, techniques and 

algorithms of acquiring, processing, transmission, detection or reconstruction of 

signals with equally spaced sample points. Whereas DASP approach will be used for 

processing nonuniformly sampled signals with the ability of completely eliminating 

the undesirable effects of aliasing or reducing it considerably. 
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Fig. 1.    Sampling taxonomy, with different terminology found in the literature. 

Some sampling schemes have features from both DSP and DASP depending on the 

details of the applied sampling pattern, and the dashed lines mean weaker relation, 

usually. 

 

2.3. Uniform Sampling 

In uniform sampling schemes, continuous-time analog signals are sampled 

periodically at a constant rate known as sampling frequency, 𝐹𝑠. Therefore, the 

sampling period is 𝑇𝑠 = 1 𝐹𝑠⁄ . The sampling process is usually represented by 

multiplying the continuous-time analog signal with a train of equally spaced versions 

of the Dirac delta function, {𝛿(𝑡 − 𝑘𝑇𝑠)}𝑘∈ℤ, as shown in Fig. 2. The result is a 

sequence of equidistant data, {𝑥(𝑘𝑇𝑠)}, which is also known as uniform discrete-time 

signal (or just the discrete signal). In this section, I revisit several topics in the research 

literature involving (or based on) uniform sampling. 
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2.3.1. Sampling Theory 

Whittaker–Kotelnikov–Shannon (WKS) sampling theorem, [1], [26], [27], stipulates 

that the maximum time spacing, 𝑇𝑠, between two consecutive samples of a uniformly 

sampled bandlimited baseband signal, having 2𝑓𝑚 double-sided bandwidth, should be 

less than 1/2𝑓𝑚 for the signal to be perfectly reconstructed from such samples. Thus, 

the minimum sampling frequency, 𝐹𝑠 = 1/𝑇𝑠, that would achieve the above 

reconstruction condition is called the Nyquist rate. Indeed, this condition is sufficient 

but not necessary. Though, alias replicas of spectral components exceeding half the 

Nyquist rate appear in the bandwidth of the signal, [−𝑓𝑚 , 𝑓𝑚], if the utilised scheme 

of sampling is uniform and the sampling rate is less than the Nyquist’s. 

 

Fig. 2.    Uniform sampling example, where the continuous-time analog signal, 

𝑥(𝑡), is sampled by being multiplied with a train of equally spaced and shifted 

versions of the Dirac delta function {𝛿(𝑡 − 𝑘𝑇𝑠)}𝑘∈ℤ. The resulting sequence of 

data, {𝑥(𝑘𝑇𝑠)}, is the discrete-time sampled signal. 
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For the case of bandlimited bandpass signal with known bandwidth, 𝐵, and central 

frequency, 𝑓𝑐, and having lower and upper frequencies, 𝑓𝐿 = 𝑓𝑐 − 𝐵/2 and 𝑓𝑈 = 𝑓𝑐 +

𝐵/2, respectively (i.e. 𝐵 = 𝑓𝑈 − 𝑓𝐿 and 𝑓𝑈 > 𝑓𝐿), then the cost of sampling the signal 

uniformly with a frequency rate more than 2𝑓𝑈, which is equivalent to the Nyquist rate 

for sampling a baseband signal with a maximum frequency = 𝑓𝑈, is very high and 

unaffordable. Therefore, another cost-effective approach of regularly sampling 

bandpass signals has to be established. Fortunately, such approach was also 

considered in the research literature, making use of the constructive effects 

(advantages) of aliasing phenomenon, where the lowest spectral replica of the 

bandpass signal is sampled instead. In [28], it is shown that the minimum uniform 

sampling rate (Nyquist rate) of the bandpass signal is 
2𝑓𝑈

𝑛
, where 𝑛 is the maximum 

integer number of the quotient  
𝑓𝑢

𝐵
, i.e. the number of bandwidths where the upper 

frequency of the multiband signal spectrum is located away from the 0Hz origin (DC 

component). Therefore, the theoretical Nyquist rate is equal to 2𝐵 only if the bandpass 

signal is exactly shifted by a whole integer number, otherwise, it could reach up to 4𝐵. 

Moreover, Vaughan et al in [4] showed that the required uniform sampling frequency, 

𝐹𝑠, to ensure no overlapping of positive and negative components is 
2𝑓𝑈

𝑛
≤ 𝐹𝑠 ≤

2𝑓𝐿

𝑛−1
.  

Furthermore, in the case of sparse multiband signals, applying the classical bandpass 

sampling approach, with Nyquist rate = 2𝐵 or 2𝑓𝑈 𝑛⁄ , is not cost-effective, since the 

actual spectrum of this signal is comparatively wide with low spectrum occupancy 

rate. Hence, Landau suggested a theoretically lower sampling rate than the Nyquist 

rate for a given multiband signal [3]. For example, if the multiband signal consists of 

sub-bandwidths (𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑀) as shown in Fig. 3, then Landau minimum 

sampling rate is equal to 2(𝐵1 + 𝐵2 +⋯+ 𝐵𝑀). But in this case, there is no guarantee 

that aliasing will not occur using uniform sampling. However, aliasing could be 

avoided (or reduced dramatically) by simply using proper random sampling 

techniques and subsequent processing units with average sampling rate approaching 

the minimum Landau rate. Remark, however, that this is only applicable if the spectral 

support function is fully known, otherwise the minimum achievable sampling rate is 

double the Landau rate [9]. 
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Fig. 3.    Landau minimum sampling rate of multiband signal, with sub-bandwidths 

𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑀, is equal to 𝐹𝑠_min _𝐿 = 2(𝐵1 +𝐵2 +𝐵3 +…+𝐵𝑀). If only 𝑓𝐿 

and 𝑓𝑈 are known but not the spectral support of the signal, then the Nyquist rate 

= 2𝑓𝑈 𝑛⁄ . If 𝑓𝐿 is exactly positioned at the DC component (0Hz), then the Nyquist 

rate is equal to 2𝐵 = 2𝑓𝑈. If 𝑓𝐿 is also unknown, then the Nyquist rate = 2𝑓𝑈, i.e. 

the highest of all. 

 

2.3.2. Signal Reconstruction 

In traditional DSP, where continuous time signals are uniformly sampled and digitized 

for further stages of processing, one of the main concerns is how to reconstruct the 

signal faultlessly without loss of information. Fundamentally, this can be done using 

the sinc interpolation method [1], [29]. A bandlimited baseband signal 𝑥(𝑡) can be 

perfectly reconstructed from its equally spaced sequence of samples, {𝑥(𝑘𝑇𝑠)}𝑘∈ℤ, 

using (2.1), if the uniform sampling frequency conforms to the Nyquist rate, 

𝑥(𝑡) = ∑ 𝑥(𝑘𝑇𝑠)𝑠𝑖𝑛𝑐 (
𝑡

𝑇𝑠
− 𝑘)

∞

𝑘=−∞

, (2.1) 

where 𝑠𝑖𝑛𝑐(𝑡) = sin(𝜋𝑡) 𝜋𝑡⁄ .  

Since the FT of the sinc function is the rect boxcar function in the frequency domain, 

and because the above formula is a convolution in the time domain, therefore, it is 

equivalent to a multiplication in the frequency domain, meaning that the discrete 

sequence of signal samples is being filtered with an ideal lowpass filter. 

Furthermore, signal reconstruction can also be carried out using noisy samples from 

bandlimited or non-bandlimited signals [30]. However, the area of sampling, filtering 

f
B

1
B

2
B

M

 Landau minimum rate = 2(B
1
+B

2
+...+B

M
)

f
L

f
U

. . .

0

Whole Bandwidth, B=( f
U
- f

L
)



19 

and reconstruction of signals in the presence of noise is out of the scope of this paper 

and will be examined in a future research work, as indicated in Chapter 7. 

2.3.3. Fourier Transform 

The philosophy behind Fourier series is that any periodic signal, 𝑥𝑝(𝑡), which is 

piecewise continuous on the interval [0, 𝑇𝑝] with a fundamental frequency, 𝑓𝑝 = 1/𝑇𝑝, 

can be decomposed into an infinite number of uniform sinusoidal signals  having 

frequencies integer multiples of its fundamental frequency [31], that is 

𝑥𝑝(𝑡) = 𝑎0 +∑𝑎𝑘 𝑐𝑜𝑠(𝑘𝜔𝑝𝑡) + 𝑏𝑘 𝑠𝑖𝑛(𝑘𝜔𝑝𝑡)

∞

𝑘=1

, (2.2) 

where 𝑎0 =
1

𝑇𝑝
∫ 𝑥𝑝(𝑡)𝑑𝑡
𝑇𝑝
0

 is the DC component (average) of the signal, 𝜔𝑝 = 2𝜋𝑓𝑝 

and 𝑎𝑘 and 𝑏𝑘 are given by 

𝑎𝑘 =
2

𝑇𝑝
∫ 𝑥𝑝(𝑡) cos(𝑘𝜔𝑝𝑡) 𝑑𝑡
𝑇𝑝

0

, 𝑘 ≠ 0, (2.3) 

𝑏𝑘 =
2

𝑇𝑝
∫ 𝑥𝑝(𝑡) sin(𝑘𝜔𝑝𝑡) 𝑑𝑡
𝑇𝑝

0

. (2.4) 

While Fourier series represents periodic signals using linear combination of 

orthogonal sinusoids, FT is usually used to analyse aperiodic signals in frequency 

domain. It can also be used, mathematically, with any signal type, but for periodic 

signals it reduces to the exponential form of Fourier series. For instance, the periodic 

function, 𝑥𝑝(𝑡), can be synthesized from its FT coefficients, {𝑋𝑝(𝑓𝑘)}, by using this 

series 𝑥𝑝(𝑡) = ∑ 𝑋𝑝(𝑓𝑘)𝑒
j2𝜋𝑓𝑘𝑡∞

𝑘=−∞ , where j = √−1. In general, the FT and the 

inverse FT of any function 𝑥(𝑡) are calculated using (2.5) and (2.6), respectively, 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−j2𝜋𝑓𝑡𝑑𝑡
∞

−∞

. (2.5) 
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𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒j2𝜋𝑓𝑡𝑑𝑓
∞

−∞

. (2.6) 

Advantages of the FT are numerous. Converting signals from time domain to 

frequency domain, or vice versa, helps in understanding the nature of the signal and 

its properties. FT is heavily used in communication systems and channel estimation. 

Filtering of signals cannot be properly carried out without knowing minimal spectral 

occupancy information of the signal to be filtered, i.e. the bandwidth for a baseband 

signal and the bandwidth and centre frequency for a bandpass signal. Thus, it is very 

important to compute (or estimate) the FT of the processed signal in a large collection 

of applications in both environments; DSP and DASP. 

2.3.4. Filtering of Digital Signals 

Digital filtering is a well-established area in traditional DSP. For a given 𝑁-sample 

size sequence (i.e. a truncated discrete-time input signal), {𝑥(𝑘𝑇𝑠)}𝑘=1
𝑁 , with 𝑇𝑠 =

𝑇 𝑁⁄  uniform sampling period within the interval [0, 𝑇], and a filter impulse response 

ℎ(𝑡), then the filter output, 𝑦(𝑡), can be computed by using the discrete convolution 

operation 

𝑦(𝑡) = 𝑇𝑠 ∑𝑥(𝑘𝑇𝑠)ℎ(𝑡 − 𝑘𝑇𝑠)

𝑁−1

𝑘=0

. (2.7) 

In real-life applications, the output signal is observed in discrete form as well. Thus, 

𝑦(𝑡) is normally calculated at 𝑛𝑇𝑠-apart time instants, with 𝑛 is an integer. It follows 

from (2.7) that 

𝑦(𝑛𝑇𝑠) = 𝑇𝑠 ∑𝑥(𝑘𝑇𝑠)ℎ(𝑛𝑇𝑠 − 𝑘𝑇𝑠)

𝑁−1

𝑘=0

. (2.8) 

Normalising by the sampling period 𝑇𝑠, (2.8) can be reinterpreted as 

𝑦(𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)

𝑁−1

𝑘=0

. (2.9) 
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Later in the next section, we will see that (2.8) and (2.9) can be tweaked a little bit to 

cover the more general case of unequally spaced sample points. 

A close look at (2.8), one can intuitively see that the value of the discrete output signal 

at a given time instant is actually a numerical integration problem that uses the 

Rectangular (or midpoint) rule, having a 𝑇𝑠 width, to accumulatively calculate the area 

formed by the product function inside the convolution sum. Many other approaches to 

estimate the same area are discussed in the research literature [32]. One approach of 

my interest is to use Lagrange polynomial interpolation [33], since it usually exhibits 

faster convergence rates than the Rectangular rule. 

2.3.5. Uniform Interpolation and Composite Simpson’s 1/3 Rule  

Interpolation is a mathematical tool to find a curve (e.g. polynomial or other) that best 

fits for a set of equally or nonequally spaced points. It is commonly used in numerical 

analysis to integrate/sum a function that is only evaluated at a discrete sequence of 

values [34], [35]. The result then represents an estimate of the area under the curve 

(AUC) of the integrand/summand function. The error of estimation depends on many 

factors, such as the characteristics of the function itself and its derivatives, the number 

and locations of available evaluation points, and the used interpolation method. 

As mentioned above, the interpolated points (or nodes) could be equally spaced or not, 

but in general, interpolating evenly distributed points is more accurate. Sometimes, 

the uniform data points are not available, hence, nonuniform interpolation techniques 

have to be considered. Nevertheless, this sub-section focuses only on interpolation of 

equally spaced points using Lagrange polynomials, while interpolation of 

nonuniformly spaced samples will be addressed in the next section. 

Several uniform interpolation techniques are widely used in numerical integration 

area. I demonstrate here one of them related to the family of closed Newton–Cotes 

interpolation formulas [36]. Namely, composite Simpson’s 1/3 rule, which will be 

studied to show how it is related to my proposed nonuniform C3NS rule, to be 

introduced in Chapter 4. 

A function, 𝑓(𝑥), can be estimated according to the regular Simpson’s 1/3 interpolation 

rule if there are available three discrete sample points of 𝑓(𝑥) acquired at 𝑥0, 𝑥1 and 𝑥2. 
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To this end, a unique second-order polynomial, 𝑃(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 where 

{𝑎0, 𝑎1, 𝑎2} are the polynomial coefficients, which exactly passes through the function 

values 𝑓(𝑥0), 𝑓(𝑥1), and 𝑓(𝑥2), is formulated. This polynomial is often referred to as the 

Lagrange polynomial and is illustrated in Fig. 4.  

 

 

Fig. 4.    The second-order parabolic function 𝑃(𝑥) is an approximate interpolation 

curve for 𝑓(𝑥). 𝑃(𝑥) exactly passes through the three equally spaced samples of 

𝑓(𝑥) taken at 𝑥0, 𝑥1 and 𝑥2. Simpson’s 1/3 rule suggests that the area under the 
curve of 𝑃(𝑥) within the interval [𝑎, 𝑏] is an estimate of that of 𝑓(𝑥) within the 

same interval. 

 

With the parabolic equation becomes known, it is easy now to estimate the AUC of 

𝑓(𝑥) in a finite interval, [𝑎, 𝑏], by means of the definite integral of 𝑃(𝑥) from 𝑎 to 𝑏. 

In [32], it has been shown that this integral is equal to 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈
ℎ

3
(𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)), (2.10) 

where 𝑥0 = 𝑎, 𝑥1 =
𝑏+𝑎

2
, 𝑥2 = 𝑏are the three samples’ 𝑥-axis coordinates of 𝑓(𝑥), 

and ℎ =
𝑏−𝑎

2
 is the uniform sampling (evaluation) step or the segment width [37]. 

The error of estimation in Simpson’s 1/3 rule is bounded by the maximum value of 

the expression 
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𝐸𝑟𝑟𝑆𝑖𝑚𝑝1/3 = −
ℎ5

90
𝑓(4)(𝜉), (2.11) 

where 𝑓(4)is the fourth derivative of 𝑓(𝑥) and 𝜉 is a number in the open interval (𝑎, 𝑏). 

To better approximate the function 𝑓(𝑥) and decrease the estimation error in (2.11), a 

larger sequence of samples has to be used. Consequently, the whole interval [𝑎, 𝑏] is 

partitioned into𝑛 equally spaced subintervals of 2ℎ-wide each, where ℎ is the 

segment’s width. Then, the regular Simpson’s 1/3 rule is successively applied (𝑛 

times) to calculate the AUC of 𝑓(𝑥) again, this time with more accurate estimate. 

Assume that the new sequence of samples comprises 𝑁 values, then the segment width 

ℎ =
𝑏−𝑎

𝑁−1
=

𝑏−𝑎

2𝑛
, where 𝑎 = 𝑥0 and 𝑏 = 𝑥2𝑛, as shown in Fig. 5. 

 

 

Fig. 5.    Composite Simpson’s 1/3 rule, where multiple Lagrange polynomials 

have been used to approximate 𝑓(𝑥) over the whole interval from 𝑎 to 𝑏. Note that 

the notation for 𝑎 and 𝑏 here is different than those of Fig. 4. 

 

The new numerical estimate of the AUC of 𝑓(𝑥), within the interval [𝑎, 𝑏] using 

composite Simpson’s 1/3 rule, is given by 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈
ℎ

3
(𝑓(𝑥0) + 4∑𝑓(𝑥2𝑖−1)

𝑛

𝑖=1

+ 2∑𝑓(𝑥2𝑗)

𝑛−1

𝑗=1

+ 𝑓(𝑥𝑁−1)). (2.12) 
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The error of estimation using this composite rule is apparently the sum of all individual 

errors from each subinterval [𝑥2𝑖−2, 𝑥2𝑖], 𝑖 = 1,… , 𝑛. Thus 

𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝1/3 = −
ℎ5

90
∑𝑓(4)(𝜉𝑖)

𝑛

𝑖=1

, (2.13) 

where 𝜉𝑖 ∈ (𝑥2𝑖−2, 𝑥2𝑖), provided that the fourth derivative exist and bounded. 

If the worst-case error (i.e. the absolute maximum error) of a specific subinterval is to 

be generalised over all other subintervals, the total maximum absolute estimated error 

is simplified in (2.14). Alternatively, we may be interested in finding the average 

estimated error across all subintervals, 𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then (2.13) will be simplified to (2.15). 

Indeed, the total estimation error shown in (2.15) is more accurate than that of (2.14), 

since for large number of subintervals, individual estimated errors may cancel each 

other for their signs could be positive or negative. Lastly, the error in (2.15) is 

rewritten in a new form, (2.16), to indicate its relationship with the total number of 

samples 𝑁, 

𝑀𝑎𝑥. 𝐴𝑏𝑠. 𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝1 3⁄ =
ℎ4(𝑏 − 𝑎)

180
max|𝑓(4)(𝜉)|, (2.14) 

𝐴𝑣. 𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝1 3⁄  = −
ℎ4(𝑏 − 𝑎)

180
𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (2.15) 

𝐴𝑣. 𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝1 3⁄  = −
(𝑏 − 𝑎)5

180(𝑁 − 1)4
𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (2.16) 

where 𝜉 ∈ (𝑎, 𝑏). 

2.4. Nonuniform Sampling 

Signals are sampled nonuniformly either for accidental (not deliberate) or intentional 

reasons. On the one hand, there exist some signals that naturally have no uniform 

presence in the time domain (or any other 1D domain). For example, in astronomy, 

star luminosity can’t be always tracked because of weather, geophysical or equipment 

failure conditions. In IT and computer networks, packets are received and queued in 
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bursts [38]. In stock market, prices can be event triggered, and this often occur 

nonuniformly. In WSN, Ad hoc networks and other multiple access systems that share 

common channel, data transmission occur in random times. Furthermore, NUS is used 

in some applications in medicine, such as computed tomography (CT) scan generated 

by the magnetic resonance imaging (MRI), where signals under consideration are not 

available at an equidistant samples [39]. 

NUS is also used in case of missing data problem in wireless communications systems 

[40]–[42]. This problem occurs when some samples are lost from originally uniformly 

sampled signals due to poor signal to noise ratio (SNR), multipath fading or receiver 

hardware malfunction. 

Sometimes, the hardware sampling circuit suffers from high temperature or 

manufacturing imperfection that leads to what so-called sampling jitter [43], where 

the intended uniform samples deviate from the equidistant time instant pattern with a 

small random time [44], [45]. The overall sampling instants in this case look like 

random ones, hence, NUS is employed here to overcome this issue and process the 

signal further. However, Tarczynski et al showed in [44] that the sampler jitter 

worsens the accuracy of FT estimation, especially at higher frequencies. They also 

suggested some techniques to decrease the negative effects of the sampling jitter. 

On the other hand, we may intentionally utilise nonuniform sampling in certain 

situations and applications to gain technical advantages and/or reduce the cost [46]. 

Such applications are found in areas of wireless communications, signal processing, 

filter design, Fourier transform, wideband spectrum sensing, radar and automotive 

industry [47], [48]. The main reasons for performing nonuniform sampling in such 

cases are to relax some restrictions imposed by the classical DSP hardware or software 

implementations, or to post-process already collected and stored data. For example, to 

save memory and storage resources, NUS can be used to compress the data, hence, 

reducing the overall cost. 

Yen [23], Shapiro and Silverman [24], Masry [25], Bilinskis and Mikelsons [12], 

Marvasti [47], and Tarczynski and Allay [44] proved that carefully designed NUS 

schemes and algorithms can supress aliasing even if the sampling rates do not conform 

to the Nyquist rate. In such literature, proofs were presented for when a given sampling 
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method could result in aliasing or not, depending on how the random sampling process 

is performed, its probability density function (PDF) and characteristic function, the 

number of samples, and the observation window interval. 

2.4.1. Alias-Free Random Sampling Techniques 

As stated above, aliasing happens when two different continuous-time signals have 

the same sequence of samples. So, a sampling scheme plays a vital role in mitigating 

the aliasing problem, with random sampling techniques are more immune to aliasing 

than others [24], [25], [49]–[51]. In general, any stationary random sampling point 

process that satisfies some basic conditions, such as sampling all parts of the signal of 

interest with equal probability across the whole observation window [12, pp. 75–77], 

should overcome aliasing or reduce its harmful effects significantly even if the 

processed signal’s spectrum extends beyond half the average sampling rate. Other 

definitions for alias-free sampling can be found in [25] where a stationary point 

process, characterising a specific random sampling scheme, is considered alias-free if 

no two continuous-time signals, belonging to the class of processed signals, have the 

same covariance measure. 

In this thesis, three main nonuniform sampling techniques are heavily studied. I shed 

light on the research literature to give a brief description about total random (ToRa), 

stratified (StSa) and antithetical stratified (AnSt) random sampling techniques. 

2.4.1.1. ToRa 

In ToRa sampling technique, the sampling instants are randomly distributed across an 

observation time interval 𝐼 = [0, 𝑇], as shown in Fig. 6. The random time process has 

a uniform distribution PDF 𝑝𝜏_𝑇𝑜𝑅𝑎(𝜏) = 1/𝑇 if 𝜏 ∈ 𝐼 and zero elsewhere. In Chapter 

3, we will see how selecting such a PDF guarantees unbiasedness of the ToRa 

estimator. 

This method is sometimes called simple random sampling (SRS) or simple Monte 

Carlo sampling [52]. Anyhow, I adopt here the ToRa name for consistency with my 

published articles and papers. Remark that this sampling scheme can be viewed from 

two different perspectives which lead to the “same” overall result.  
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Fig. 6.    An 11-point ToRa example, where the sample points are taken randomly 

from the time period of consideration using a uniform distribution random time 

process. 

 

On the one hand, all the 𝑁 time instants of the sample points within the observation 

window, 𝐼, are randomly selected at once, i.e. simultaneously, by using a uniform 

distribution random process with 𝑝𝜏_𝑇𝑜𝑅𝑎(𝜏) PDF. Then, a suitable processing 

algorithm uses these randomly sampled points and estimate a particular sought-after 

value. 

On the other hand, only one sampling point is randomly collected across the 𝐼 window 

with the same PDF, as before, and then this procedure is repeated 𝑁-times to compute 

the average value of the estimate, hence the Monte Carlo name. Both methods are 

analytically identical. 

In a discrete-only case (on-grid oversampling), ToRa can be implemented by 

pseudorandomly selecting 𝑁 samples from otherwise uniform dense grid (with a total 

of 𝑁𝑔 equally spaced possible samples) with a uniform probability mass function 

(PMF) of 𝑝𝑚_𝑇𝑜𝑅𝑎(𝑚) = 1/𝑁𝑔. This specific case is also considered in Chapter 3. 

2.4.1.2. StSa and AnSt 

These two NUS techniques depend on the notion of what so-called stratification, in 

which the observation time interval, 𝐼, is divided into a number of strata (subintervals). 

Strata could have equal or different lengths, it depends on the relevant sampling 

scheme and what kind of signal it is. A function used to calculate the strata lengths is 

suggested in [52]. Though, equidistant strata approach could be practically used, 

especially in the case of unknown signals, and still exhibit excellent estimation results. 

Indeed, this will be the adopted approach for all discussions about stratification-based 

techniques. Fig. 7 illustrates how the sample points in these alias-free random schemes 

0 T

X X X X X X X X X XX

Total Random Sampling (ToRa)
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are selected, taking into account that the strata borders (limits) themselves are chosen 

equally spaced. 

  

 

Fig. 7.    StSa and AnSt random sampling stratification-based techniques. 

 

The main differences between these two NUS methods are in the number and location 

of sample points within each stratum. While StSa uses only one randomly selected 

point inside each stratum, AnSt uses two points per single stratum [53]. One of these 

points is selected the same way as in StSa, while the second point is selected such that 

it is exactly located at the mirror reflection point of the first one when taking the centre 

of the stratum as the mirror line (i.e. line of symmetry), as indicated by the red lines 

in Fig. 7. It should be noted that AnSt uses double the number of sample points as 

StSa does if they have the same number of strata within a given observation window 

[0, 𝑇]. However, to have a fair comparison between the two sampling techniques, 

using the same observation window, I should select the same number of sample points 

for both techniques. Consequently, the stratum length in StSa should be half of AnSt’s, 

in this case. 

I will examine these two stratified techniques in all the following chapters, where these 

techniques are used to acquire the needed discrete-time data for the filtering estimation 

analyses in both main cases for the input signal/filter impulse response: continuous-

time and piecewise-continuous functions. 

 

Stratified Sampling (StSa)0 T

X X X X X
.  .  . .  .  .

Antithetical Stratified Sampling (AnSt)0 T

X X X X X
.  .  . .  .  .

X X X X X
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2.4.1.3. Other Nonuniform Sampling Schemes 

A variety of other nonuniform sampling techniques were also introduced in the 

research literature. However, not all of them are random/pseudorandom. Meaning, 

they could be nonuniform but deterministic, or having a mixture of uniform and 

random/pseudorandom samples as indicated in Fig. 1, above. Hence, their 

effectiveness in mitigating the problem of aliasing has to be investigated separately, 

but, certainly, they have other advantages in terms of power dissipation, computational 

complexity, or implementation simplicity. 

2.4.2. Irregular Quantisation 

All nonuniform sampling schemes discussed, so far, depends on the randomness of 

the time instants at which the sample points of an input analog signal are acquired. 

Nonetheless, there are also several nonuniform quantisation techniques that have been 

investigated in the literature. I explore a few of them below for the sake of 

inclusiveness and comparison with time-based random processes. 

2.4.2.1. Level Crossing 

In level crossing sampling technique, the signal is sampled on the events when its 

amplitude crosses specific levels or thresholds, and not on uniformly timed fashion 

[54], [55]. This sampling method is best fit for applications where high-resolution 

timers are available, and so, it relaxes the need for precision amplitude quantizers. Fig. 

8(a) shows an illustration of level crossing sampling with five predefined amplitude 

levels. The principle of amplitude-based event sampling is not new. Actually, it is 

another form of send-on-delta sampling scheme, widely used in wireless sensor 

networks to save energy consumption, as depicted in Fig. 8(b) [56]. The genuine 

difference between the two amplitude-based sampling schemes is the distribution of 

amplitude levels. They are nonuniformly distributed in level crossing scheme, whereas 

the send-on-delta scheme’s levels are equally spaced. In addition, both of them 

inherited the concept of amplitude-based event triggering from the well-known zero 

crossing sampling technique [57], [58], which has the same principle of sampling but 

with only one amplitude threshold; the zero level. 
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(a) 

 

(b) 

Fig. 8.    The principle of amplitude-based sampling: (a) level crossing and (b) 

send-on-delta sensor reporting. 

 

Note that the randomness of samples’ time instants in level crossing scheme depends 

on the sampled signal itself. For the example depicted in Fig. 8(a), it is obvious that 

time instants of the samples are random. However, imagine that the signal being 

sampled is a fixed periodic sawtooth signal or even a sinusoid! Definitely, we will 

obtain a nonuniform sampling sequence, but not random as well. Therefore, its ability 

to mitigate aliasing problem is then questionable, although it certainly helps reduce 

the overall power consumption of the sampling circuit, which can be achieved through 

triggering the sampling events only when there is a change in amplitude and enters a 

“sleep mode” if the signal’s amplitude is constant or changes slightly. 
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2.4.2.2. Peak Detection Sampling 

This sampling scheme depends only on the local minima or maxima of a given signal, 

but not on time or amplitude levels [55]. It is good for sampling of signals where 

certain important peaks have to be detected, such as ECG heart beat signals. At the 

same time, it is highly sensible to noise, where it generates too much samples even if 

there is no real change in the original sampled signal. Moreover, it may miss-detect a 

lot of considerable signal changes when it is monotonically increasing or decreasing. 

A combination of level crossing and peak detection sampling schemes is also 

considered in [55], where it is shown that this arrangement would benefit from the 

advantages of both schemes together. For example, it is more immune to small noise 

due to the way it is carried out, where level crossing is applied first, and then peak 

detection. This helps get rid of the noise ripple before detecting the peaks. However, 

it still suffers from some drawbacks presented in any of the two sampling schemes, 

especially when there are small changes of signal amplitude and no minima or maxima 

are available within a considerable time period of the signal.  

2.4.2.3. Slope Sampling or Linear Decimation. 

Both terms refer to the same principle of delta-surface-area sampling, where it is 

assumed that pre-samples are already exist (but not necessarily kept or stored) [55]. 

Fig. 9 shows an illustration of slope sampling, where initially three samples are taken 

to form a triangle. If the surface area of the triangle is more than a pre-determined 

threshold, then the first and second samples are kept, and the second sample will serve 

as the initial sample for the next surface area calculation. But if the triangle area is 

under the threshold, a fourth sample has to be considered, and the polygon area 

calculated and compared to the threshold again, and so on. While it is more effective 

than level crossing when the signal amplitude variations are small thanks to the 

concept of small errors add up, but still has a drawback of the necessity to collect too 

many samples at the first glance (even that some of them will be neglected), and also, 

it needs more computational complexity. 
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Fig. 9.    Slope sampling (or linear decimation) principle. First, three sample points 

are collected and the triangle P1P2P3 surface area is calculated and compared to a 

preassigned threshold area, ATHRESHOLD. If it is not greater than the threshold area, 

another point P4 is collected and the new polygon P1P2P3P4 area is examined to see 

if it is greater than ATHRESHOLD, otherwise, P5 is acquired, and so on. 

 

2.4.3. Digital Alias-free Signal Processing (DASP) 

DASP is a promising technology to sample and process signals digitally without the 

harmful effect of aliasing. Bilinskis et al works [11] introduced new techniques and 

algorithms in an attempt to overcome/decrease the harmful effects of aliasing. 

Noticeable advancements have been achieved in this area by utilising specific 

randomised/pseudorandomised sampling and quantisation techniques [59]–[61]. 

Therefore, wide range of frequency spectrum have been made detectable with reduced 

sampling frequency (lower than the Nyquist rate). But on the other hand, 

randomization of sampling and/or quantisation has led to other types of errors 

(statistical) in the digitising process. Therefore, the main focus of DASP is to 

maximize the advantages of randomisation and minimise the drawbacks of such 

statistical errors. 

The statistical errors in DASP are mainly produced as a result of sampling 

irregularities [12, pp. 58–59]. That is why nonuniform deterministic sampling has 

been introduced, where some deterministic approaches are embedded within the 

sampling process to decrease the statistical and probabilistic errors. 

Furthermore, Bilinskis and his colleagues have not only proposed theoretical 

framework for DASP, but they developed and analysed structures, models and 

algorithms that have been built on general-purpose embedded systems [11, p. 396]. 

For example, a method called sequential component extraction (SECOEX), which can 
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be fit inside a firmware of an embedded system, was presented and evaluated. 

Significant improvements in estimating the power spectrum using this method were 

achieved depending on the nonuniform sampling approach. Estimation of the most 

powerful spectrum coefficients takes place in a repetitive manner. Each time the 

strongest components are stiffed out (subtracted) from the remaining signal, starting 

for the first time with the original signal and repeating until the remaining power is 

less than a specific level, where the estimation process comes to the end. 

2.4.4. Reconstruction of Nonuniformly Sampled Signals 

Reconstruction of nonuniformly sampled signals has attracted many researchers in the 

last few decades [7], [62]–[65]. Inspired by their reduced computational costs, NUS-

based circuit elements and software algorithms were developed and employed in many 

DASP applications. The conventional signal reconstruction methods based on uniform 

sampling techniques, shown above, cannot be used directly to the NUS case. Either 

some amendments should be added, or new designs must be provided.  

A NUS generalised reconstruction filter based on a kernel 𝐾(𝑡, 𝑡𝑛), or 𝑔(𝑡, 𝑡𝑛) [66], 

was introduced in [67], where the performance of nine NUS reconstruction algorithms 

were investigated and compared. The proposed reconstruction formula is  

𝑥(𝑡) = 2𝐵 ∑ 𝑐𝑛𝑔(𝑡 − 𝑡𝑛)

∞

𝑛=−∞

= 2𝐵 ∑ 𝑐𝑛 𝑠𝑖𝑛𝑐(2𝐵(𝑡 − 𝑡𝑛))

∞

𝑛=−∞

 (2.17) 

where 𝐵 is the single sided bandwidth of the lowpass (baseband) signal, and 𝑐𝑛 are 

coefficients to be determined by a specific reconstruction algorithm. Or equivalently, 

in terms of the kernel 𝐾(𝑡, 𝑡𝑛) which is a unique reciprocal basis of {𝑔(𝑡, 𝑡𝑛)},  

𝑥(𝑡) = ∑ 𝑥(𝑡𝑛)𝐾(𝑡 − 𝑡𝑛)

∞

𝑛=−∞

 (2.18) 

Recovery of nonuniformly sampled signals in the presence of noise was examined in 

[65] based on quasi-random sampling (or quasi-Monte Carlo). Pawlak et al introduced 

a consistent algorithm to reconstruct a noisy signal from its irregularly sampled points. 

Nonetheless, this will be further investigated in a future work, as listed in Chapter 7. 
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Other reconstruction algorithms for multiband and non-bandlimited signals, either 

with or without a priori knowledge of their spectral support functions, have also been 

investigated in [8], [9] . Although digging deeply into these algorithms are out of the 

scope of this thesis, but in general, there are a variety of kernels involved in the 

reconstruction process that can serve quite similar to the popular sinc kernel, such as 

the Gaussian and exponential spline kernels. Conditions for guaranteed reconstruction 

have been introduced in each case. For instance, in spectrum-blind reconstruction of 

multiband signals [8], it is proved that a multiband signal with known 𝑓𝐿 and 𝑓𝑈, 

having a non-zero fraction upper-bounded spectral occupancy rate, and sampled with 

a universal pattern, similar to the PNS,  achieving the minimum Landau rate can be 

reconstructed even though the full spectral support is not known in advance. Whereas 

in [9], the blind reconstruction scheme of  the multiband signal requires that the 

number of bands and their widths are known beforehand, and the algorithm is based 

on compressive sensing framework. 

2.4.5. Compressive Sensing 

Blind and non-blind sparse-spectrum sensing techniques, based on nonuniform 

sampling, have also been considered in the research literature. Compressive sensing 

(or compressed sensing) is used to directly compress the sampled signal during the 

sampling process itself [68]–[71]. In many image, audio and video applications, a lot 

of data samples that have been collected using regular sampling techniques contain no 

much details, and so, can be neglected or squeezed. Indeed, this is what usually done 

when conducting image compression or zipping, for example. The idea of 

compressive sensing is to decrease the number of samples and compress the data just 

before the samples being collected. 

Compressive sensing is also used to reconstruct a signal from its sparse-sample 

representation, even if the number of samples doesn’t fulfil Nyquist rate. There are 

two conditions to make the reconstruction possible: high signal sparsity and 

incoherence. However, several theoretical prerequisites for this approach are needed 

before it can be implemented practically. The high computational cost of the 

reconstruction algorithm and the high SNR are just two of them. 
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2.4.6. Spectrum Estimation 

Tarczynski et al in [44] have inspected nonuniform sampling techniques, algorithms 

and applications with regard to spectral estimation of Fourier transform. They 

presented the weighted sample (WS) and the weighted probability (WP) density 

functions, as well as other methods to tackle aliasing and reduce the effect of sampling 

jitter. Mathematical expressions for the discrete nonuniformly sampled signal’s 

spectral estimation have been derived, along with formulae for the mean-squared error 

(MSE) of the estimated spectra in each case. A guaranteed rate of uniform 

convergence of 1/𝑁 for ToRa technique was proved. This was a measure of how fast 

the number of nonuniform sample points, 2𝑁, can affect the accuracy of the 

estimation. In addition, supressing of aliasing and improved discrete Fourier transform 

(DFT) estimation has been shown in the simulation results. 

Periodic nonuniform sampling (PNS) and weighted periodic nonuniform sampling 

(WPNS) are investigated in [5], [6], [72], [73], where using of repetitive patterns and 

weighted repetitive patterns of nonuniform sampling showed improved spectrum 

estimation and alias suppression results. Formulae for finding the optimal sampling 

sequences have been introduced, despite the fact that finding such optimal solutions 

in real-time applications is considered as time-consuming and may increase the 

complexity of sampling process. PNS is also known as multicoset sampling in 

literature, and it is more useful in multiband signal sampling with sparse spectrum. 

Masry presented the utilisation of random StSa technique to estimate the FT of a 

continuous-time deterministic signal [52]. He proved that StSa-based estimator of the 

FT converges at a rate of 1/𝑁3, provided that the processed analog signal, 𝑥(𝑡), and 

its first-order derivative are continuous-time smooth functions. Later, Masry et al 

published another article [53], this time they employed the AnSt random sampling 

technique to estimate the FT. A faster rate of convergence, 1/𝑁5, was achieved for 

the variance of the estimator if 𝑥(𝑡) and its FOD and SOD are all continuous.  

A new NUS method to estimate the FT was then proposed by Ahmad et al [74]. They 

called it hybrid-stratified (HySt) sampling technique. The new technique was proved 

to be unbiased and fast converging. Indeed, it was shown that the HySt FT estimator 

converges uniformly at a rate of 1/𝑁5 if the first three derivatives of the analysed 
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signal, 𝑥(𝑡), exist and continuous. Furthermore, they showed that other estimators’ 

(ToRa, StSa and AnSt) rates of uniform convergence are all the same and exactly 

equal to 1/𝑁, but the rate of pointwise convergence is the same as proposed in the 

respected literature papers. Indeed, Ahmad et al showed that the uniform convergence 

of StSa and AnSt estimators is only established after a certain number of sample points 

that is mainly dependent on the highest frequency of the sampled signal.  

The idea behind HySt sampling scheme is also based on stratification, like both StSa 

and AnSt.  However, in HySt, 𝑁 random sample points are taken exactly as StSa, in 

addition to other 𝑁+1 deterministic sample points selected as the strata borders 

themselves, forming a mixture of nonuniform and uniform sample points, hence, the 

name hybrid. In the provided analytical and numerical comparisons of the four FT 

estimators, just mentioned above, it was clearly shown that HySt is the most effective 

one in the sense of computation performance and precise FT estimation results for the 

same number of sample points. Moreover, a closed form mathematical expression for 

the optimal stratifying function is derived. This function is used to calculate strata 

time-limits (borders) for all stratification-based sampling schemes. However, since 

more than half of the sample points in this approach are equally spaced, aliasing may 

occur if the total number of sample points is relatively small. 

2.4.7. Filter Output Estimation 

Practical designs of uniform-based digital filters started with the launch of DSP 

applications, in the middle of last century [75], [76]. Research and applications in this 

vital area never stopped throughout the decades till now. Filter designs, techniques, 

algorithms, and implementations are developed continuously [77], [78]. However, the 

case is different for NUS, where less dense research, designs and implementations are 

available in the literature that directly address the topic of filtering nonuniformly 

sampled signals. 

In [79], new algorithms of NUS-based FIR filter was introduced. Thanks to modifying 

filters’ coefficients on each sampling time instant, the proposed filter was efficient in 

the sense that it suppressed aliasing and minimized the energy of the error signal of 

the filter’s output. 
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On the grounds of an interesting class of irregular sampling (asynchronous) ADCs 

[80], an analogue for asynchronous FIR filtering was derived in [81]. The 

implemented NUS-based filter combined the concepts of asynchronous technology 

and irregular sampling. A significant reduction in the power consumption of the 

proposed asynchronous filter design was achieved, in addition, the computational 

complexity of the new design was proven to be much lower than that of the regular 

FIR filter. The notion behind this new filter architecture was to properly compute the 

convolution between NUS input signal and the impulse response of the filter based on 

a resampling scheme of their both time instants. This was required to synchronise the 

time instants of the two sequences, leading to feasible and sensible convolution for the 

filtering process. 

Other researches also introduced algorithms and techniques for building NUS filters 

[82]–[84]. The proposed designs or frameworks mainly based on randomised 

quantisation techniques, such as level crossing, peak detection, and slope sampling, or 

lookup tables of the discrete impulse response. Each approach of interpolation used in 

these papers defines its own concept of dealing with irregularly spaced samples and 

depends on some presumed conditions. 

One of the challenges in filtering NUS signals is how to align the time instants of 

signal samples with those of the impulse response of a given filter. Different methods 

to deal with this issue have been proposed in the papers just cited above. Although the 

overall performance of the introduced filter designs and algorithms was good and, to 

some extent, alias-free, I believe there is still a lot to do. Hence, this work is to further 

advance the research in this area and bridge unresolved gaps. 

2.4.8. Interpolation of Unequally Spaced Samples  

Lagrange interpolation polynomials can be generalised to include unequally spaced 

nodes (samples) [47, p. 124]. The continuous and differentiable function 𝑓(𝑥) with 

𝑛 + 1 nonuniformly distributed nodes (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)), … , (𝑥𝑛 , 𝑓(𝑥n)) can be 

approximated with a general 𝑛-degree polynomial  
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𝑃𝑛(𝑥) = ∑𝑃𝑘(𝑥)

𝑛

𝑘=0

, (2.19) 

where each  𝑃𝑘(𝑥) is calculated by 

𝑃𝑘(𝑥) = 𝑓(𝑥k)∏
𝑥 − 𝑥𝑖
𝑥𝑘 − 𝑥𝑖

𝑛

𝑖=0
𝑖≠𝑘

. (2.20) 

This form of nonuniform interpolation was used in the research literature to 

reconstruct bandlimited continuous-time signals from their irregularly spaced 

discrete-time sequences [49]. 

However, the optimal least-squares interpolation of a sequence of nonuniformly 

spaced samples of a bandlimited signal 𝑥(𝑡), i.e.  {𝑥(𝑡𝑛)}𝑛=1
𝑁 , with bandwidth 𝐵 is 

proved by Yen [23] as to be equal to  

�̂�(𝑡) = ∑(𝑥(𝑡𝑛) ∑ γ𝑚𝑛 𝐾(𝑡, 𝑡𝑚)

𝑁

𝑚=1

)

N

𝑛=1

, (2.21) 

where 𝐾(𝑡, 𝑡𝑚) = 𝑠𝑖𝑛𝑐(2𝐵(𝑡 − 𝑡𝑚)) and the coefficient γ𝑚𝑛 is the (𝑚,𝑛)th element 

of the inverse of the matrix K whose elements are 𝐾(𝑡𝑛, 𝑡𝑚), 𝑛,𝑚 = 1,2,… ,𝑁. 

2.5. Pros and Cons of Randomised Sampling Techniques 

The following table, Table I, shows a quick comparison between common random 

sampling techniques addressed in literature. Note that this table excludes any 

randomisation techniques rely on quantisation and level crossing for two reasons: first, 

it is out of the scope of this thesis; and second, comparison between two different 

concepts is neither fair nor accurate. Hence, I focus in Table I on pros and cons of 

sampling techniques that acquire sample points at nonuniform time-instants generated 

by either deterministic or random time processes. 
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TABLE I: PROS & CONS OF TIME-BASED NONUNIFORM SAMPLING TECHNIQUES FOR 

SMOOTH SAMPLED SIGNALS AND THEIR DERIVATIVES  

Sampling 

Technique 
Pros Cons 

ToRa 

• Easy to implement. 

• Convergence behaviour begins 

immediately with even low 𝑁. 

• Nonsmoothness of ZOD has no 

effect on the convergence rate. 

• Can mitigate aliasing. 

• Slow uniform convergence rate, 

𝑁−1. 

• Requires sorting time instants 

before implementation. 

StSa 

• Implementation is easier than 

StSa. 

• Faster convergence rate than 

ToRa, 𝑁−3. 

• Can mitigate aliasing. 

• Requires more implementation 

cost than ToRa, (stratification). 

• Fast convergence behaviour 

begins after certain number of 

points depending on the 

sampled signal characteristics. 

AnSt 

• Implementation is easier than 

HySt and CS. 

• Faster convergence rate than 

StSa, 𝑁−5. 

• Can mitigate aliasing. 

• Requires more implementation 

cost than StSa, 

(antithetical sampling). 

• Fast convergence behaviour 

begins after certain number of 

points, usually after StSa does 

for the same sampled signal 

characteristics. 

HySt 

• Implementation is easier than 

CS. 

• More immune to signal high 

frequencies than others. 

• Faster convergence rate than 

StSa, 𝑁−5. 

• Can mitigate aliasing, however, 

it is not guaranteed at lower 

average random sampling rates. 

• Requires more implementation 

cost than AnSt, 

(offline coefficients). 

• Fast convergence behaviour 

begins after certain number of 

points, usually after StSa does 

for the same sampled signal 

characteristics. 

CS 

• Blind sampling and 

reconstruction are viable. 

• Faster convergence rate than 

HySt at low signal frequency 

and high spectrum sparsity. 

• Can mitigate aliasing. 

• Requires extensive 

implementation cost,  

(iterative algorithm). 

• Convergence behaviour 

degrades as signal frequency 

increases or spectrum sparsity 

decreases. 
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2.6. DSP and Signal Smoothness 

The research done so far on processing unsmooth signals is really scarce.  

Discontinuities in the processed signals may occur in several real-life applications. In 

many electronics applications, power signals are converted from AC to DC. The 

conversion procedure normally involves rectification of an analog continuous-time 

waveform into unsmooth waveform (i.e. in terms of its derivatives). Meaning, 

discontinuities appear in one or more orders of the derivatives. Similar phenomenon 

applies when clipping signals by some electronic components like diodes and 

transistors. Sawtooth, square-wave and other types of sharp-transition-based signals 

contain many discontinuities. Broader applications comprise signals with 

discontinuities can also be found in communication signals (BPSK, QAM), digital 

data, event-triggered signals, sampling and quantisation [85], and stock market 

response to global events such as COVID-19 pandemic [86]. 

Filtering unsmooth signals were barely considered in the research literature. Some 

publications have been found in digital audio processing [13] and image up-sampling 

[87]. Chapter 4 and Chapters 5 extend the research on this field by proposing StSa- 

and AnSt-based filtering estimation examples of piecewise-smooth signals. The 

asymptotic behaviours of such filter estimators are considered, where the statistical 

properties such as the mean, bias, variance, convergence rate and consistency are 

investigated. Several special cases for the nonsmoothness characteristics of piecewise-

smooth input signal, windowing function, impulse response of the filter, or their 

derivatives are examined. 
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Part I 

Continuous-Time Integrand/Summand Functions of the Filter 

Convolution Operation 
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Randomised Digital Filtering of 

Continuous-Time Input Signals 

3.1. Overview 

In this chapter, I consider filtering of randomly sampled continuous-time analog 

signals using ToRa, StSa and AnSt random sampling techniques. As stated above, 

ToRa is simply a Monte Carlo (MC)-based averaging technique across the whole 

observation window and a specific number of iterations. While both StSa and AnSt 

rely on the notion of stratification of the observation window before conducting the 

random sampling procedure. 

First, I introduce the filter model and associated notation. Next, three filter estimators, 

based on the above random sampling techniques, are established, assuming equally 

spaced strata for both StSa- and AnSt-based estimators. A generalised form that 

encompasses the three estimators is also provided for conciseness reasons, where 

applicable. The estimators are then analysed, and statistically assessed. Particularly, I 

devise mathematical expressions for the variance and the convergence rate in each 

case of the three estimators. The estimators are proven to be unbiased and consistent 

but converging to the true value of the filter output at different speeds. 

At the end of the chapter, I demonstrate numerical examples that covers several types 

of continuous-time input signals and filters. It is clear that the simulation results reflect 

the analytical findings, especially, the uniform convergence rates of the estimators 

after certain amount of sample points.  

By comparing the performance of the estimators in terms of asymptotic convergence 

rates, we will see that the AnSt-based estimator is the fastest, with a rate of 𝑁−5, where 

𝑁 is the number of strata of the AnSt technique (i.e. twice the number of samples). 

Whereas the ToRa-based estimator is the slowest, with a convergence rate of only 

CHAPTER 3
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𝑁−1. Finally, the middle one is the StSa-based estimator, which converges at a speed 

of 𝑁−3. 

3.2. Analog Filtering Model 

The input analog signal, 𝑥(𝑡), is assumed to be real-valued, bandlimited, and 

integrable. As a bandlimited signal, 𝑥(𝑡) is smooth and so are its derivatives 

(specifically, ZOD, FOD, and SOD are all continuous-time functions). Assume also 

the filter is a continuous-time, linear, time-invariant (CT LTI) system with bounded 

and symmetric impulse response, ℎ(𝑡), as depicted in Fig. 10a. Then, the output 

analog signal, 𝑦𝑎(𝑡), is given by (3.1), where ∗ denotes the convolution operation. 

𝑦𝑎(𝑡) = (𝑥 ∗ ℎ)(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞

= ∫ 𝑥(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏
∞

−∞

, (3.1) 

 

 

(a) 

 

(b) 

Fig. 10.    Filtering models: (a) Analog filtering, where 𝑥(𝑡), ℎ(𝑡), and 𝑦𝑎(𝑡) are 

the continuous-time input signal, the filter impulse response, and the output signal 

respectively; and (b) Discrete random filter estimator. Note that in both models the 

output signal, in time domain, is the convolution of the input signal and the impulse 

response. 
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Let us assume that we are interested in a truncated version of (3.1) where the input 

signal is continuously observed within a 𝑇-length sliding window, i.e. [𝑡 − 𝑇, 𝑡]. Thus, 

we have 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

𝑡−𝑇

. (3.2) 

For the sake of simplicity, the integrand function of (3.2) is denoted by 𝑓(𝑡, 𝜏), i.e. 

𝑓(𝑡, 𝜏) ∶= 𝑥(𝜏)ℎ(𝑡 − 𝜏). (3.3) 

Hence, (3.2) simplifies to 

𝑦(𝑡) = ∫ 𝑓(𝑡, 𝜏)𝑑𝜏
𝑡

𝑡−𝑇

. (3.4) 

3.3. FIR Filter Estimators 

The output signal, 𝑦(𝑡), in (3.4) can be approximated using Tora-, StSa-, and AnSt-

Based filter estimators, as shown in Fig. 10b. Such estimators are assumed to use 

causal, linear phase, symmetric FIR filter designs with a finite duration of 𝑇 sec. The 

input to the filters is a sequence of randomly sampled points of the integrand function, 

𝑓(𝑡, 𝜏). Since the three considered filter estimators have different sampling schemes, 

then I assume that the total number of sample points is fixed for all estimators and is 

equal to 2𝑁. Thus, comparison between the estimators’ performance would be fairer 

and more realistic. 

Sampling the integrand function, at any given 𝑡 time delay, is carried out by a random 

point process. This is basically equivalent to multiplying 𝑓(𝑡, 𝜏) with a finite train of 

irregularly spaced Dirac delta functions, as given in (3.5), 

{𝑓(𝑡, 𝜏𝑗)}𝑗=1
2𝑁

=∑𝑓(𝑡, 𝜏)𝛿(𝜏 − 𝜏𝑗)

2𝑁

𝑗=1

. (3.5) 
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But how to select the random time instants, {𝜏𝑗}𝑗=1
2𝑁

, themselves? To answer this 

question, I need to know how each of the three considered random sampling 

techniques works. Although this is briefly introduced in the literature review chapter 

(Chapter 2), I demonstrate here the mechanism of each scheme with much detail and 

illustrations. 

The ToRa-based estimator uses a total of 2𝑁 samples chosen randomly from the 

observation window, the StSa-based estimator also utilises 2𝑁 randomly sampled 

points, but each point should be selected from each of the 2𝑁 different strata, whereas 

in AnSt-based estimator case, only half of the points (= 𝑁) are randomly selected from 

the 𝑁 strata (one sample per each stratum), while the other half are essentially their 

correlated antithetical counterparts, as shown in Fig. 11. Note that I can interpret ToRa 

as if it is a stratification-based technique using just one stratum, but averaged across 

the whole 2𝑁 samples, i.e. Monte Carlo averaging. If this is so then when conducting 

the numerical examples, I carry out double Monte Carlo simulations for ToRa-based 

estimator; the first one is for the 2𝑁 samples and the other is for averaging over a 

specific number of iterations, say 𝑉. However, only one Monte Carlo averaging is 

carried out for both StSa and AnSt-based estimators, that is averaging over the 𝑉 

iterations. 

Now, it is time to introduce the three filter estimators, as per the assumptions above, 

the notation given at the beginning of the thesis, and the notation listed in Table II. 

Note that 𝜏((𝑘−1)𝐿+𝑗)~U(𝑆𝑗−1, 𝑆𝑗) is a random variable that has a uniform distribution 

with PDF equals to 

𝑝𝑗(𝜏) = {
1/∆, 𝜏 ∈ 𝐴𝑗
0, elsewhere

. (3.6) 

Indeed, 𝑝𝑗(𝜏𝑗) has the same format for the three considered estimators but with 

different interpretations for ∆ (= the stratum length), as illustrated in Table II. Remark 

that 𝐶𝑗  in 𝜏((𝑘−1)𝐿+𝑗)
𝑎 , the antithetical sampling instant, is 𝐶𝑗 = ((𝑗 − 1)

𝑇

𝑁
+ 𝑗

𝑇

𝑁
) 2⁄ =

(𝑗 −
1

2
)
𝑇

𝑁
= (𝑗 −

1

2
)∆. Note also that the subintervals are given by, 𝐴𝑗 = [𝑆𝑗−1, 𝑆𝑗) ≡

[(𝑗 − 1)∆, 𝑗∆) ≡ [𝐶𝑗 −
∆

2
, 𝐶𝑗 +

∆

2
), which means that in ToRa scheme we have only 
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one subinterval and is equal to the whole observation interval, i.e.  𝐴𝑗 = 𝐴1 =

[𝑆0, 𝑆1) = [𝑡 − 𝑇, 𝑡). 

 

TABLE II: NOTATION OF THE THREE FILTER ESTIMATORS FOR EQUAL STRATA LENGTHS 

AND T-LENGTH OBSERVATION WINDOW 

 Symbol ToRa StSa AnSt 

Monte Carlo (MC) 

iterations 
𝑀 2𝑁 1 1 

Number of sample points 

per MC iteration 
𝑅 1 2𝑁 2𝑁 

Number of strata 𝐿 1 2𝑁 𝑁 

Stratum length ∆=
𝑇

𝐿
 𝑇 

𝑇

2𝑁
 

𝑇

𝑁
 

Number of sample points 

per stratum 
𝑃 =

𝑅

𝐿
 1 1 2 

MC averaging 
1

𝑀
 

1

2𝑁
 1 1 

Random sampling instant 

in the 𝑗-th stratum and 𝑘-th 

MC iteration, where 𝑘 =

1, … ,𝑀 and 𝑗 = 1,… , 𝐿 

𝜏(𝑘−1)𝐿+𝑗 𝜏(𝑘−1)𝐿+𝑗 𝜏(𝑘−1)𝐿+𝑗 𝜏(𝑘−1)𝐿+𝑗 

Antithetical sampling 

instant in the j-th stratum 

(for AnSt only) 

𝜏(𝑘−1)𝐿+𝑗
𝑎  --- --- 2𝐶𝑗 − 𝜏(𝑘−1)𝐿+𝑗 

Subinterval(s) 𝐴𝑗 [𝑆0, 𝑆1) [𝑆𝑗−1, 𝑆𝑗) [𝑆𝑗−1, 𝑆𝑗) 

 

 

 



47 

 

Fig. 11.    The three considered random sampling schemes with the integrand 

function (solid dark blue). ToRa is considered as a unity stratum scheme but with 

2𝑁 Monte Carlo averaging iterations. The StSa scheme uses 2𝑁 strata with one 

random sample per stratum. While AnSt scheme uses 𝑁 strata and randomly selects 

the first sample in each stratum, say 𝜏𝑗 , and the second one, 𝜏𝑗
𝑎 , is its antithetical 

counterpart. 𝐶𝑗’s are the centres of the strata, with 𝑗 = 1, 𝑗 = 1,… ,2𝑁, and 𝑗 =

1,… ,𝑁 for ToRa, StSa, and AnSt respectively. The solid dark blue line is the 

smooth function 𝑓(𝑡, 𝜏) at a given 𝑡-shift time. 
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The ToRa-based estimator: 

�̂�(𝑡) =
𝑇

2𝑁
∑∑𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗)

1

𝑗=1

2𝑁

𝑘=1

, (3.7a) 

�̂�(𝑡) =
𝑇

2𝑁
∑𝑓(𝑡, 𝜏𝑘)

2𝑁

𝑘=1

. (3.7b) 

The StSa-based estimator: 

�̂�(𝑡) =
𝑇

2𝑁
∑∑𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗)

2𝑁

𝑗=1

1

𝑘=1

, (3.8a) 

�̂�(𝑡) =
𝑇

2𝑁
∑𝑓(𝑡, 𝜏𝑗)

2𝑁

𝑗=1

. (3.8b) 

 

 

 

 

The AnSt-based estimator: 

�̂�(𝑡) =
𝑇

𝑁
∑∑(

𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗) + 𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗
𝑎 )

2
)

𝑁

𝑗=1

1

𝑘=1

, (3.9a) 

�̂�(𝑡) =
𝑇

𝑁
∑(

𝑓(𝑡, 𝜏𝑗) + 𝑓(𝑡, 𝜏𝑗
𝑎)

2
)

𝑁

𝑗=1

. (3.9b) 

Based on the three individual estimators above, I propose a generalised form of the 

filter estimator that encompasses all these estimators. This general form is useful when 

deriving the mathematical expressions for the statistical properties of the estimators 

under consideration. 
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Generalised form of the filter estimator: 

�̂�(𝑡) =
∆

𝑀𝑃
∑(𝑓(𝑡, 𝜏𝑛) + (𝑃 − 1)𝑓(𝑡, 𝜏𝑛

𝑎))

𝑀𝐿

𝑛=1

, (3.10a) 

�̂�(𝑡) =
∆

𝑀𝑃
∑∑(𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗) + (𝑃 − 1)𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗

𝑎 ))

𝐿

𝑗=1

𝑀

𝑘=1

. (3.10b) 

Remark that the subscript 𝑛 = (𝑘 − 1)𝐿 + 𝑗 never exceeds the total number of random 

samples in any selected approach, i.e. 𝑛 = 1, 2, 3, … , 2𝑁. 

3.4. Bias Check 

The following theorem proves that the estimator �̂�(𝑡) is unbiased, and the expected 

value of the estimator is equal to the true filter output signal. That is, 𝔼[�̂�(𝑡)] = 𝑦(𝑡). 

Theorem 3.1. The general filter estimator, given in (3.10b), is unbiassed for all 𝑡. 

Proof: 

From (3.10b), we have 

𝔼[�̂�(𝑡)] = 𝔼 [
∆

𝑀𝑃
∑∑(𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗) + (𝑃 − 1)𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗

𝑎 ))

𝐿

𝑗=1

𝑀

𝑘=1

], (3.11a) 

 =
∆

𝑀𝑃
∑∑∫ 𝑝𝑗(𝜏) ((𝑓(𝑡, 𝜏) + (𝑃 − 1)𝑓(𝑡, 𝜏

𝑎))) 𝑑𝜏
∞

−∞

𝐿

𝑗=1

𝑀

𝑘=1

, (3.11b) 

 =
1

𝑀𝑃
∑∑∫ 𝑓(𝑡, 𝜏)𝑑𝜏

𝑆𝑗

𝑆𝑗−1

𝐿

𝑗=1

𝑀

𝑘=1

+
(𝑃 − 1)

𝑀𝑃
∑∑∫ 𝑓(𝑡, 𝜏𝑎)𝑑𝜏

𝑆𝑗

𝑆𝑗−1

𝐿

𝑗=1

𝑀

𝑘=1

 (3.11c) 

Note that ∫ 𝑓(𝑡, 𝜏𝑎)𝑑𝜏
𝑆𝑗
𝑆𝑗−1

= ∫ 𝑓(𝑡, 𝜏𝑎)𝑑𝜏𝑎
𝑆𝑗
𝑆𝑗−1

. Hence, (3.11c) becomes 
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𝔼[�̂�(𝑡)] =
1

𝑀𝑃
∑∑∫ 𝑓(𝑡, 𝜏)𝑑𝜏

𝑆𝑗

𝑆𝑗−1

𝐿

𝑗=1

𝑀

𝑘=1

+
(𝑃 − 1)

𝑀𝑃
∑∑∫ 𝑓(𝑡, 𝜏𝑎)𝑑𝜏𝑎

𝑆𝑗

𝑆𝑗−1

𝐿

𝑗=1

𝑀

𝑘=1

 (3.11d) 

 =
1

𝑀𝑃
∑∫ 𝑓(𝑡, 𝜏)𝑑𝜏

𝑡

𝑡−𝑇

𝑀

𝑘=1

+
(𝑃 − 1)

𝑀𝑃
∑∫ 𝑓(𝑡, 𝜏𝑎)𝑑𝜏𝑎

𝑡

𝑡−𝑇

𝑀

𝑘=1

, (3.11e) 

 =
𝑀𝑦(𝑡)

𝑀𝑃
+
𝑀(𝑃 − 1)𝑦(𝑡)

𝑀𝑃
, (3.11f) 

𝔼[�̂�(𝑡)] = 𝑦(𝑡). (3.11g) 

∎ 

The following corollary builds on top of Theorem 3.1 and concludes the unbiasedness 

of all proposed filter estimators. 

Corollary 3.1. The proposed ToRa, StSa, and AnSt filter estimators are all unbiassed. 

Proof: 

As per the results of Theorem 3.1, the generalised form filter estimator is unbiased. 

Consequently, every single estimator comprising the generalised filter estimator is 

unbiased, as well. 

∎ 

3.5. Variance of the Generalised Form Filter Estimator 

We have seen in the previous section that the considered estimators are unbiased. 

Therefore, the variance of the estimators is identical to the mean-squared error (MSE). 

Below, I devise mathematical expressions for the variance of each single estimator 

and determine its uniform convergence rate. 

Remark that the generalised form filter estimator, (3.10a), can also be rewritten as 
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�̂�(𝑡) =
1

𝑀
∑𝜙𝑛

𝑀𝐿

𝑛=1

, (3.12a) 

�̂�(𝑡) =
1

𝑀
∑∑𝜙(𝑘−1)𝐿+𝑗

𝐿

𝑗=1

𝑀

𝑘=1

, (3.12b) 

where 𝜙𝑛 = 𝜙(𝑘−1)𝐿+𝑗 is the 𝑘-th MC iteration and 𝑗-th stratum’s contribution to the 

overall value of the estimator. In this section, I refer to 𝜙𝑛 as the 𝑛-th sub-estimator 

and is given by 

𝜙𝑛 ∶=
∆

𝑃
(𝑓(𝑡, 𝜏𝑛) + (𝑃 − 1)𝑓(𝑡, 𝜏𝑛

𝑎)). (3.13a) 

𝜙(𝑘−1)𝐿+𝑗 ∶=
∆

𝑃
(𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗) + (𝑃 − 1)𝑓(𝑡, 𝜏(𝑘−1)𝐿+𝑗

𝑎 )). (3.13b) 

For conciseness and simplicity of analysis, I would like to supress the 𝑡 (time shift) 

argument of all functions using it unless it is explicitly required. So, for example, the 

succinct form of the 𝑛-th sub-estimator is  

𝜙𝑛 =
∆

𝑃
(𝑓(𝜏𝑛) + (𝑃 − 1)𝑓(𝜏𝑛

𝑎)). (3.13c) 

𝜙𝑛 = 𝜙(𝑘−1)𝐿+𝑗 =
∆

𝑃
(𝑓(𝜏(𝑘−1)𝐿+𝑗) + (𝑃 − 1)𝑓(𝜏(𝑘−1)𝐿+𝑗

𝑎 )). (3.13d) 

Since all sub-estimators are independent from each other, I find the variance of the 

general estimator, (3.13d), by adding up the individual variances of all sub-estimators. 

Therefore, I need to calculate the variance of 𝜙(𝑘−1)𝐿+𝑗, in the first place.  

The expected value of 𝜙𝑛 is 

𝔼[𝜙(𝑘−1)𝐿+𝑗] = 𝔼 [
∆

𝑃
(𝑓(𝜏(𝑘−1)𝐿+𝑗) + (𝑃 − 1)𝑓(𝜏(𝑘−1)𝐿+𝑗

𝑎 ))], (3.14a) 
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 =
1

𝑃
∫ 𝑝𝑗(𝜏)(𝑓(𝜏) + (𝑃 − 1)𝑓(𝜏

𝑎))∆𝑑𝜏
∞

−∞

, (3.14b) 

 =
1

𝑃
∫ 𝑓(𝜏)𝑑𝜏
𝑆𝑗

𝑆𝑗−1

+
𝑃 − 1

𝑃
∫ 𝑓(𝜏𝑎)𝑑𝜏
𝑆𝑗

𝑆𝑗−1

, (3.14c) 

 =
1

𝑃
∫ 𝑓(𝜏)𝑑𝜏
𝑆𝑗

𝑆𝑗−1

+
𝑃 − 1

𝑃
∫ 𝑓(2𝐶𝑗 − 𝜏)𝑑𝜏
𝑆𝑗

𝑆𝑗−1

, (3.14d) 

The integrand function, 𝑓(∙), is assumed to be continuous and square-integrable, and 

its first two derivatives exist and are continuous. So, it is plausible to use Taylor series 

expansion to approximate 𝑓(𝜏) and 𝑓(𝜏𝑎) = 𝑓(2𝐶𝑗 − 𝜏) about 𝐶𝑗 , the central time 

instant of the 𝑗-th stratum. Consequently, equation (3.14d) can be rewritten as 

 

𝔼[𝜙(𝑘−1)𝐿+𝑗] =
1

𝑃
∫ (𝑓(𝐶𝑗) + (𝜏 − 𝐶𝑗)𝑓

′(𝐶𝑗) +
1

2
(𝜏 − 𝐶𝑗)

2
𝑓′′(𝐶𝑗)

𝑆𝑗

𝑆𝑗−1

+ 𝑜 (|𝜏 − 𝐶𝑗|
2
)) 𝑑𝜏

+
𝑃 − 1

𝑃
∫ (𝑓(𝐶𝑗) + (𝐶𝑗 − 𝜏)𝑓

′(𝐶𝑗) +
1

2
(𝐶𝑗 − 𝜏)

2
𝑓′′(𝐶𝑗)

𝑆𝑗

𝑆𝑗−1

+ 𝑜 (|𝐶𝑗 − 𝜏|
2
)) 𝑑𝜏 

(3.15) 

where 𝑜(∙) is the little-o notation and 𝑓′(𝐶𝑗) and 𝑓′′(𝐶𝑗) are the FOD and SOD, 

respectively, of 𝑓(𝑡, 𝜏) with respect to 𝜏 at 𝜏 = 𝐶𝑗 . Remark that 𝑆𝑗−1 = (𝑗 − 1)∆=

𝐶𝑗 −
∆

2
 and 𝑆𝑗 = 𝑗∆= 𝐶𝑗 +

∆

2
 for equidistant stratification. Working out the integral in 

(3.15), we get 

𝔼[𝜙(𝑘−1)𝐿+𝑗] = ∆𝑓(𝐶𝑗) +
∆3

24
𝑓′′(𝐶𝑗) + 𝑜(∆

3). (3.16) 

Denote by 𝑒𝑛 ∶= 𝑒(𝑘−1)𝐿+𝑗 the part of estimation error related to the 𝑛-th sub-

estimator, so we have 
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𝑒(𝑘−1)𝐿+𝑗 = 𝜙(𝑘−1)𝐿+𝑗 − 𝔼[𝜙(𝑘−1)𝐿+𝑗], (3.17a) 

𝑒(𝑘−1)𝐿+𝑗

=
∆

𝑃
(𝑓(𝜏(𝑘−1)𝐿+𝑗) + (𝑃 − 1)𝑓(𝜏(𝑘−1)𝐿+𝑗

𝑎 ))

− (∆𝑓(𝐶𝑗) +
∆3

24
𝑓′′(𝐶𝑗) + 𝑜(∆

3)). 

(3.17b) 

The MSE of the sub-estimator (i.e. the variance 𝕍[𝜙(𝑘−1)𝐿+𝑗]) can be computed by 

finding the second moment of 𝑒(𝑘−1)𝐿+𝑗, taking into consideration that all elements 

(functions, derivatives, constants and arguments) of the 𝑛-th error term in (3.17b) are 

real-valued. Hence,  

𝕍[𝜙(𝑘−1)𝐿+𝑗] = 𝔼[(𝑒(𝑘−1)𝐿+𝑗)
2
] = ∫ 𝑝𝑗(𝜏)(𝑒(𝑘−1)𝐿+𝑗)

2
𝑑𝜏

∞

−∞

. (3.18a) 

𝕍[𝜙(𝑘−1)𝐿+𝑗]

= ∫
1

∆
(
∆

𝑃
(𝑓(𝜏) + (𝑃 − 1)𝑓(𝜏𝑎)) − ∆𝑓(𝐶𝑗) −

∆3

24
𝑓′′(𝐶𝑗)

𝑗∆

(𝑗−1)∆

− 𝑜(∆3))

2

𝑑𝜏. 

(3.18b) 

I expand both 𝑓(𝜏) and 𝑓(𝜏𝑎) of (3.18b) about 𝐶𝑗  using Taylor series approximation. 

After doing the expansion, rearranging, simplifying, and integrating we get the final 

expression for the variance of the generalised filter sub-estimator, 

𝕍[𝜙(𝑘−1)𝐿+𝑗] =
(𝑃 − 2)2

12𝑃2
(𝑓′(𝐶𝑗))

2

∆4 +
1

720
(𝑓′′(𝐶𝑗))

2

∆6 + 𝑜(∆6). (3.19) 

For ToRa and StSa, 𝑃 = 1, so we deduce from (3.19) that the variance of the 𝑛-th sub-

estimator is 

𝕍[𝜙𝑛] = 𝕍[𝜙(𝑘−1)𝐿+𝑗] =
1

12
(𝑓′(𝐶𝑗))

2

∆4 +
1

720
(𝑓′′(𝐶𝑗))

2

∆6 + 𝑜(∆6). (3.20a) 
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𝕍[𝜙(𝑘−1)𝐿+𝑗] =
1

12
(𝑓′(𝐶𝑗))

2

∆4 + 𝑜(∆4). (3.20b) 

Remark that (3.20b) is obtained from (3.20a) as a consequence of the fact that 

1

720
(𝑓′′(𝐶𝑗))

2

∆6 + 𝑜(∆6) = 𝑜(∆5) = 𝑜(∆4). (3.21) 

In the case of AnSt estimator, 𝑃 = 2, therefore (3.19) simplifies to 

𝕍[𝜙(𝑘−1)𝐿+𝑗] =
1

720
(𝑓′′(𝐶𝑗))

2

∆6 + 𝑜(∆6). (3.22) 

The devised general expression, (3.19), and its approach-specific forms, (3.20b) and 

(3.22), are associated with the 𝑗-th stratum and 𝑘-th MC iteration. Hence, to calculate 

the value of the overall variance across the whole observation window and the total 

Monte Carlo averaging iterations as given in Table II above, I need to accumulate the 

values of all sub-estimator variances, which requires us to consider each case 

separately. 

3.5.1. Variance of the ToRa Estimator 

The following theorem shows an original and exact mathematical expression for the 

variance of the ToRa filter estimator. 

Theorem 3.2. The variance of the ToRa filter estimator is 𝕍[�̂�] =
𝑇4

24𝑁
(𝑓′ (

𝑇

2
))

2

+

𝑜(𝑁−1). 

Proof: 

Since all sub-estimators are independent, the variance of the sum of sub-estimators is 

equal to the sum of their variances. Consequently, we have from (3.12b) and (3.20b) 

𝕍[�̂�] = 𝕍 [
1

𝑀
∑∑𝜙(𝑘−1)𝐿+𝑗

𝐿

𝑗=1

𝑀

𝑘=1

] =
1

𝑀2
∑∑𝕍[𝜙(𝑘−1)𝐿+𝑗]

𝐿

𝑗=1

𝑀

𝑘=1

, (3.23a) 
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𝕍[�̂�] =
1

𝑀2
∑∑(

1

12
(𝑓′(𝐶𝑗))

2

∆4 + 𝑜(∆4))

𝐿

𝑗=1

𝑀

𝑘=1

. (3.23b) 

The configuration parameters for ToRa listed in Table II assert that 𝑀 = 2𝑁, 𝐿 = 1, 

and ∆= 𝑇. This clearly indicates that there is only one stratum for all ToRa MC 

iterations, as 𝑗 in (3.23b) is always equal to 1. Hence, the centre of the stratum for all 

MC iterations is 𝐶𝑗 = 𝐶1 =
𝑇

2
. Substituting these parameters into (3.23b), we get 

𝕍[�̂�] =
1

(2𝑁)2
∑(

1

12
(𝑓′ (

𝑇

2
))

2

𝑇4 + 𝑜(𝑇4))

2𝑁

𝑘=1

, (3.24a) 

𝕍[�̂�] =
𝑇4

24𝑁
(𝑓′ (

𝑇

2
))

2

+ 𝑜(𝑁−1), (3.24b) 

where (3.24b) is obtained from (3.24a) by observing that all arguments of the 

summation are independent of 𝑘 and 
2𝑁×𝑜(𝑇4)

(2𝑁)2
= 𝑜(𝑁−1), as 𝑇 is constant. 

∎ 

3.5.2. StSa Estimator’s Variance 

Theorem 3.3 below provides an exact expression for the variance of the StSa filter 

estimator. 

Theorem 3.3. The variance of the StSa filter estimator is 𝕍[�̂�] =

𝑇3

96𝑁3
∑ ((𝑓′(𝐶𝑗))

2

∆)2𝑁
𝑗=1 + 𝑜(𝑁−3). 

Proof: 

From (3.20b), which also applies to the StSa case, I obtained (3.23b). Back to StSa 

column of Table I, we see that 𝑀 = 1, ∆= 𝑇/2𝑁, and 𝐿 = 2𝑁. Therefore, from 

(3.23b) we get 
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𝕍[�̂�] =
𝑇3

96𝑁3
∑((𝑓′(𝐶𝑗))

2

∆ + 𝑜(𝑁−4))

2𝑁

𝑗=1

, (3.25a) 

𝕍[�̂�] =
𝑇3

96𝑁3
∑((𝑓′(𝐶𝑗))

2

∆)

2𝑁

𝑗=1

+ 𝑜(𝑁−3). (3.25b) 

∎ 

3.5.3. AnSt Estimator’s Variance 

The following theorem is established for the variance of the AnSt filter estimator. 

Theorem 3.4. The variance of the AnSt filter estimator is 𝕍[�̂�] =

𝑇5

720𝑁5
∑ ((𝑓′′(𝐶𝑗))

2

∆)𝑁
𝑗=1 + 𝑜(𝑁−5). 

Proof: 

Referring to (3.22) and (3.23a), and considering AnSt settings in Table II, especially, 

𝑀 = 1, ∆= 𝑇/𝑁, and 𝐿 = 𝑁, I compute the overall variance of the AnSt-based filter 

estimator as 

𝕍[�̂�] =∑(
1

720
(𝑓′′(𝐶𝑗))

2

∆6 + 𝑜(∆6))

𝐿

𝑗=1

, (3.26a) 

𝕍[�̂�] =
𝑇5

720𝑁5
∑((𝑓′′(𝐶𝑗))

2

∆)

𝑁

𝑗=1

+ 𝑜(𝑁−5). (3.26b) 

∎ 

3.6. Consistency 

Having devised the mathematical expressions for variances of the three considered 

filter estimators, I would now like to check the consistency of the estimators. Hence, 

the following theorem is established. 

Theorem 3.5. All considered filter estimators (ToRa, StSa, and AnSt) are consistent. 
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Proof: 

For an estimator to be consistent, its variance should converge to zero as the number 

of sample points, 2𝑁, approaches infinity. Thus, it is required to verify that the limits 

of expressions in (3.24b), (3.25b), and (3.26b) are all decaying to zero as 2𝑁 → ∞, 

which is equivalent to 𝑁 → ∞, 

ToRa: lim
𝑁→∞

𝕍[�̂�] = lim
𝑁→∞

(
𝑇4

24𝑁
(𝑓′ (

𝑇

2
))

2

+ 𝑜(𝑁−1)) = 0, (3.27a) 

StSa: lim
𝑁→∞

𝕍[�̂�] = lim
𝑁→∞

(
𝑇3

96𝑁3
∑((𝑓′(𝐶𝑗))

2

∆)

2𝑁

𝑗=1

+ 𝑜(𝑁−3)) = 0, (3.27b) 

AnSt: lim
𝑁→∞

𝕍[�̂�] = lim
𝑁→∞

(
𝑇5

720𝑁5
∑((𝑓′′(𝐶𝑗))

2

∆)

𝑁

𝑗=1

+ 𝑜(𝑁−5)) = 0. (3.27c) 

Since ToRa, StSa, and AnSt filter estimators are decaying to zero as the sample size 

is increasing to infinity, then all estimators are consistent.  

∎ 

So far, the estimators are verified to be unbiassed and consistent, which means that all 

of them are accurately approximating the filter output as the number of utilised sample 

points increases. Having said this, however, not all of them are converging at the same 

rate. Next, I find the exact decaying rate for each single estimator. 

3.7. Convergence Rates 

The convergence rates of the three filter estimators (ToRa, StSa and AnSt), as the 

number of sample points, 2𝑁, approaches infinity, are established in the following 

theorem. 

Theorem 3.6. As the number of sample points 2𝑁 approaches ∞, ToRa, StSa, and 

AnSt filter estimators converge at rates of 𝑁−1, 𝑁−3,a d𝑁−5 respectively. 
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Proof: 

Again, if 2𝑁 → ∞, then 𝑁 → ∞, as well. By using Riemann integral, it follows from 

(3.27a-c) that 

ToRa: 

lim
𝑁→∞

(2𝑁 × 𝕍[�̂�]) = lim
𝑁→∞

2𝑁 × (
𝑇4

24𝑁
(𝑓′ (

𝑇

2
))

2

+ 𝑜(𝑁−1)), 
(3.28a) 

=
𝑇4

12
(𝑓′ (

𝑇

2
))

2

. (3.28b) 

StSa: 

lim
𝑁→∞

((2𝑁)3 × 𝕍[�̂�])

= lim
𝑁→∞

(2𝑁)3 × (
𝑇3

96𝑁3
∑((𝑓′(𝐶𝑗))

2

∆)

2𝑁

𝑗=1

+ 𝑜(𝑁−3)), 

(3.29a) 

=
𝑇3

12
∫ (𝑓′(𝜏))

2
𝑑𝜏

𝑡

𝑡−𝑇

. (3.29b) 

AnSt: 

lim
𝑁→∞

((2𝑁)5 × 𝕍[�̂�])

= lim
𝑁→∞

(2𝑁)5 × (
𝑇5

720𝑁5
∑((𝑓′′(𝐶𝑗))

2

∆)

𝑁

𝑗=1

+ 𝑜(𝑁−5)), 

(3.30a) 

=
2𝑇5

45
∫ (𝑓′′(𝜏))

2
𝑑𝜏

𝑡

𝑡−𝑇

≡
2𝑇5

45
∫ (𝑓′′(𝑡, 𝜏))

2
𝑑𝜏

𝑡

𝑡−𝑇

. (3.30b) 

As verified above, we notice that the AnSt-based filter estimator is converging at the 

fastest rate of 𝑁−5, outperforming both StSa- and ToRa-based estimators. Moreover, 

the ToRa-based estimator is the slowest converging one amongst the three estimators 
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with a rate of only 𝑁−1. Finally, StSa is the middle estimator in terms of speed of 

convergence, where 𝑁−3 decaying rate is achieved. 

∎ 

It should be noted that variance values of StSa and AnSt estimators depend on the 

FOD-squared and ZOD-squared. This means that if the underlying integrand function 

comprises some high frequency components (or ripple), then the limit values in 

(3.29b) and (3.30b) will be greater. This would shift the asymptotic line of 

convergence upward to indicate increased absolute MSE values. However, the 

convergence rates wouldn’t be affected. 

3.8. Almost Sure (Strong) Convergence 

It is possible to prove that StSa and AnSt filter estimators, which converge in the mean 

faster than 𝑁−1, converge strongly (almost surely, a.s.) to the filter output, whereas 

the ToRa filter estimator does not a.s. (strongly) converge to the target output. 

The Borel-Cantelli lemma states that if 

∑Pr(|�̂�𝑁 − 𝑦| > 휀)

∞

𝑁=1

< ∞, (3.31) 

then 

Pr ( lim
𝑁→∞

sup(|�̂�𝑁 − 𝑦| > 휀)) = 0, (3.32) 

where Pr(∙) denotes the probability, �̂�𝑁 is the filter estimator using 𝑁 sample points, 

and 휀 > 0 is an arbitrary small number.  

I use this lemma to analyse the convergence of the filter estimators �̂�𝑁 to the true 

output value 𝑦. According to this lemma, if I can show that (3.31) holds for any 

selected 휀, then the probability of the sequence of events, {|�̂�𝑁 − 𝑦| > 휀}, being 

infinitely long is zero. Hence, I will observe it, at most, a finite number of times. 
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To prove that the last inequality, (3.31), is satisfied, I use the Chebyshev inequality, 

which states that the probability that a random variable �̂�𝑁 with variance 𝜎𝑁
2  will differ 

from its mean value by more than 휀 is upper-bounded by 

Pr(|�̂�𝑁 − 𝑦| ≥ 휀) ≤
𝜎𝑁
2

휀2
. (3.33) 

In the case of my estimators’ variance 𝜎𝑁
2 =

𝐴

𝑁𝑘
+ 𝑜(𝑁−𝑘), where 𝑘 = 1,3,5 and 𝐴 is 

a constant related to the properties of the input signal and the impulse response of the 

implemented filter (i.e. related to the integrand function and its derivatives). Let us 

calculate the infinite sum of the inequality (3.33), 

∑Pr(|�̂�𝑁 − 𝑦| ≥ 휀)

∞

𝑁=1

≤ ∑
𝜎𝑁
2

휀2

∞

𝑁=1

=
𝐴

휀2
∑

1

𝑁𝑘

∞

𝑁=1

+ 𝐵, (3.33) 

where 𝐵 = ∑ 𝑜(𝑁−𝑘)∞
𝑁=1 . 

We note that when 𝑘 = 1 (i.e. ToRa estimator), ∑
1

𝑁𝑘
∞
𝑁=1 = ∑

1

𝑁
∞
𝑁=1 = ∞. Hence the 

assumption of the Borel-Cantelli lemma is not satisfied and a.s. convergence cannot 

be proven. However, if 𝑘 = 3 or 5, which are the cases for StSa and AnSt, 

respectively, then ∑
1

𝑁𝑘
∞
𝑁=1 < ∞, and 𝐵 is finite, as well. Therefore, the assumption of 

the Borel-Cantelli lemma is satisfied, which implies Pr ( lim
𝑁→∞

sup(|�̂�𝑁 − 𝑦| > 휀)) =

0, and the a.s. convergence occurs. 

3.9. When to Use Which Estimator 

We have seen that some estimators converge faster than the others. The question now 

is how to pick a specific estimator for a given application? The easy answer is AnSt-

based estimator, since it has the fastest decaying rate of the three considered 

estimators. While this is true in general, there are a few conditions that have to be met 

for this estimator to have such a converging rate: 

1. The zero-order derivative (ZOD) of the integrand function, i.e. 𝑓(𝜏), must be 

continuous, bounded and integrable. 
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2. The first-order derivative (FOD) of the integrand function, i.e. 𝑓′(𝜏), must 

exist and be continuous and bounded. 

3. The second-order derivative (SOD) of the integrand function, i.e. 𝑓′′(𝜏), 

should also exist and be continuous and bounded. 

4. The integrand function can be deliberately sampled as per the AnSt scheme 

dictates, that is, sample points should be acquired in antithetical pairs for all 

strata. However, for continuous-time integrand functions (input signals and 

impulse responses) this condition can usually be satisfied. 

5. The stochastic point process used to generate the random time instants of the 

sample points should have a PDF that guarantees the estimator to be unbiased 

and consistent [12, p. 38]. For instance, the uniform distribution with constant 

PDF fulfils this condition, as I have proven above. 

6. The size of the sample sequence should be above a certain number for the 

asymptotic behaviour of the estimator to establish. 

Some of these conditions are also required for other estimators. For example, both 

ToRa and StSa estimators require conditions 1,2, 5, and 6 to be fulfilled, as well, in 

top of their own other prerequisites. Indeed, conditions 1 and 2 to expand using Taylor 

series, condition 5 to guarantee estimators unbiasedness and consistency, and 

condition 6 to guarantee the declared convergence rates. Moreover, for StSa case, the 

sampling circumstances allow for stratification to be carried out, with deliberate 

random selection of only one sample point per stratum is affordable. In ToRa case, 

only one condition must also apply. That is, the total random sampling procedure 

should be deliberately viable. 

Following this discussion, we can see that ToRa is the most relaxing sampling scheme, 

next is the StSa scheme, with AnSt technique having the toughest restrictions, i.e. 

absolutely the opposite ranking with regards to the speed of convergence. 

A remaining issue still need to be addressed is when all or part of the aforementioned 

conditions are not satisfied. Apparently, in this case, there is no guarantee on the 

consistency, unbiasedness, variance values, and rates of convergence of the 

considered estimators. One needs to seek other estimators most relevant to the specific 
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situation encountered. For example, if there are no control over the time instants at 

which sample points are collected, i.e. unintentional nonuniform sampling, in such 

case, the preceding estimators are either not valid or some of their statistical 

characteristics will be different. 

An exception to the first three conditions could be tackled with while applying the 

three considered estimators is still valid, of course, with an impact on some of their 

statistical properties. This is exactly what I am going to address in the second part of 

this thesis, where I propose the use of the same estimators but with discontinuities 

exist on either the SOD, FOD, or ZOD of the integrand function. 

3.10. Computational Cost 

One of the main goals of this thesis is to prove that adopting randomisation in digital 

sampling through DASP would provide, under certain conditions, cost-effective 

filtering techniques. Applications that are suitable for such DASP random techniques 

should be error-tolerating, though. Otherwise, traditional DSP techniques seem to be 

inevitable even if they would cost more. DASP, as emphasized elsewhere in this 

thesis, should be understood as a supplement technology to DSP and not a complete 

alternative. However, if the spectrum of the processed signal is wide and unknown, 

and there are limitations on using extra analog components/blocks (e.g. antialiasing 

analog filters) for any reason, then the sparser and closer to the dc-component the 

spectrum is the more cost-saving would be achieved with random sampling and DASP 

techniques. By cost-saving I mean reduced computational complexity and power 

consumption, which in turn lead to less processing time and money. 

Since I am dealing with digital filtering, I would like to compare my filter estimators’ 

computational complexity with classical DSP filters’. To this end, I introduce below, 

(3.34a-b), the conventional FIR filter model commonly used in DSP applications. For 

the comparison to be fair, I assume that the sampling rate of the DSP filter is just 

fulfilling the required Nyquist rate (i.e. not oversampled) and the filtering is conducted 

for the same parameters and circumstances: same input signal, 𝑥(𝑡); a uniformly 

sampled version of the same analog filter impulse response, ℎ(𝑡); observation 
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window, [𝑡 − 𝑇, 𝑡]; and using an equivalent notation for the number of samples, 2𝑁𝑐, 

where the subscript 𝑐 denotes classical DSP. Thus, 

𝑦𝑐(𝑡) = 𝑇𝑠 ∑ 𝑥(𝑡 − 𝑛𝑇𝑠)ℎ(𝑛𝑇𝑠)

2𝑁𝑐−1

𝑛=0

, (3.34a) 

𝑦𝑐(𝑡) = 𝑇𝑠 ∑ 𝑥(𝑘𝑇𝑠)ℎ(𝑡 − 𝑘𝑇𝑠)

𝑁0−1

𝑘=𝑁0−2𝑁𝑐

, (3.34b) 

𝑦𝑐(𝑡) = 𝑇𝑠 ∑ 𝑓(𝑡, 𝑘𝑇𝑠)

𝑁0−1

𝑘=𝑁0−2𝑁𝑐

, (3.34c) 

where 𝑇𝑠 =
𝑇

2𝑁𝑐
=

1

𝐹𝑠
 is the uniform sampling period and 𝑁0 = ⌊

𝑡

𝑇𝑠
⌋. Note that the sampling 

frequency here, 𝐹𝑠, should at least be equal to the Nyquist rate,  

A quick glance at (3.34c) suggests, with no surprise, that it is analogous to the 

formulas of my randomised filter estimators, (3.7a), (3.8a), and (3.9a). Hence, the 

computational complexity, in terms of multiplications and additions per input sample, 

for digital filtering in both cases (uniform and random) depends only on the utilised 

number of sample points. Moreover, the power dissipation of the ADCs in such cases 

could be significantly decreased by acquiring a smaller number of samples, as well. 

Therefore, for randomised filtering to be more cost-effective than the uniform 

approach, it is only required to show that it is capable of yielding a good estimate of 

the filter output while using a randomly sampled sequence of size 2𝑁 where 𝑁 

satisfies the condition 𝑁 < 𝑁𝑐.  

Indeed, I have already proved the two requirements in the analysis above. According 

to my proposed estimators and their statistical features results, it is explicitly found 

that all estimators are consistent and unbiassed in (3.11g) and (3.27a-c). The other 

requirement, 𝑁 < 𝑁𝑐, can be implicitly deduced from the analytical derivation of the 

randomised filter estimators’ formulas where unbiasedness and consistency do not 

cease to be valid even with lesser values of 𝑁. Together with the fact that 

randomisation in sampling and/or quantisation can mitigate the adverse effects of 
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aliasing, as demonstrated in the previous two chapters, it is now evident that the 

proposed random based estimators can be more cost-effective than the classical DSP 

filtering if the conditions for proper randomisation and/or quantisation are satisfied. 

In the next section, I further validate my results by demonstrating numerical examples 

and simulations.  

First, I would like to summarise the required sampling rates for conventional uniform 

sampling of bandlimited baseband, bandpass and multiband signals when the detailed 

spectral support function (SSF) of the signal of interest is not fully known, as listed in 

Table III.  

TABLE III: MINIMUM REQUIRED RATES FOR UNIFORMLY SAMPLING SIGNALS WITH 

UNKNOWN SPECTRAL SUPPORT FUNCTIONS 

 

Min 

Freq. 

Max 

Freq. 

No. of 

Sub-bands 

Bandwidth 

Or Sub-bandwidths 

Nyquist Rate, 𝑭𝒔 

(Uniform) 

Baseband 0 𝑓𝑈 1 𝑓𝑈 2𝑓𝑈 

Bandpass 𝑓𝐿 𝑓𝑈 1 𝑓𝑈 − 𝑓𝐿 
2𝑓𝑈 𝑛⁄  

See note1 

Multiband 𝑓𝐿 𝑓𝑈 𝑀 𝐵1, … , 𝐵𝑀 
𝐹𝑠 = 4∑ 𝐵𝑖

𝑀
𝑖=1   

See note2 

 

I am aware that, in most cases, there should be a minimum knowledge about the signal 

to be sampled. In case of real-valued bandlimited baseband signals, the lower 

frequency, 𝑓𝐿, is known to be zero (i.e. the dc-component), but the upper frequency, 

𝑓𝑈, has to be known in advance, or at least anticipated somewhere in the spectrum 

according to the application being considered, otherwise, I end up sampling the whole 

range of the spectrum, which is unrealistic. For real-valued bandlimited passband and 

 

1 𝑛 is the maximum integer number of the quotient 𝑓𝑈 (𝑓𝑈 − 𝑓𝐿)⁄ , and 
2𝑓𝑈

𝑛
≤ 𝐹𝑠 ≤

2𝑓𝐿

𝑛−1
. 

2 This value 4∑ 𝐵𝑖
𝑀
𝑖=1  is double the Landau minimum rate. For known spectrum support, the Nyquist rate 

can approach the Landau minimum rate, i.e. 2∑ 𝐵𝑖
𝑀
𝑖=1  if proper uniform sampling schemes are put in place. 

If all bandwidths of the multiband signal are equal to 𝐵𝑠, for example, then (𝐹𝑠 = 2𝑀𝐵𝑠). 



65 

multiband signals, both 𝑓𝐿 and 𝑓𝑈, or centre frequency and bandwidth, are required 

before conducting the sampling process. Note that if the lower frequency, 𝑓𝐿, is 

unknown, both bandpass and multiband signals should be treated as if they are 

baseband signals in the sense that 𝑓𝐿 may be arbitrarily changing and, at some point, 

it may approach the zero dc-component. Moreover, precise number of sub-bandwidths 

(if they are equal) or their individual lengths (if they are not the same) of a multiband 

signal have to be known, otherwise, it is treated as a bandpass signal with known 𝑓𝐿 

and 𝑓𝑈 only. 

Remark that for the case of random sampling, there will always be statistical errors 

due to sampling irregularities apart from the utilised average sampling rate, even if the 

SSF is fully known and the average sampling rate3 is exceeding the equivalent Nyquist 

rate for uniform sampling. Said that, this doesn’t mean that random sampling is 

useless, or it is not worth it. On the contrary, it may help us a lot when conventional 

DSP solutions fall short for technical or financial grounds, especially when the SSF is 

sparse and unknown. However, to provide a comparative indicator with uniform 

sampling, as illustrated in Table III, the rule of thumb for random sampling is that for 

signals with known SSF, the average sampling frequency is the minimum Landau rate. 

Whereas if the SSF is unknown, then the sampling rate doubles. This is just a guidance 

for good random sampling practice. Designers can decide what random sampling rate 

is suitable for a specific application and how much error could be tolerated. 

3.11. Implementation Algorithm 

Fig. 12 below shows an implementation example of ToRa estimator. In this example, 

the observation window interval, 𝑇, is equal to the length of the filter impulse 

response. The input signal is the top curve, 𝑥(𝜏), and the sinc function represents ℎ(𝜏). 

The random sample points of the input signals are acquired at time instants 

𝜏0, 𝜏1, 𝜏2, . ... The filter is assumed to be symmetric FIR filter with linear phase and has 

a group delay of 𝑇/2. The output signal sample spacing, according to this particular 

example, is not equidistant, rather, they are random with a constant offset of 𝑇/2. This 

 

3 Average random sampling rate can be computed by dividing the total number of samples by the 

observation window interval. 
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timing arrangement of calculating the out signal is not an obligatory and it can be any 

time sequence including equidistant. 

 

 

Fig. 12.    Implementation algorithm of a ToRa filter estimator, where random 

samples of shifted replicas of the filter impulse response are multiplied with the 

corresponding random sample points of the input signal. Simultaneous sampling of 

𝑥(𝜏) and ℎ(𝜏) is the key point in this algorithm, and then convolution is carried out 

nonuniformly. 
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Each row of the sinc function represents one output sample. For instance, 

𝑦 (
𝑇

2
+ 𝜏0) = 𝑥(𝜏0)ℎ (

𝑇

2
) + 𝑥(𝜏1)ℎ (

𝑇

2
+ 𝜏0 − 𝜏1) + 𝑥(𝜏2)ℎ (

𝑇

2
+ 𝜏0 − 𝜏2), (3.35a) 

𝑦 (
𝑇

2
+ 𝜏1) = 𝑥(𝜏0)ℎ (

𝑇

2
+ 𝜏1 − 𝜏0) + 𝑥(𝜏1)ℎ (

𝑇

2
) + 𝑥(𝜏2)ℎ (

𝑇

2
+ 𝜏1 − 𝜏2), (3.35b) 

and so on. For this to work properly, each output sample requires new synchronised 

impulse response sampling with the input signal’s samples within the sliding 

observation window. 

3.12. Methodology for StSa and AnSt Estimators 

For StSa, the implementation methodology can be summarised as follows: 

1. A sliding observation window of length 𝑇 seconds is determined according to a 

given application. The Window is divided into 2𝑁 equidistant strata, where 2𝑁/𝑇 

will be the intended average random sampling rate.  

2. A software-defined analog FIR filter or an oversampled, grid-based, FIR filter is 

designed, and pre-saved as a continuous-time function (CTF) or a lookup table 

(LUT) in the memory buffer of the application. 

3. A 2𝑁-size sequence of sample points is acquired nonuniformly 

(randomly/pseudorandomly) from the input signal within the observation window, 

based on a random point process with specific probability density/mass function 

(PDF/PMF). In this thesis, both belongs to uniform distribution. 

4. Spontaneous sequence of impulse response samples (filter coefficients) are 

“extracted” from the CTF/LUT to exactly match the time instants of the random 

input samples within the current sliding window. 

5. Convolution of the two discrete sequences is carried out to estimate one sample of 

the filtered output signal.  

6. The observation window is shifted one stratum to the right discarding the left-most 

sample point and causing all other 2𝑁 − 1 points to be left-shifted one stratum. A 
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new random sample point is then acquired from the input signal in the now-empty 

right-most 2𝑁-th stratum.  

7. Steps 4-6 are repeated as many times as needed, probably till the end of all input 

signal sample points or for a fixed size of the estimated output signal, depending 

on the application. 

For AnSt, the same methodology is implemented, but instead of acquiring one sample 

point per stratum, two points are taken. In return, the number of strata would be half 

of StSa’s, i.e. only 𝑁 strata will be used. Moreover, in step 6. above, the left-most two 

sample points are discarded, and a new antithetical sample pair is acquired to the right 

of the sample sequence. 

3.13. Numerical Examples 

3.13.1. Function Integration and Asymptotic Behaviour of Estimators 

To verify my findings numerically, I start my collection of simulation examples with 

a very simple setup. I want to validate the asymptotic behaviour of the ToRa, StSa, 

and AnSt estimators for continuous-time signals. Hence, a two-sinusoid smooth 

function, 𝑦(𝑡) = 10 sin(2𝜋 × 17𝑡) + 7 cos(2𝜋 × 29𝑡), is sampled randomly with the 

three considered techniques. All sample sequences have the same size, 𝑁, at any given 

iteration. The observation window is set to [0,1.2] seconds. Since all estimators are 

random and cannot be judged by a single realization, I carry out Monte Carlo 

simulations of 100 independent iterations for each estimator.   

Fig. 13 shows the estimators asymptotic behaviours, where it is seen that AnSt-based 

estimator is uniformly converging at a rate of 𝑁−5 after about the 118th sample point. 

Whereas, StSa-based estimator is converging uniformly at a slower rate of 𝑁−3, and 

it needs around 44 sample points to establish its asymptotic characteristics. The 

slowest decaying estimator is the ToRa-based, where it can only converge at a uniform 

rate of 𝑁−1, albeit this behaviour starts as early as 2 sample points. Indeed, ToRa-

based estimator reaches its asymptotic behaviour at any value of 𝑁 since the result in 

(3.28b) is fixed, for the same observation window and smooth function 𝑓(𝑡, 𝜏), and  
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Fig. 13.    A smooth function 𝑦(𝑡) with continuous, bounded, and square-integrable 

FOD and SOD (Top). Uniform convergence rates of the ToRa, StSa, and AnSt 

based estimators (Bottom), where it is evident that, after a specific number of 

sample points for each estimator, they begin to decay linearly. Namely, ToRa, StSa, 

and AnSt estimators are uniformly converging at 𝑁−1, 𝑁−3, and 𝑁−5 rates, 

respectively.  

 

does not depend on the number of sample points. Therefore, it is always linear in the 

logarithmic scale. 

Whereas both StSa and AnSt numerical integration techniques are function-dependent 

regarding the start point of their asymptotic linear convergence in the logarithmic 

scale, as intuitively remarked from (3.29a-b) and (3.30a-b).  

In general, AnSt depends on the concept of adding and subtracting the same amount 

of error when calculating AUC of the function under consideration. This concept 

works perfectly when the number of samples is large enough to guarantee the part of 

the function within each stratum is smooth and linear (or monotonically increasing or 
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decreasing). This way the error decreases dramatically, since all mistakenly added 

areas are nearly equal to the incorrectly subtracted ones, leading to overall error to be 

minimal. 

For StSa, there are no such antithetical pairing concept for sample points, therefore, 

the estimator starts to converge uniformly, according to (3.29b), as long as 𝑓(𝑡, 𝜏) is 

a smooth function with Riemann integral value of its FOD-squared is almost equal to 

the summation form of (3.29a). 

 

Fig. 14.    A smooth function 𝑦(𝑡) with continuous, bounded, and square-integrable 

FOD and SOD (Top). Uniform convergence rates of the ToRa, StSa, and AnSt 

based estimators (Bottom), where it is evident that, after a specific number of 

sample points for each estimator, they begin to decay linearly. Namely, ToRa, StSa, 

and AnSt estimators are uniformly converging at 𝑁−1, 𝑁−3, and 𝑁−5 rates, 

respectively.  

 

The number of sample points required for both StSa and AnSt estimators to establish 

their logarithmic decaying linearity can be decreased considerably if the whole part of 
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the function of interest within the observation window is smooth and monotonically 

increasing or decreasing. Consider, for example, another function, 𝑦(𝑡) = 𝑡2, 

observed within the same interval as the previous example, i.e. [0,1.2] seconds. As 

can be seen in Fig. 14, all estimators are converging at the same rates as expected, but 

also all of them start to converge as early as 2 sample points, with AnSt estimator 

having the smallest MSE values. This is because the SOD of 𝑦(𝑡) is constant in this 

example, and so is (3.30b). Similarly, for the StSa estimator, 2 sample points are quite 

enough to represent a linear FOD of 𝑦(𝑡), hence, the term in (3.29b) does not change 

with increasing number of samples. 

3.13.2. Filtering Estimation Examples 

In another example, I demonstrate how to approximate a filter output using the three 

considered estimators and a continuous-time analog input signal. To achieve this 

purpose, I assume that there is a wireless sensor network (WSN) that comprises 

several multiplexed sensors and transducers sharing a common communication 

channel.  

The WSN modulates and transmits the shared analog signal, 𝑥(𝑡), to a remote location 

using a specific RF link. The original analog signal is assumed to be a bandlimited 

signal having a maximum frequency of 𝑓𝑈 = 65.536𝑘𝐻𝑧 and comprising audio 

(roughly from 0𝐻𝑧 to 20𝑘𝐻𝑧), ultrasonic (from 22𝑘𝐻𝑧 up to 44𝑘𝐻𝑧) and other types 

of signals with higher frequencies up to 𝑓𝑈 = 65.536𝑘𝐻𝑧. Let us also assume that the 

exact SSF of 𝑥(𝑡) is sparse and not fully known. The upper and lower frequencies of 

each frequency band are known, where each band can only have a few sinusoids and/or 

narrowband sinc functions (just for simplicity of simulation) at any given time. 

The receiver circuit demodulates the transmitted RF signal by means of suitable 

analog frontend blocks. The received multiplexed analog signal, 𝑥(𝑡), is observed 

within a time interval [0, 𝑇] where 𝑇 = 0.0156 sec, and is given by 

𝑥(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡), 

(3.36) 
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Where 𝑠𝑖𝑛𝑐(𝑡) = 𝑠𝑖𝑛(𝜋𝑡) 𝜋𝑡⁄ , 𝐹1 = 2.048𝑘𝐻𝑧, 𝐹2 = 8.192𝑘𝐻𝑧, 𝐹3 = 25.4𝑘𝐻𝑧, 

𝐹4 = 1.5𝑘𝐻𝑧, 𝐹5 = 51.5𝑘𝐻𝑧, 𝐹6 = 42𝑘𝐻𝑧 and 𝐹7 = 61.9𝑘𝐻𝑧. 

A specific sub-circuit of the receiver is only interested in the frequencies within the 

audio frequency range (i.e. 0 − 20𝑘𝐻𝑧), but, for some reason, it does not use an 

antialiasing analog pre-filtering (potentially because it is dynamically changing as in 

an SDR system, for instance). Therefore, the input analog signal to this sub-circuit is 

the same as 𝑥(𝑡), which currently has an upper frequency of 𝐹7 = 61.9𝑘𝐻𝑧, but would 

extend to  65.536𝑘𝐻𝑧 in other observation windows. Hence, according to the classical 

DSP approach for the existing signal and sub-circuit setup, we need a sampling rate 

that is at least equal to twice the maximum frequency that might present in the 

processed analog signal, i.e. the Nyquist rate, which in this case is 𝐹𝑠 =

2 × 65.536𝑘𝐻𝑧 = 131.072𝑘𝐻𝑧. 

The example setup above fits for the random sampling and filtering approaches, 

discussed earlier in this chapter, since 𝑥(𝑡), as shown in Fig. 15 (solid black line), has 

a sparse and unknown spectrum support, albeit the lower and upper frequencies of 

each wave range are assumed to be known. So, to mitigate aliasing from other bands 

while reducing the cost of implementation, I utilise the three considered random filter 

estimators ToRa, StSa, and AnSt to approximate the filter output signal, 𝑦(𝑡).  

For comparison purposes, I also consider uniform sampling and filtering scheme, 

which is the case of classical DSP. Remark that aliasing occurs if the utilised uniform 

sampling frequency is less than the required Nyquist rate, as depicted in Fig. 19 where 

only half the Nyquist rate is used, i.e. 𝐹𝑠 = 65.536𝑘𝐻𝑧. 

To receive the acoustic components of 𝑥(𝑡) in the audio frequency range, an analog 

function representing the required FIR filter is designed. Namely, the filter is a boxcar 

LPF with a bandwidth of 𝐵𝐿𝐵𝐹 = 20𝑘𝐻𝑧, as illustrated in Fig. 15 (dashed blue line). 

In effect, the impulse response of the filter, ℎ(𝑡), is a shifted version of the sinc 

function multiplied with a Hanning smoothing window, i.e. 

ℎ(𝑡) = 𝑠𝑖𝑛𝑐 (𝐵 (𝑡 −
𝑇

2
)) × 0.5 (1 − 𝑐𝑜𝑠 (

2𝜋

𝑇
𝑡)), 

(3.37) 

where 𝐵 is the double-sided bandwidth of the LPF filter (= 2 × 20𝑘𝐻𝑧). 
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Fig. 15.    Single-sided magnitude spectrum of the input analog continuous-time 

signal (solid black) uniformly sampled at Nyquist rate (= 131.072𝑘𝐻𝑧), and the 

frequency response of the boxcar LPF filter (dashed blue).  

 

ℎ(𝑡) is an analog function of time that can be thought of as a software-defined analog 

filter. However, for a given application that requires specific filter design which 

cannot mathematically be represented by an analog function, oversampled on-grid 

coefficients of the requested filter impulse response can be saved in a lookup table 

(i.e. inside the receiver buffer), as will be discussed in the next chapter. 

The analog input signal, 𝑥(𝑡), and the filter impulse response, ℎ(𝑡), are simultaneously 

sampled using both uniform and random sampling techniques. Then, DSP filtering 

and DASP filtering are carried out, simulated and compared.  

For the traditional DSP case, uniform sampling frequency matching the Nyquist rate 

is used, and the filtered audio signal is depicted in top left subplots of Figs. 16-18, 

where it is considered as a reference (“Ref”) spectrum to be compared with spectra of 

random estimators or other different uniform sampling rates. While in the DASP case, 

I consider equivalent average random sampling frequencies to the utilised uniform 
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ones to recover the audio signal using the three estimators (ToRa, StSa, and AnSt), as 

shown in top right, bottom left, and bottom right subplots, respectively, of Figs.16-18. 

Note that for the sake of simplicity when comparing input/output signals’ spectra, all 

output spectra are scaled down by a factor of 1 4⁄ , since the absolute magnitude of 

frequency response of the employed LPF in the passband region is 4. 

 

Fig. 16.    Single-sided magnitude spectrum of the LPF filter output signal. 

Sampling frequency is 131.072𝑘𝐻𝑧 and the number of independent Monte Carlo 

iterations for the random estimators is 100. 

 

Spectra comparisons are carried out based on the total error (TE) available within the 

Nyquist frequency range, i.e. (0, 𝐹𝑁𝑦𝑞 2⁄ ), and is calculated by finding the sum of all 

absolute differences between the estimated spectra and the “Ref” spectrum. 

As can be seen from Fig. 16, spectra of the estimated output signals using random 

sampling techniques are barely distinguishable from that of the uniformly sampled 

one using 100 MC simulations. Also, there are less errors in StSa estimator case than 

the errors of both ToRa and AnSt estimators, with AnSt is slightly better than ToRa.  
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Fig. 17.    Single-sided magnitude spectrum of the LPF filter output signal. 

Sampling frequency is 131.072𝑘𝐻𝑧 and the number of independent Monte Carlo 

iterations for the random estimators is 10. 

 

To demonstrate the effect of MC averaging of random estimators, I include here two 

extra plots for 10 independent MC runs and only one MC run, as illustrated in Fig. 17 

and Fig. 18. It is clear that the less MC runs are, the more statistical errors appear. This 

is absolutely feasible for the estimators when looked at as functions of random 

variables. That is why I have said beforehand that these estimators cannot be judged 

by only a single realisation. 

 

Remark that despite the exploited average random sampling frequency in Figs. 16-18 

is matching the Nyquist rate, the statistical errors still appear, contrary to uniform 

sampling case. Actually, this is one of the drawbacks of randomised sampling in 

general, since these errors are due to sampling irregularities and cannot be got rid of 

completely, but can, at an additional cost, be reduced. 
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Fig. 18.    Single-sided magnitude spectrum of the LPF filter output signal. 

Sampling frequency is 131.072𝑘𝐻𝑧 and only one Monte Carlo iteration for the 

random estimators. 

 

Note that in these simulation results, as well as all other simulations to follow, I have 

used three layers of randomisation for each one of ToRa-, StSa-, and AnSt-based filter 

estimators. First, I applied randomisation in the sampling of input signal, 𝑥(𝑡), and 

filter impulse response, ℎ(𝑡). Then, the second layer of randomisation is conducted 

when estimating the filter output signal 𝑦(𝑡). Finally, randomisation is also exploited 

when estimating the one-sided magnitude spectrum of the output signal, |𝑌(𝑓)|. 

3.13.3. Sub-Nyquist Sampling 

The following example uses the same input analog signal and LPF filter configurations 

except for a reduced sampling rate. With only half the required Nyquist rate for 

uniform sampling, i.e. 65.536𝑘𝐻𝑧, and equivalent average random sampling 

frequency, I obtain the results depicted in Figs. 19-21. 
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Fig. 19.    Single-sided magnitude spectrum of the input analog continuous-time 

signal (solid black) uniformly sampled at half the Nyquist rate (𝐹𝑠 = 65.536𝑘𝐻𝑧), 

and the frequency response of the boxcar LPF filter (dashed blue). Remark how 

frequency components of the spectrum of input signal, |𝑋(𝑓)|, that are above 

32.768𝑘𝐻𝑧 (= half the new sampling rate, 𝐹𝑠) have been aliased into the range of 

detectable spectrum, i.e. [−
𝐹𝑠

2
,
𝐹𝑠

2
], when using uniform sampling schemes. 

 

In Fig. 19, we can obviously see the aliases of some frequency components of the 

input signal 𝑥(𝑡). Originally, they were above the 32.768𝑘𝐻𝑧 limit, which is half the 

new sampling rate. Classical DSP sampling and filtering yield such aliases when there 

are frequency components higher than the utilised uniform sampling rate. 

Unfortunately, some of these aliases do already exist within the LPF passband, and 

they will wrongly appear in the output signal for conventional DSP filters. Whereas 

the case is different when considering randomised sampling-based techniques and 

estimators, as can be seen in Fig. 20 and Fig. 21 for MC=100 and MC=1 respectively. 

In Fig. 20 and Fig. 21, the spectra of filter output for uniform sampling are clearly 

showing the aliases of higher frequency components. While the random estimators  
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Fig. 20.    Spectrum of the output signal. 𝐹𝑠 = 65.536𝑘𝐻𝑧 and MC=100. 

 

Fig. 21.    Spectrum of the output signal. 𝐹𝑠 = 65.536𝑘𝐻𝑧 and MC=1. 
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can still reveal the true spectra despite that the amount of statistical errors increase 

more than the above counterpart figures, i.e. Fig. 16 and Fig. 18. 

Furthermore, I examine the same example above, but for lower sampling rates to 

verify the behaviour of uniform and random sampling and filtering schemes and 

compare them with the above simulation results. Hence, for the following figures, I 

set the sampling rates as follows: Fig. 22, 𝐹𝑠 = 32.768𝑘𝐻𝑧 and Fig. 23, 𝐹𝑠 =

16.384𝑘𝐻𝑧. Note that the latter is the minimum Landau rate if the SSF of |𝑌(𝑓)| in 

this particular example is known. Going under this rate will certainly lead to an 

unpredictable output results with considerable amount of statistical errors that 

dominate the spectrum especially for small number of MC runs. For example, if MC=1 

and 𝐹𝑠 = 8.192𝑘𝐻𝑧, then Fig. 24 shows how huge the errors are, and the original 

audio signal is no longer distinguishable. 

 

 

Fig. 22.    Spectrum of the output signal. 𝐹𝑠 = 32.768𝑘𝐻𝑧 and MC=100. 
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Fig. 23.    Spectrum of the output signal. 𝐹𝑠 = 16.384𝑘𝐻𝑧 and MC=100. 

 

Fig. 24.    Spectrum of the output signal. Uniform 𝐹𝑠 = 131.072𝑘𝐻𝑧. While 

random average sampling rate 𝐴𝑣. 𝐹𝑟 = 8.192𝑘𝐻𝑧, and MC=1. 
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Indeed, the Landau rate is an indicator for the minimum density of sample points that 

can lead to lossless signal reconstruction. This does not contradict the fact that, for 

some sorts of signals, one can use lower sampling rates than Landau dictates when no 

full reconstruction of the sampled signal is needed, rather, computing some signal 

averaging statistics is the goal. The mean value of an ergodic signal is just an example. 

3.13.4. BPF Example 

To demonstrate the performance of the three randomised estimators when considering 

bandpass filtering, I redesigned the above brick-wall LPF filter to become a BPF with 

22𝑘𝐻𝑧 bandwidth and 33𝑘𝐻𝑧 centre frequency, as shown in Fig. 25 below together 

with the spectrum of the same input analog signal, 𝑥(𝑡).  

 

 

Fig. 25.    Spectrum of the input analog signal (solid black) and the frequency 

response of the BPF filter cantered at 33𝑘𝐻𝑧 and has a bandwidth of 22𝑘𝐻𝑧. 

Uniform sampling rate is equal to the Nyquist rate, 𝐹𝑠 = 131.072𝑘𝐻𝑧. 
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In this example, the three random filter estimators, as well as an equivalent uniform 

conventional DSP filter, are examined against extracting the ultrasonic signals, 

spanning the frequency range from 22𝑘𝐻𝑧 to 44𝑘𝐻𝑧, in a number of cases regarding 

different average random sampling rates. All spectra shown in Fig. 26 (uniform and 

random) are fulfilling the Nyquist rate. As can be seen, it is possible to filter out the 

ultrasonic signals using my random estimators with relatively small amount of 

statistical errors. 

 

 

 

Fig. 26.    Spectrum of the filter output signal. Uniform 𝐹𝑠 = 131.072𝑘𝐻𝑧. Also, 

random average sampling rate 𝐴𝑣. 𝐹𝑟 = 131.072𝑘𝐻𝑧, and MC=100. 

 

Whereas, in Figs. 27-28, the utilised sampling rates are less than the Nyquist rate. 

Namely, with only 89.6kHz, I am still capable of estimating the filtered ultrasonic 

signals quite fine with the random estimators. However, using the uniform approach, 

high frequency components fold back into the band of interest on a form of aliases, 
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see top-left sub-plot of Fig. 27. Theses aliases cannot be ruled out using uniform 

approach and under the assumptions of this example and others in this sub-section. 

Another advantage of random estimation approaches is that it is possible to detect 

wider frequency range than half the average random sampling rate, as depicted in Figs. 

28-29. Moreover, Interesting results of the estimators can be spotted in Fig. 29. With 

only one MC run and an average random sampling frequency, 𝐴𝑣. 𝐹𝑟 of 42.24𝑘𝐻𝑧, it 

is clear that the two sinusoids of the ultrasonic signal range are detectable. Obviously, 

this rate is less than half the required Nyquist rate using uniform sampling, in this 

particular example, when no antialiasing pre-analog filtering is employed. 

 

 

Fig. 27.    Spectrum of the filter output signal. Uniform and average random 

sampling rates are equal to 89.6𝑘𝐻𝑧 and MC=100. Note the aliasing effect on 

uniform approach. 
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Fig. 28.    With random sampling, it is possible to extend the detected spectrum 

beyond half the average random sampling rate. MC=100. 

 

Fig. 29.    |𝑌(𝑓)| with uniform sampling rate 𝐹𝑠 = 131.072𝑘𝐻𝑧 and average 

random sampling rate 𝐴𝑣. 𝐹𝑟 = 42.24𝑘𝐻𝑧, MC=1. 
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3.13.5. Implementation Cost 

In all discussed examples in this section, the uniform traditional DSP filtering 

approach that guarantees no aliasing present in the output signal is using a sampling 

frequency of 131.072𝑘𝐻𝑧 within a [0,0.0156] sec observation window. The uniform 

FIR filter characterises are listed in Table IV, below. 

Whereas the implementation cost of each random filter depends on the number of 

acquired points per the observation window in the corresponding example. This is 

exactly equal to the utilised average sampling frequency multiplied by 𝑇 =

0.0156sec. For example, the random estimators of Fig. 21 use 𝐴𝑣. 𝐹𝑟 = 65.536𝑘𝐻𝑧 

only, which means that to estimate one point of the filter output signal, a total of 𝑁 =

65.536𝑘𝐻𝑧 × 0.0156𝑠𝑒𝑐 ≈ 1023 input random sample points are required. i.e. the 

computational cost is 1023 multiplications and 1022 additions per each sample point. 

While for Fig. 28, I need 659 multiplications and 658 additions to estimate one point 

of output signal since 𝑁 = 42.24𝑘𝐻𝑧 × 0.0156𝑠𝑒𝑐 ≈ 659, here. These two 

examples reveal that a cost saving of about 50% and 68%, respectively, has been 

achieved when considering the randomised DASP estimators rather than the 

conventional uniform DSP filtering approach. 

TABLE IV: UNIFORM FIR FILTER IMPLEMENTATION COST
4 

Discrete-Time FIR Filter (Real) 

Filter Length5 2049 

Number of Multipliers 2047 

Number of Adders 2046 

Multiplications per Input Sample 2047 

Additions per Input Sample 2046 

  

 

 

4 I am aware that other possible FIR filter designs may have smaller order than the presented one here. Of course, this has an impact 

on the impulse response of the uniform FIR filter and may lead to the comparison with random approach to be unfair. Moreover, with 

the assumptions that spectrum of the input signal is sparse and unknown, together with no analog prefiltering is available, then the 
most important factor in deciding the cost of FIR filtering between uniform and random is the number of sampling points within the 

fixed observation window, i.e. the sampling rate. It is the ADC preceding the FIR filter which consumes the most time and power in 

the whole operation. 
5 Including two zero coefficients at start and end of the filter impulse response.  
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Pseudorandomised On-Grid 

Interpolation and Filtering 

Estimation 

4.1. Overview 

This chapter introduces the concept of pseudorandomised sampling and filtering [88]. 

A high-frequency equally spaced grid is designed so that its frequency resolution is an 

integer-multiple of the required Nyquist rate. Meaning, the smallest value of the 

integer multiplier is one, and in this case the Nyquist rate is guaranteed. Moreover, the 

larger the integer multiplier is, the more accurate filtering estimation would be 

achieved, and then aliasing destructive effects are either eliminated or reduced 

significantly. 

The three random filter estimators introduced in Chapter 3 depend on the notion of 

instantaneous sampling of both input signal and a locally saved analog function 

representing the impulse response of a specific filter. This enabled us to have the 

convolution operation of the filter been carried out smoothly, without the need to 

search for a synchronised and corresponding impulse response counterpart for a 

specific randomly/pseudorandomly selected sample point from the input signal. 

However, in many real-life applications with limited hardware/software capacity, it is 

not affordable to have a functionally-converted impulse response, and it can only be 

designed as a sequence of digital data representing the filter coefficients based on a 

specific uniform sampling frequency not less than the Nyquist rate required by the 

application for which this filter is designed to work in. 

In this chapter, I explore pseudorandom sampling as a means to mitigating the aliasing 

problem. So, as the input signal under consideration is being pseudorandomly 

CHAPTER 4
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sampled, I need a mechanism in which I can synchronise the input sample points with 

their corresponding filter coefficients. To achieve this goal, I propose the use of a 

dense and uniform grid of time instants at which pseudorandomised sampling of both 

the input signal and the impulse response should stick to by using, for instance, a 

pseudorandom number generator (PRNG) circuit/subroutine. The reciprocal of the 

grid’s time step (spacing) is the grid frequency, and it should be a multi-fold higher 

than the required Nyquist rate to ensure good randomisation and alias-mitigating 

results. 

For a specific filtering application, an on-grid filter is designed similar to any other 

conventional DSP filter, with the only exception is to presume the uniform sampling 

rate at which the filter is designed is way larger than the usual Nyquist rate. Then, the 

impulse response of the filter is saved on a lookup table inside the sampling circuit’s 

memory resource. The pseudorandom sampling procedure is then carried out 

simultaneously between the input signal and the filter impulse response, and the 

convolution sum is calculated to estimate the filter output signal. 

The layout of the remaining of this chapter is as follows: next section introduces what 

do I mean by on-grid sampling and filtering. Section 4.3 illustrates the pseudorandom 

filtering model. Then, in Section 4.4, ToRa, StSa and AnSt filter estimators based on 

the simple Rectangular rule are proposed. Next, in Section, 4.5 I introduce the 

nonuniform pseudorandom C3NS interpolation rule. Finally, I validate my findings 

by demonstrating some simulation examples. 

4.2. On-Grid Sampling and Filtering 

In a practical digital world, one of the challenges facing theoretical random sampling 

and filtering is that it is not possible to acquire or process sample points at infinitesimal 

time instants. So, for a given observation window, the number of sample points should 

be finite, and there must be a feasible minimum time spacing between the two closest 

signal samples. By “feasible” I mean the highest hardware sampling capabilities of 

state-of-the-art discretization circuitry or analog to digital converter (ADC).  

Another challenge of filtering randomly sampled signals is the difficulty of working 

out mathematical operations between two (or more) time-based random variables, 
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representing some realisations of those signals, or even between one random variable 

and other equally spaced one since they might not be accurately synchronised, which 

definitely leads to significant estimation errors. Therefore, extreme attention should 

be paid to synchronise corresponding variables before being processed. 

Pseudorandom sampling and filtering would be suitable to overcome such practical 

challenges. In essence, pseudorandomisation is a deterministic sampling approach that 

is based on a nonuniform selection of sample points form otherwise fictionally 

uniformly oversampled signal/impulse response. 

To demonstrate how pseudorandom sampling and filtering would be achieved, a dense 

and on-grid filter impulse response is actually oversampled (black dots) as illustrated 

in Fig. 30. The input signal also can be imagined as if it is being uniformly 

oversampled (grey dots). As can be seen, the time instants of the true input signal 

samples (red dots) and corresponding impulse response coefficients (red dots, as well) 

are always aligned to the equally spaced grid, which is designed to have a uniform 

sampling frequency 𝐹𝑠 ≫ 𝐹𝑁𝑦𝑞 , and a grid time spacing 𝑇𝑠 = 1 𝐹𝑠⁄ . The grid 

frequency, 𝐹𝑠, depends on the hardware capabilities of a specific application. 

Nevertheless, the higher 𝐹𝑠 is, the more accurate filtering estimation will be achieved. 

4.3. Mathematical Model 

Suppose that an input continuous-time signal, 𝑥(𝑡), is oversampled on a uniform grid 

with 𝑇𝑠 time spacing and observed within [𝑡 − 𝑇, 𝑡) time interval. The resulting 

uniform discrete-time sequence, {𝑥𝑢(𝑘𝑇𝑠)}𝑘=0
𝑁𝑢−1, which comprises a total of 𝑁𝑢 =

𝑇/𝑇𝑠 samples, is filtered using an FIR filter with its impulse response, {ℎ(𝑘𝑇𝑠)}𝑘=0
𝑁𝑢−1, 

been sampled on the same grid, i.e. similar to the example illustrated in Fig. 30. The 

output signal, denoted by 𝑦𝑢(𝑖𝑇𝑠), is considered as a reference signal for other 

nonuniformly sampled and filtered signals to be introduced shortly. Thus, 𝑦𝑢(𝑖𝑇𝑠) is 

given by 

𝑦𝑢(𝑖𝑇𝑠) = 𝑇𝑠 ∑ 𝑥𝑢(𝑘𝑇𝑠)ℎ(𝑖𝑇𝑠 − 𝑘𝑇𝑠),

𝑁𝑢−1

𝑘=0

 (4.1) 

where 𝑘 and 𝑖 are both non-negative integers. 
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Fig. 30.    Uniformly oversampled filter impulse response, ℎ(𝑘𝑇𝑠) ≡ black dots, and 

potential on-grid samples of input signal, 𝑥(𝑘𝑇𝑠) ≡ grey dots. The true pseudorandom 

samples of the input signal, 𝑥(𝑛𝑘𝑇𝑠) = 𝑥[𝑛𝑘] ≡ red dots, are time-aligned with 

corresponding subset of impulse response coefficients, ℎ (
𝑇

2
+ 𝑛𝑗𝑇𝑠 − 𝑛𝑘𝑇𝑠) = ℎ[

𝑁𝑢

2
+

𝑛𝑗 − 𝑛𝑘] ≡ red dots also, selected from the whole sequence of coefficients already 

stored in memory buffer of a sampling and filtering circuit. 
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Remark that 𝑦𝑢(𝑖𝑇𝑠) is just a uniform and dense discrete-time form of 𝑦(𝑡) given in 

the previous chapter for the continuous-time filtering case, i.e. 𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 −
𝑡

𝑡−𝑇

𝜏)𝑑𝜏. 

4.4. Convolution Estimation Based on Simple Rectangular rule 

I aim at estimating the output of an FIR filter when the input signal is pseudorandomly 

sampled according to the grid setup shown above, then to compare the spectra of 

output signal and the reference signal.  

Grid-based versions of ToRa, StSa, and AnSt are shown in Fig. 31. As illustrated, the 

time instants of the sample points are precisely aligned to the uniform grid. I assume 

that the time instants of the underlying grid are denoted by 𝑡𝑖 = 𝑖𝑇𝑠, where 𝑖 =

0, 1, 2, … ,𝑁𝑢 − 1, and the pseudorandomised time instants of input signal’s sample 

points are 𝑡𝑘 = 𝑛𝑘𝑇𝑠, where 𝑘 = 0, 1, 2, … , 𝑁𝑟 − 1. Here 𝑁𝑟 is the total number of 

pseudorandom sample points and it must be less than or equal to 𝑁𝑢. Moreover, the 

nonuniform integers 𝑛𝑘 ∈ {0,𝑁𝑢 − 1}, and they directly depend on which random/ 

pseudorandom sampling technique is being used. 

Regarding ToRa random sampling scheme, for example, and [t − 𝑇, 𝑡) observation 

window, and 𝑁𝑟 i.i.d. pseudorandom sample points of an input signal 𝑥(𝑡), denoted 

by 𝑥(𝑡𝑘) = 𝑥(𝑡)|𝑡=𝑡𝑘 , then the probability mass function (PMF) of pseudorandom 

variables 𝑡𝑘 is denoted by 𝑝𝑡𝑘(𝑡𝑘) and given by 

𝑝𝑡𝑘(𝑡𝑘) = {

1

𝑁𝑢
, 𝑡𝑘 ∈ 𝐺

0, elsewhere

, (4.2) 

 

where 𝐺 = {0, 𝑇𝑠 , 2𝑇𝑠 , 3𝑇𝑠 , … , (𝑁𝑢 − 1)𝑇𝑠}.  

The discrete-time estimated output signal, �̂�(𝑡𝑗), filtered out using the aforementioned 

FIR grid-based filter is  
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�̂�(𝑡𝑗) = ∑ 𝑥(𝑡𝑘)ℎ(𝑡𝑗 − 𝑡𝑘)𝛥𝑘

𝑁𝑟−1

𝑘=0

, (4.3) 

where 𝑡𝑗 = 𝑛𝑗𝑇𝑠 , i.e. it is an integer multiple of 𝑇𝑠, and 𝛥𝑘 is the average time spacing 

between the nonuniform sample points, and so, 𝛥𝑘 = 𝑇/𝑁𝑟.  

It is my choice to decide the time spacing of the output signal (uniform or nonuniform) 

according to how 𝑡𝑗 are being selected. In this chapter, I consider them unequally 

spaced, i.e. 𝑛𝑗  are pseudorandom integers, as well. This would enable us to add a 

second layer of randomized signal processing by estimating the FT of the estimated 

and irregularly spaced filter output signal. Thus, (4.3) can be rewritten as 

�̂�(𝑛𝑗𝑇𝑠) =
𝑇

𝑁𝑟
∑ 𝑥(𝑛𝑘𝑇𝑠)ℎ(𝑛𝑗𝑇𝑠 − 𝑛𝑘𝑇𝑠)

𝑁𝑟−1

𝑘=0

. (4.4) 

 

   

Fig. 31.    Four sample points example of grid-based ToRa, StSa and AnSt random 

sampling techniques, where each sample point (black x) is precisely aligned to one of 

the uniform grid time instants (blue dots), [88]. 
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Remark that 𝑛𝑘 has the same PMF as 𝑡𝑘, i.e. 𝑝𝑛𝑘(𝑛𝑘) = 1 𝑁𝑢⁄ , 𝑛𝑘 ∈ {0, 1, 2, … ,𝑁𝑢 −

1} and zero elsewhere. Hence, the 𝑁𝑟 summands in (4.4) are all products of discrete 

random variables that have the same PMF. 

4.5. Expected Value of the Estimator 

The following theorem reveals the bias status of the discrete oversampled on-grid 

ToRa filter estimator. 

Theorem 4.1. The discrete on-grid ToRa filter estimator is unbiassed. 

Proof: 

The expected value of the discrete ToRa filter estimator in (4.4) can be calculated by 

adding up the individual expected values of all components of the summation. For 

each component, we have 

𝔼[�̂�𝑐(𝑛𝑗𝑇𝑠)] =
𝑇

𝑁𝑟
𝔼[𝑥(𝑛𝑘𝑇𝑠)ℎ(𝑛𝑗𝑇𝑠 − 𝑛𝑘𝑇𝑠)], (4.5a) 

 =
𝑇

𝑁𝑟
∑ 𝑥(𝑛𝑘𝑇𝑠)ℎ(𝑛𝑗𝑇𝑠 − 𝑛𝑘𝑇𝑠)𝑝𝑛𝑘(𝑛𝑘)

∞

𝑘=−∞

. (4.5b) 

As 𝑝𝑛𝑘(𝑛𝑘) equals 0 outside {0, 𝑁𝑢 − 1} and 𝑇 = 𝑁𝑢𝑇𝑠 , (3.5b) becomes 

𝔼[�̂�𝑐(𝑛𝑗𝑇𝑠)] =
𝑁𝑢𝑇𝑠
𝑁𝑟

∑ 𝑥(𝑘𝑇𝑠)ℎ(𝑛𝑗𝑇𝑠 − k𝑇𝑠)
1

𝑁𝑢


𝑁𝑢−1

𝑘=0

, (4.5c) 

 =
𝑇𝑠
𝑁𝑟

∑ 𝑥(𝑘𝑇𝑠)ℎ(𝑛𝑗𝑇𝑠 − k𝑇𝑠)

𝑁𝑢−1

𝑘=0

=
1

𝑁𝑟
𝑦𝑢(𝑛𝑗𝑇𝑠). (4.5d) 

For 𝑁𝑟 components of �̂�𝑐(𝑛𝑗𝑇𝑠), the expectation is equal to 

𝔼[�̂�(𝑛𝑗𝑇𝑠)] = 𝑁𝑟 (
1

𝑁𝑟
𝑦𝑢(𝑛𝑗𝑇𝑠)) = 𝑦𝑢(𝑛𝑗𝑇𝑠). (4.5e) 

Therefore, the ToRa estimator in (4.4) is unbiased. 
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∎ 

Indeed, similar analyses for other random sampling techniques (StSa and AnSt) can 

be done to verify the unbiasedness of their corresponding estimators. To cut long story 

short, I confirm that both estimators are unbiassed, as well, which coincides with the 

continuous-time case estimators validated in the previous chapter. 

4.6. Quality of Estimation 

To assess the quality of the pseudorandom estimator (4.4) and check its consistency, 

I need to verify its variance. As an unbiassed estimator, the MSE is identical to the 

variance. Furthermore, both input signal and filter impulse response are real-valued. 

The following theorem unveils the exact convergence rate of the discrete on-grid ToRa 

filter estimator. 

Theorem 4.2. The discrete on-grid ToRa filter estimator converges at a rate of 𝑁𝑟
−1, 

where 𝑁𝑟 represents the number of pseudorandom sample points. 

Proof: 

The variance is 

𝕍[�̂�(𝑛𝑗𝑇𝑠)] = 𝑀𝑆𝐸[�̂�(𝑛𝑗𝑇𝑠)] = 𝔼 [(�̂�(𝑛𝑗𝑇𝑠))
2

] − (𝔼[�̂�(𝑛𝑗𝑇𝑠)])
2
. (4.6) 

First, I calculate 𝔼 [(�̂�(𝑛𝑗𝑇𝑠))
2

], 

𝔼 [(�̂�(𝑛𝑗𝑇𝑠))
2

] = 𝐸 {(
𝑇

𝑁𝑟
∑ 𝑥(𝑛𝑘𝑇𝑠)ℎ(𝑛𝑗𝑇𝑠 − 𝑛𝑘𝑇𝑠)

𝑁𝑟−1

𝑘=0

)

2

}. (4.7) 

For simplicity, I omit the 𝑇𝑠 notation from the arguments of functions in (4.7) and will 

be added when required. Now, the square value (�̂�(𝑛𝑗))
2

 can be written as 
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(�̂�(𝑛𝑗))
2

 
= (

𝑇

𝑁𝑟
)
2

∑(𝑥(𝑛𝑘)ℎ(𝑛𝑗 − 𝑛𝑘))
2

𝑁𝑟−1

𝑘=0

+ (
𝑇

𝑁𝑟
)
2

∑ ∑ (𝑥(𝑛𝑘)ℎ(𝑛𝑗 − 𝑛𝑘))((𝑥(𝑛𝑚)ℎ(𝑛𝑗 − 𝑛𝑚))

𝑁𝑟−1

𝑚≠𝑘
𝑚=0

𝑁𝑟−1

𝑘=0

. 

(4.8) 

So, the expected value of (�̂�(𝑛𝑗))
2

 is 

 

𝔼 [(�̂�(𝑛𝑗))
2

] 
= (

𝑇

𝑁𝑟
)
2

𝔼 [∑ (𝑥(𝑛𝑘)ℎ(𝑛𝑗 − 𝑛𝑘))
2

𝑁𝑟−1

𝑘=0

]

+ (
𝑇

𝑁𝑟
)
2

𝔼 [∑ ∑ (𝑥(𝑛𝑘)ℎ(𝑛𝑗 − 𝑛𝑘))((𝑥(𝑛𝑚)ℎ(𝑛𝑗

𝑁𝑟−1

𝑚≠𝑘
𝑚=0

𝑁𝑟−1

𝑘=0

− 𝑛𝑚))]. 

(4.9) 

I benefit from the law of the unconscious statistician to use the same PMF of 𝑛𝑘 to 

calculate the expectation terms in the RHS of (4.9). Moreover, since the double 

summations in the second expectation term are statistically independent of each other, 

i.e. 𝑚 ≠ 𝑘 means 𝑛𝑚 ≠ 𝑛𝑘 , then the expectation of this term can be calculated by 

multiplying the two individual expectations. That is 

 

𝔼 [(�̂�(𝑛𝑗))
2

] = (
𝑇

𝑁𝑟
)
2

𝑁𝑟 ∑ 𝑥2(𝑛𝑘)ℎ
2(𝑛𝑗 − 𝑛𝑘)𝑝𝑛𝑘(𝑛𝑘)

∞

𝑘=−∞

+ (
𝑇

𝑁𝑟
)
2

𝔼 [∑ (𝑥(𝑛𝑘)ℎ(𝑛𝑗 − 𝑛𝑘))

𝑁𝑟−1

𝑘=0

]

× 𝔼 [∑ ((𝑥(𝑛𝑚)ℎ(𝑛𝑗 − 𝑛𝑚))

𝑁𝑟−1

𝑚≠𝑘
𝑚=0

], 

(4.10a) 
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𝔼 [(�̂�(𝑛𝑗))
2

] = (
𝑁𝑢𝑇𝑠
𝑁𝑟

)
2 𝑁𝑟
𝑁𝑢

∑ 𝑥2(𝑛𝑘)ℎ
2(𝑛𝑗 − 𝑛𝑘)

𝑁𝑢−1

𝑘=0

+ (
𝑁𝑢𝑇𝑠
𝑁𝑟

)
2 𝑁𝑟
𝑁𝑢

∑ 𝑥2(𝑛𝑘)ℎ
2(𝑛𝑗 − 𝑛𝑘)

𝑁𝑢−1

𝑘=0

×
(𝑁𝑟 − 1)

𝑁𝑢
∑ 𝑥2(𝑛𝑘)ℎ

2(𝑛𝑗 − 𝑛𝑘)

𝑁𝑢−1

𝑘=0

, 

(4.10b) 

 

𝔼 [(�̂�(𝑛𝑗))
2

] =
𝑁𝑢
𝑁𝑟
𝑇𝑠
2 ∑ 𝑥2(𝑛𝑘)ℎ

2(𝑛𝑗 − 𝑛𝑘)

𝑁𝑢−1

𝑘=0

+
(𝑁𝑟 − 1)

𝑁𝑟
(𝑇𝑠 ∑ 𝑥(𝑛𝑘)ℎ(𝑛𝑗 − 𝑛𝑘)

𝑁𝑢−1

𝑘=0

)

× (𝑇𝑠 ∑ 𝑥(𝑛𝑚)ℎ(𝑛𝑗 − 𝑛𝑚)

𝑁𝑢−1

𝑚≠𝑘
𝑚=0

), 

(4.10c) 

 

𝔼 [(�̂�(𝑛𝑗))
2

] =
𝑇

𝑁𝑟
𝐸𝑦𝑢 +

(𝑁𝑟 − 1)

𝑁𝑟
× 𝑦𝑢

2(𝑛𝑗𝑇𝑠), (4.10d) 

where 𝐸𝑦𝑢 is the total energy of the output signal 𝑦𝑢 in the interval [𝑡 − 𝑇, 𝑡).  

Substituting (4.10d) and (4.5e) into (4.6) and explicitly redisplaying 𝑇𝑠 yields 

𝕍[�̂�(𝑛𝑗𝑇𝑠)] =
𝑇

𝑁𝑟
𝐸𝑦𝑢 +

(𝑁𝑟 − 1)

𝑁𝑟
× 𝑦𝑢

2(𝑛𝑗𝑇𝑠) − 𝑦𝑢
2(𝑛𝑗𝑇𝑠), (4.11a) 

𝕍[�̂�(𝑛𝑗𝑇𝑠)] =
𝑇𝐸𝑦𝑢 − 𝑦𝑢

2(𝑛𝑗𝑇𝑠)

𝑁𝑟
. (4.11b) 

Multiplying the variance in (4.11b) by 𝑁𝑟 and then calculating the limit, we get 

lim
𝑁𝑟→∞

(𝑁𝑟 × 𝕍[�̂�(𝑛𝑗𝑇𝑠)])  = 𝑇𝐸𝑦𝑢 − 𝑦𝑢
2(𝑛𝑗𝑇𝑠). (4.12) 

This means that the discrete-time ToRa filter estimator is converging at a rate of 𝑁𝑟
−1. 

∎ 
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It is obvious from the results of Theorem 4.2 that increasing the number of sample 

points will result in smaller value for the variance. So, there is a trade-off between the 

quality of estimation and the number of pseudorandom sample points. 

Same analyses are carried out for the other two estimators, StSa and AnSt, in the 

discrete-time pseudorandom form, and I found that they converge at rates of 𝑁𝑟
−3 and 

𝑁𝑟
−5 respectively. 

4.7. Composite 3-Nonuniform-Sample (C3NS) Interpolation Rule 

The filter convolution sum (4.3) for a specific output sample is nothing more than 

calculating an area under the curve (AUC) of the summand function. It usually uses 

the simple rectangle (or midpoint) rule to do so. In this section, nonetheless, I propose 

another method that can estimate AUC faster than the Rectangular rule, depending on 

Lagrange unequal interpolation techniques. The so-called composite 3-nonuniform-

sample (C3NS) rule is introduced here, and it utilises the high-resolution uniform grid 

structure of the impulse response and the PRNG-based sampling of the input signal. 

Basically, it somehow mimics the traditional composite Simpson’s 1/3 rule, 

introduced in Chapter 2, which interpolates three uniform sample points to generate a 

second-order polynomial. My proposed C3NS rule deals with interpolating three 

pseudorandom on-grid unequally spaced sample points. 

4.7.1. Area Under the Curve Estimation 

Given a continuous-time function, 𝑓(𝑡) for instance. It is requested to estimate AUC 

of 𝑓(𝑡) in the time interval [0, 𝑇) by using C3NS nonuniform interpolation rule. To 

this end, the time interval [0, 𝑇) is split into subintervals according to the number of 

pseudorandom sample points. Every three consecutive points represent one 

subinterval. For example, the first subinterval is depicted in Fig. 32. The borders of 

any generic subinterval (i.e. the two sample points at the left and right ends of the 

subinterval) are shared with neighbor subintervals to compose the C3NS rule. The 

total area from 0 to 𝑇 is then estimated by adding up the definite integrals of 

interpolated polynomials in all subintervals 
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To further illustrate how C3NS works, suppose that the first three pseudorandom 

sample points, which comprise only one subinterval, are acquired at time instants 𝑡0 =

0, 𝑡1 and 𝑡2. Since I am pseudorandomly picking up samples from a uniform dense 

grid having a time step of 𝑇𝑠, then all acquired sample points are spaced from each 

other by an integer multiple of 𝑇𝑠. Now, I introduce two integer numbers, 𝑛1and 𝑛2, 

as follows: 𝑛1𝑇𝑠 = 𝑡1 − 𝑡0 and 𝑛2𝑇𝑠 = 𝑡2 − 𝑡1. Area under the curve of 𝑓(𝑡) from 𝑡0 

to 𝑡2 = (𝑛1 +𝑛2)𝑇𝑠 is estimated by interpolating the three samples 𝑓(𝑡0), 𝑓(𝑡1) and 

𝑓(𝑡2) using a quadratic Lagrange parabola 𝑃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2, where 𝑎0, 𝑎1 and 

𝑎2 are just the coefficients of the polynomial. Then, I integrate the second-order 

polynomial 𝑃(𝑡) from 𝑡0 to 𝑡2. I find that the result of the definite integral in this 

subinterval is equal to 

 

∫ 𝑓(𝑡)𝑑𝑡
𝑡2

𝑡0

 

 

≈
𝑇𝑠(𝑛1 +𝑛2)

6𝑛1𝑛2
[(2𝑛1𝑛2 −𝑛2

2)𝑓(𝑡0) + (𝑛1 +𝑛2)
2𝑓(𝑡1)

+ (2𝑛1𝑛2 −𝑛1
2)𝑓(𝑡2)]. 

 

(4.13) 

 

Fig. 32.    One subinterval, [𝑡0, 𝑡2], of the proposed C3NS rule. Original function is 

𝑓(𝑡), and the interpolated parabola is 𝑃(𝑡). 𝑛1 and 𝑛2 are pseudorandom integers, and 

𝑇𝑠 is the uniform grid time resolution, [88]. 

 

The total area of 𝑓(𝑡) within  [0, 𝑇) can now be estimated by accumulating results of 
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integration of all 𝑛 subintervals. If the total number of pseudorandom sample points 

is 𝑁𝑟, then 𝑁𝑟 = 2𝑛 + 1. Let 𝑛𝑖1 and 𝑛𝑖2 denote the corresponding integers 𝑛1 and 𝑛2, 

respectively, of the 𝑖-th subinterval. Thus, we get 

 

∫ 𝑓(𝑡)𝑑𝑡
𝑇

0

 ≈ 𝑇𝑠∑(
(𝑛𝑖1 +𝑛𝑖2)

6𝑛𝑖1𝑛𝑖2
((2𝑛𝑖1𝑛𝑖2 −𝑛𝑖2

2)𝑓(𝑡2𝑖−2)

𝑛

𝑖=1

+ (𝑛𝑖1 +𝑛𝑖2)
2𝑓(𝑡2𝑖−1) + (2𝑛𝑖1𝑛𝑖2 −𝑛𝑖1

2)𝑓(𝑡2𝑖))). 

(4.14) 

4.7.2. Error Analysis 

The estimation error associated with the first subinterval, 𝑒1, is 

 

𝑒1 = ∫ 𝑓(𝑡)𝑑𝑡
(𝑛1+𝑛2)𝑇𝑠

0

−
𝑇𝑠(𝑛1 +𝑛2)

6𝑛1𝑛2
[(2𝑛1𝑛2 −𝑛2

2)𝑓(𝑡0) + (𝑛1 +𝑛2)
2𝑓(𝑡1)

+ (2𝑛1𝑛2 −𝑛1
2)𝑓(𝑡2)]. 

(4.15) 

Since 𝑓(𝑡) is assumed to be continuous and differentiable, I can expand it using Taylor 

series expansion at 𝑡 = 𝑡1 = 𝑛1𝑇𝑠 . Thus, 

 

𝑓(𝑡) = 𝑓(𝑡1) + (𝑡 − 𝑛1𝑇𝑠)𝑓
(1)(𝑡1) +

1

2
(𝑡 − 𝑛1𝑇𝑠)

2𝑓(2)(𝑡1)

+
1

6
(𝑡 − 𝑛1𝑇𝑠)

3𝑓(3)(𝑡1) +
1

24
(𝑡 − 𝑛1𝑇𝑠)

4𝑓(4)(𝑡1) + 𝑂((𝑡 − 𝑛1𝑇𝑠)
5), 

(4.16) 

where 𝑓(𝑖)(𝑡1) is the 𝑖-th order derivative of 𝑓(𝑡) about 𝑡1, and 𝑂(∙) is the big-O 

notation. 

Considering (4.16), I now find the values of 𝑓(𝑡0 = 0), 𝑓(𝑡1), and 𝑓(𝑡2),  

 

𝑓(𝑡0) = 𝑓(𝑡1) + (𝑛1𝑇𝑠)𝑓
(1)(𝑡1) +

1

2
(𝑛1𝑇𝑠)

2𝑓(2)(𝑡1) +
1

6
(𝑛1𝑇𝑠)

3𝑓(3)(𝑡1)

+
1

24
(𝑛1𝑇𝑠)

4𝑓(4)(𝑡1) + 𝑂((𝑛1𝑇𝑠)
5), 

(4.17) 
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𝑓(𝑡1) = 𝑓(𝑡1) (4.18) 

 

𝑓(𝑡2) = 𝑓(𝑡1) + 𝑛2𝑇𝑠𝑓
(1)(𝑡1) +

1

2
(𝑛2𝑇𝑠)

2𝑓(2)(𝑡1) +
1

6
(𝑛2𝑇𝑠)

3𝑓(3)(𝑡1)

+
1

24
(𝑛2𝑇𝑠)

4𝑓(4)(𝑡1) + 𝑂((𝑛2𝑇𝑠)
5). 

(4.19) 

  

By substituting (4.16)-(4.19) into the expression of 𝑒1 given in (4.15), we obtain  

 

𝑒1 = ∫ (𝑓(𝑡1) + (𝑡 − 𝑛1𝑇𝑠)𝑓
(1)(𝑡1) +

1

2
(𝑡 − 𝑛1𝑇𝑠)

2𝑓(2)(𝑡1)

(𝑛1+𝑛2)𝑇𝑠

0

+
1

6
(𝑡 − 𝑛1𝑇𝑠)

3𝑓(3)(𝑡1) +
1

24
(𝑡 − 𝑛1𝑇𝑠)

4𝑓(4)(𝑡1) + 𝑂((𝑡 − 𝑛1𝑇𝑠)
5)) 𝑑𝑡

−
𝑇𝑠(𝑛1 +𝑛2)

6𝑛1𝑛2
[(2𝑛1𝑛2 −𝑛2

2)𝑓(𝑡0) + (𝑛1 +𝑛2)
2𝑓(𝑡1)

+ (2𝑛1𝑛2 −𝑛1
2)𝑓(𝑡2)], 

(4.20) 

 

𝑒1  = (𝑛1 +𝑛2)𝑇𝑠𝑓(𝑡1) +
1

2
(𝑛2

2 − 𝑛1
2)𝑇𝑠

2𝑓(1)(𝑡1)

+
1

6
(𝑛2

3 + 𝑛1
3)𝑇𝑠

3𝑓(2)(𝑡1) +
1

24
(𝑛2

4 − 𝑛1
4)𝑇𝑠

4𝑓(3)(𝑡1)

+
1

120
(𝑛2

5 + 𝑛1
5)𝑇𝑠

5𝑓(4)(𝑡1) + 𝑂((𝑛2
6 − 𝑛1

6)𝑇𝑠
6)

−
𝑇𝑠(𝑛1 +𝑛2)

6𝑛1𝑛2
[(2𝑛1𝑛2 −𝑛2

2) (𝑓(𝑡1) − 𝑛1𝑇𝑠𝑓
(1)(𝑡1)

+
1

2
(𝑛1𝑇𝑠)

2𝑓(2)(𝑥1) −
1

6
(𝑛1𝑇𝑠)

3𝑓(3)(𝑡1) +
1

24
(𝑛1𝑇𝑠)

4𝑓(4)(𝑡1)

+ 𝑂((𝑛1𝑇𝑠)
5)) + (𝑛1 +𝑛2)

2𝑓(𝑡1)

+ (2𝑛1𝑛2 −𝑛1
2) (𝑓(𝑡1) + 𝑛2𝑇𝑠𝑓

(1)(𝑡1) +
1

2
(𝑛2𝑇𝑠)

2𝑓(2)(𝑡1)

+
1

6
(𝑛2𝑇𝑠)

3𝑓(3)(𝑡1) +
1

24
(𝑛2𝑇𝑠)

4𝑓(4)(𝑡1) + 𝑂((𝑛2𝑇𝑠)
5))] . 

(4.21) 
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By simplifying the expression in (4.21), we obtain the following result for the error in 

the first subinterval, 

 

𝑒1 =
𝑇𝑠
4(𝑛1 +𝑛2)

3(𝑛1 −𝑛2)

72
𝑓(3)(𝑡1)

−
𝑇𝑠
5(𝑛1 +𝑛2)

3(4𝑛1
2 − 7𝑛1𝑛2 + 4𝑛2

2)

720
𝑓(4)(𝑡1) + 𝑂((𝑛𝑚𝑇𝑠)

5), 

(4.22) 

where 𝑛𝑚 is the maximum of 𝑛1 and 𝑛2, i.e. the dominant. However, max(𝑛𝑚𝑇𝑠) ≤

2𝑇

𝑁𝑟
 for StSa-based C3NS pseudorandom sampling, for example. So, 𝑂((𝑛𝑎𝑇𝑠)

5) =

𝑂(𝑁𝑟
−5). Remark that 𝑂(𝑁𝑟

−5) is also in 𝑂(𝑁𝑟
−4). Therefore, if 𝑛1 ≠𝑛2, then 

(4.22) can be further simplified to  

 

𝑒1 =
𝑇𝑠
4(𝑛1 +𝑛2)

3(𝑛1 −𝑛2)

72
𝑓(3)(𝑡1) + 𝑂(𝑁𝑟

−4). (4.23) 

If 𝑛1 =𝑛2 = 𝑛m in (4.22), then the error term for this subinterval is significantly 

reduced to 

𝑒1,𝑛1=𝑛2 = −
𝑛m

5𝑇𝑠
5

90
𝑓(4)(𝑡1) + 𝑂(𝑁𝑟

−5). (4.24a) 

𝑒1,𝑛1=𝑛2 = −
16𝑇5

45𝑁𝑟
5 𝑓

(4)(𝑡1) + 𝑂(𝑁𝑟
−5). (4.24b) 

The expression in (4.24a) is the same as the error for uniform Simpson’s 1/3 rule as 

found in the literature, but without 𝑛m, as 𝑛m𝑇𝑠 here is identical to 𝑇𝑠 over there, and 

both represent the time spacing between the equidistant sample points. 

As can be noticed from (4.22), there is a trade-off in selecting identical or different 

𝑛1and 𝑛2. If they are similar, then this means the sampling is uniform, hence, aliasing 

will appear if the utilised sampling frequency does not fulfil the Nyquist rate. Whereas 

different 𝑛1and 𝑛2 values lead to nonuniform sampling, which helps mitigate aliasing 

problems, but, at the same time, produce larger error value. 

The error term in (4.22) is for one subinterval only. To calculate the total composite 

error for 𝑛 subintervals, 𝑒C3NS, we need to add up the errors of all subintervals, 
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𝑒C3NS =∑(
𝑇𝑠
4(𝑛𝑖1 +𝑛𝑖2)

3(𝑛𝑖1 −𝑛𝑖2)

72
𝑓(3)(𝑡2𝑖−1)

𝑛

𝑖=1

−
𝑇𝑠
5(𝑛𝑖1 +𝑛𝑖2)

3(4𝑛𝑖1
2 − 7𝑛𝑖1𝑛𝑖2 + 4𝑛𝑖2

2 )

720
𝑓(4)(𝑡2𝑖−1)

+ 𝑂((𝑛𝑚𝑇𝑠)
5)) 

(4.25) 

On the other hand, the MSE in C3NS nonuniform interpolation, based on StSa 

sampling approach, can be calculated by computing the expected value of the squared 

error term in (4.23). In a quick glance, I can deduce that the MSE will be converging 

at 𝑁𝑟
−7 rate since squaring (4.23) leads to terms in 𝑂(𝑁𝑟

−8). Then, multiplying by the 

PDF (= 1/𝑁𝑟) is cancelled by the 𝑁𝑟-proportional definite integral of the expectation. 

Finally, I sum up the errors of 𝑁𝑟/2 subintervals leading eventually to 𝑂(𝑁𝑟
−7) 

convergence rate. Simulation results below validate this rate, as well as all the rates 

for the above pseudorandom based estimators. 

4.8. Simulation Results 

Consider a test function 𝑓(𝑡) = 𝜋𝑠𝑖𝑛𝑐(22𝑡) + 𝑠𝑖𝑛(2𝜋 × 17𝑡) + 𝑐𝑜𝑠(2𝜋 × 21.4𝑡) +

𝑡3 that is observed in the interval [0,1] sec. This function is continuous and 

differentiable. I have numerically integrated this function using pseudorandom on-

grid sampling based on two estimation criteria: simple Rectangular rule based on 

ToRa, StSa, AnSt estimators; and nonuniform interpolation rule C3NS based on StSa. 

Numerical examples use different grid frequencies and different number of Monte 

Carlo iterations. The simulation results approve my abovementioned findings and 

clearly show that the grid-based pseudorandom estimators are uniformly converging 

to the true value of the estimated function’s AUC at speeds of 𝑁−1, 𝑁−3, 𝑁−5, and 

𝑁−7 for ToRa, StSa, AnSt, and C3NS respectively, as shown in Figs. 33-39. 
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Fig. 33.    Pseudorandom on-grid Rectangular rule (ToRa, StSa, and AnSt) estimators 

and nonuniform interpolation rule (C3NS) estimator. Grid frequency= 2𝑀𝐻𝑧 and MC 

= 100 iterations. The plots show the variance of estimating AUC of the function 𝑓(𝑡) 
within [0,1] sec interval. 

 

Fig. 34.    Grid frequency = 2𝑀𝐻𝑧 and MC = 10 iteration. 
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Fig. 35.    Grid frequency = 2𝑀𝐻𝑧 and MC = 1 iteration. It is obvious that the non-

smoothness in the curves is because they are a result of only one realisation of the 

pseudorandom time instants of the sample points utilised by the estimators. 

As already known, a single or a few realisations of the pseudorandom sample points 

does not reflect the smooth asymptotic behaviour of any random estimator. This is 

exactly what can be deduced by comparing Figs. 33-35, as they all reflect the same 

example and configurations except for the number of MC iterations. The higher 

number of iterations is, the smoother the asymptotic behaviour of the estimator can be 

obtained. 

In the following set of figures, I demonstrate how the resolution of grid frequency can 

affect estimator’s statistical features. As long as the grid frequency is large enough to 

ensure that the integers 𝑛1and 𝑛2, in every subinterval, to have a big pool of 

pseudorandom integers to choose from, then the estimation is quite good, as the case 

of Fig. 33, and Figs. 36-37. Further decrease of grid frequency makes estimation errors 

to increase, as shown in Figs. 38-39. 
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Fig. 36.    Grid frequency resolution = 1𝑀𝐻𝑧 and MC = 100 iterations. 

 

Fig. 37.    Grid frequency resolution = 0.1𝑀𝐻𝑧 and MC = 100 iteration. 
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Fig. 38.    Grid frequency resolution = 1𝑘𝐻𝑧 and MC = 100 iteration. 

 

Fig. 39.    Grid frequency resolution = 500𝐻𝑧 and MC = 100 iteration. 
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Stratified-Sampling Estimator: 

Piecewise-Continuous Case 

5.1. Overview 

In Part I of this thesis, I proposed the StSa filter estimator and investigated its various 

statistical features for the case when the integrand function, 𝑓(𝑡, 𝜏), of the convolution 

operation is continuous, bounded and square-integrable, as well as its first two 

derivatives. The conditions on continuity of the zero-order derivative (ZOD), first-

order derivative (FOD), and second-order derivative (SOD) were necessary to apply 

the Taylor series expansion of the integrand function where needed. 

However, in real-life applications, the integrand’s ZOD, FOD and SOD are not always 

continuous. On the contrary, there are many examples where discontinuities in the 

input signal 𝑥(𝑡), the impulse response of the filter ℎ(𝑡), or both do exist, as well as 

their derivatives. In power electronics, for example, discontinuities appear on the 

rectified or clipped signals even if the original AC signal is smooth and bounded [13]. 

In communication, phase-shift keying (PSK), binary phase-shift keying (BPSK), 

digital data, and signals alike, all involve discontinuities in one or more orders of the 

derivative. In control systems, transient signals are normally unsmooth. In stock 

market, financial data frequently shows discontinuities, especially at serious global or 

local events, such as wars, political unrests, natural catastrophes, and pandemics (e.g. 

COVID-19 [86]). 

Regarding the impulse response of the utilised filter, discontinuities may present in 

the function(s) representing it or its (their) derivatives. Furthermore, several filter 

designs include window functions to smooth out the frequency response of the filter 

by decreasing the overshoot and ripples in the passband. Some common window 

functions are intrinsically discontinuous or piecewise-continuous, such as exponential, 

CHAPTER 5
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hamming, triangular, and rectangular windows. Theoretically, any suitable 

mathematical function can be used as a window function for some designed filter. In 

SDR, for example, providing flexible software-based filter designs widen the 

frequency band of operation and make more choices available for specific set of 

applications. Therefore, piecewise-continuous (or even discontinuous) filter impulse 

responses are likely to be designed.  

Such potential non-smoothness in the integrand function (i.e. in its constituents 𝑥(𝑡), 

ℎ(𝑡), or both) motivates us to study its impact on the statistical properties of the StSa 

filter estimator, where the integrand function, as a whole, cannot be expanded using 

Taylor series any more for it is no longer assumed to be continuous, as was the case 

in Chapter 3. 

Moreover, in Chapter 3, the StSa filter estimator was introduced in (3.9a-b) for the 

continuous integrand function case. It was then proved that this estimator is unbiased, 

consistent and converging at a rate of 𝑁−3, where 𝑁 is half the total number of sample 

points acquired using StSa random sampling scheme.  

In this chapter, on the other hand, which revises my published paper [89], I assess the 

decaying rate of the StSa estimator as a function of the number of sample points, 2𝑁, 

taking into account two main cases of non-smoothness of the integrand function. The 

main considered cases of 𝑓(𝑡, 𝜏), with respect to 𝜏, are: 

1. piecewise-continuous FOD; 

2. piecewise-continuous ZOD.  

The respective derivative in each single case is assumed to be bounded and has limited 

number of discontinuities. In the sequel, I prove that the StSa estimator uniformly 

converges to 𝑦(𝑡), i.e. the true value of the filter output signal, at a rate of 𝑁−3 in the 

first case (i.e. case number 1), and 𝑁−2 in the second case. 

The rest of this chapter is composed of four sections: in the next section (Section 5.2), 

I briefly revisit the StSa random sampling technique to make the subsequent analysis 

look intact and integrated. Section 5.3 introduces the StSa filter estimator for non-

smooth integrand functions, where a comprehensive study of the impact of potential 

discontinuities in the integrand function or its first two derivatives is analytically 
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presented. On the other hand, Section 5.4 summarises the rate of convergence of the 

ToRa estimator in the presence of discontinuities in FOD and ZOD, because it is 

directly related to proofs of theorems presented in this chapter. Finally, numerical 

examples and simulations are provided in Section 5.5 to validate the analytical 

findings and derivations. 

5.2. StSa Technique 

Fig. 40 shows how StSa sampling technique works. An analog input signal is 

randomly sampled using 2𝑁 sample points within an observation window [𝑡 − 𝑇, 𝑡], 

where 2𝑁 is also equal to the number of strata in the whole window. This means that 

every stratum contributes one sample point, only. The time instant of the 𝑗-th sample 

point, 𝜏𝑗 , is selected randomly from the stratum’s time span, 𝐴𝑗 = [𝑆𝑗−1, 𝑆𝑗). 

Strata lengths could be equal, or not. It depends on the relevant application and how 

much a priori knowledge is available. For the sake of this thesis, considering 

equidistant strata is more than enough to unveil the StSa estimator’s main statistical 

properties, and also it simplifies the analysis. However, this form of equal partitioning 

of strata needs not to be the optimum one for any given application. For example, if a 

sufficient information about the signal to be sampled is available, we may concentrate 

more strata near sharp rises and falls of the signal. For advanced partitioning of strata, 

reader is referred to [52]. In this thesis, I assume that there is no sufficient information 

about the sampled-to-be signal and, therefore, all strata have the same length, which 

is equal to 𝑇/2𝑁. 

 

Fig. 40.    StSa sampling technique, where the first sampling instant in the 𝑗-th 

stratum, 𝜏𝑗 , is chosen randomly from the stratum’s time interval [𝑆𝑗−1, 𝑆𝑗). The last 

D letter in the acronyms ZODD and FODD denotes discontinuity. 
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5.3. StSa Estimator Using Non-Smooth Functions 

Back to my filtering model (3.2) of Chapter 3, where an LTI system with ℎ(𝑡) as its 

CT impulse response has been used to filter out an input signal 𝑥(𝑡), within a time 

interval [𝑡 − 𝑇, 𝑡), to yield the output signal 𝑦(𝑡), I would like to borrow a few 

equations from that chapter for the sake of this analysis, as follows: 

𝑦(𝑡) = ∫ 𝑓(𝑡, 𝜏)𝑑𝜏
𝑡

𝑡−𝑇

, (5.1) 

where 𝑓(𝑡, 𝜏) was defined as 

𝑓(𝑡, 𝜏) ∶= 𝑥(𝜏)ℎ(𝑡 − 𝜏). (5.2) 

The equidistant-strata StSa filter estimator introduced in Chapter 3 was 

�̂�(𝑡) = ∆∑𝑓(𝑡, 𝜏𝑗)

2𝑁

𝑗=1

, (5.3) 

where 2𝑁 is the number of strata (= the total number of utilised sample points), ∆ is 

the stratum length (= 𝑇/2𝑁), and 𝜏𝑗  is the time-instant of the 𝑗-th stratum’s sample 

point. All 𝜏𝑗  time instants are i.i.d random variables with a uniform distribution PDF 

of 

𝑝𝑗(𝜏) = {
1/∆, 𝜏 ∈ 𝐴𝑗
0, elsewhere

. (5.4) 

As per the two discontinuity cases suggested above in section 5.1, where there are 

some finite and bounded discontinuities in the integrand function or its FOD, an 

illustration example of a generic 𝑗-th stratum for which 𝑓(𝑡, 𝜏) is not smooth is 

depicted in Fig. 41. In the sequel, it is assumed that in any given stratum, there is no 

more than one discontinuity in 𝑓(𝑡, 𝜏) or its FOD, 𝑓′(𝑡, 𝜏). However, multiple 

different-order derivative discontinuities are allowed per some specific strata if they 

occur exactly at the same time instant, as shown in Fig. 41, where both ZODD and 

FODD exist at 𝜏𝐷𝑗 .   



111 

The two subfunctions, 𝑓𝑗,𝐿(𝑡, 𝜏) and 𝑓𝑗,𝑅(𝑡, 𝜏) that appear in Fig. 41 represent the left- 

and right-hand portions of 𝑓(𝑡, 𝜏) in the 𝑗-th stratum, respectively. Both subfunctions 

are smooth and differentiable. Remark that the 𝛿-wide fictional extensions, depicted 

in dashed brown, are just extrapolations of both subfunctions for incremental periods 

of time to guarantee that the subfunctions are Taylor series expandable about the very 

time instant of the discontinuity, i.e. 𝜏𝐷𝑗 . 

 

 

Fig. 41.    𝑗-th stratum of a non-smooth 𝑓(𝑡, 𝜏), where a discontinuity in both FOD 

and ZOD occurs at a time instant 𝜏𝐷𝑗 . Two smooth subfunctions, 𝑓𝑗,𝐿(𝑡, 𝜏) and 

𝑓𝑗,𝑅(𝑡, 𝜏), are also shown. 

 

Mathematically, the two smooth subfunctions, 𝑓𝑗,𝐿(𝑡, 𝜏) and 𝑓𝑗,𝑅(𝑡, 𝜏), can be defined 

as 

𝑓𝑗,𝐿(𝑡, 𝜏) ∶= {
𝑓(𝑡, 𝜏), 𝜏 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑥𝐿2𝑅(𝑡, 𝜏), 𝜏𝐷𝑗 ≤ 𝜏 ≤ 𝜏𝐷𝑗 + 𝛿
, (5.5) 

𝑓𝑗,𝑅(𝑡, 𝜏) ∶= {
𝑓(𝑡, 𝜏), 𝜏 ∈ 𝐴𝑗,𝑅

𝑓𝑗,𝑥𝑅2𝐿(𝑡, 𝜏), 𝜏𝐷𝑗 − 𝛿 ≤ 𝜏 < 𝜏𝐷𝑗
, (5.6) 

where 𝑓𝑗,𝑥𝐿2𝑅(𝑡, 𝜏) and 𝑓𝑗,𝑥𝑅2𝐿(𝑡, 𝜏) are the fictional extrapolated extensions. 

Consequently, the integrand function, 𝑓(𝑡, 𝜏), in the whole observation interval can be 

rewritten in terms of both subfunctions as 
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𝑓(𝑡, 𝜏) =∑{
𝑓𝑗,𝐿(𝑡, 𝜏), 𝜏 ∈ 𝐴𝑗,𝐿
𝑓𝑗,𝑅(𝑡, 𝜏), 𝜏 ∈ 𝐴𝑗,𝑅

2𝑁

𝑗=1

. (5.7) 

The main impact of non-smooth integrand function (i.e. discontinuities present in its 

ZOD) on the statistical properties of the filter estimator is to slow down its 

convergence rate. Whereas, no change in the decaying rate of the estimator if the 

discontinuities are only in the FOD, provided they are finite and bounded. 

Let us define the amplitudes of the FOD and ZOD discontinuities (jumps), if any, in 

the 𝑗-th stratum as 𝐹1𝑗  and 𝐹0𝑗 respectively, 

𝐹1𝑗 ∶= 𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗). (5.8a) 

𝐹0𝑗 ∶= 𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗). (5.8b) 

5.3.1. Piecewise-Continuous FOD 

Assume that the FOD (= 𝑓′(𝑡, 𝜏)) of the integrand function has an 𝑀 bounded jumps, 

𝑀 is a positive integer, while both 𝑓′(𝑡, 𝜏) and 𝑓(𝑡, 𝜏) are smooth and continuous. 

Suppose the FOD discontinuities occur at time instants {𝜏𝐷𝑗}𝑗∈𝐼𝑀 , where 𝐼𝑀 =

{𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑀} is a set of indices for the 𝑀 strata with discontinuities. Accordingly, 

the following equations hold, 

𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) = 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) = 𝑓 (𝑡, 𝜏𝐷𝑗), (5.9a) 

𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗). (5.9b) 

Meaning, 𝐹0𝑗 = 0 and 𝐹1𝑗 ≠ 0. 

Now, I am going to verify the consistency of the StSa estimator, (5.3), in the 

discontinuous case. First, I need to find the variance of the estimator to check if it is 

converging to the true value of the filter output signal, 𝑦(𝑡), as the sample size 

increases to infinity. To this end, I formulate my 𝑗-th sub-estimator, 𝜙𝑗, as 
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𝜙𝑗 = 𝑓(𝑡, 𝜏𝑗)∆ (5.10a) 

𝜙𝑗 = ∆{
𝑓𝑗,𝐿(𝑡, 𝜏𝑗),𝜏𝑗 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑅(𝑡, 𝜏𝑗),𝜏𝑗 ∈ 𝐴𝑗,𝑅
 (5.10b) 

According to the law of the unconscious statistician (LOTUS), all subfunctions 

comprising 𝜙𝑗 have the same PDF (≡ 𝑝𝑗(𝜏)). Hence, the expected value of 𝜙𝑗 can be 

calculated as 

𝐸[𝜙𝑗] = ∫ 𝑝𝑗(𝜏)𝑓(𝑡, 𝜏)∆𝑑𝜏
∞

−∞

, (5.11a) 

= ∫ 𝑓(𝑡, 𝜏)𝑑𝜏
𝑆𝑗

𝑆𝑗−1

, (5.11b) 

= ∫ 𝑓𝑗,𝐿(𝑡, 𝜏)𝑑𝜏


𝐴𝑗,𝐿

+∫ 𝑓𝑗,𝑅(𝑡, 𝜏)𝑑𝜏


𝐴𝑗,𝑅

. (5.11c) 

I can now expand 𝑓𝑗,𝐿(𝑡, 𝜏) and 𝑓𝑗,𝑅(𝑡, 𝜏) about 𝜏 = 𝜏𝐷𝑗  using Taylor series since all of 

them are continuous and differentiable. Thus, the expanded form of (5.11c) is 

 

𝐸[𝜙𝑗] = ∫ (𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) + (𝜏 − 𝜏𝐷𝑗) 𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏 − 𝜏𝐷𝑗|)) 𝑑𝜏



𝐴𝑗,𝐿

+∫ (𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) + (𝜏 − 𝜏𝐷𝑗) 𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏 − 𝜏𝐷𝑗|)) 𝑑𝜏



𝐴𝑗,𝑅

, 

(5.12a) 

 

𝐸[𝜙𝑗] = 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) ∆ −
1

2
𝐾𝑗
2 (𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗)) ∆

2

+
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 + 𝑜(∆2). 

(5.12b) 

Equation (5.12b) is obtained by evaluating the integrals in (5.12a) and considering 

equations (5.9a-b). Also, under the equality (5.9a) and a specific time shift 𝑡, the point 

𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) can be interchangeably replaced by 𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) anytime within this 

section, if necessary, to make analysis easier. 
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The 𝑗-th error term, 𝑒𝑗 , can be calculated by subtracting (5.12b) from (5.10b), that is 

𝑒𝑗 = 𝜙𝑗 − 𝐸[𝜙𝑗], (5.13a) 

𝑒𝑗 = {
𝑓𝑗,𝐿(𝑡, 𝜏𝑗)∆ − 𝐸[𝜙𝑗],𝜏𝑗 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑅(𝑡, 𝜏𝑗)∆ − 𝐸[𝜙𝑗],𝜏𝑗 ∈ 𝐴𝑗,𝑅
= {

𝑒𝑗,𝐿 ,𝜏𝑗 ∈ 𝐴𝑗,𝐿
𝑒𝑗,𝑅 ,𝜏𝑗 ∈ 𝐴𝑗,𝑅

, (5.13b) 

where  

 

𝑒𝑗,𝐿  = (𝑓𝑗,𝐿(𝑡, 𝜏𝑗) − 𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗)) ∆ +
1

2
𝐾𝑗
2𝐹1𝑗∆

2

−
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 − 𝑜(∆2), 

(5.13c) 

 

𝑒𝑗,𝑅  = (𝑓𝑗,𝑅(𝑡, 𝜏𝑗) − 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗)) ∆ +
1

2
𝐾𝑗
2𝐹1𝑗∆

2

−
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 − 𝑜(∆2), 

(5.13d) 

The 𝑗-th sub-estimator’s variance, 𝕍[𝜙𝑗],  is equal to the expected value of the error-

squared in the 𝑗-th stratum. That is 

𝕍[𝜙𝑗] = ∫ 𝑝𝑗(𝜏)(𝑒𝑗)
2
𝑑𝜏

∞

−∞

, (5.14a) 

𝕍[𝜙𝑗] =
1

∆
∫ (𝑒𝑗,𝐿)

2
𝑑𝜏



𝐴𝑗,𝐿

+
1

∆
∫ (𝑒𝑗,𝑅)

2
𝑑𝜏



𝐴𝑗,𝑅

. (5.14b) 

I present the following theorem for the variance of the StSa filter estimator. For the 

proof, see Appendix A. 

 

Theorem 5.1. Assume that a total of 2𝑁 sample points are randomly acquired from a 

continuous, real-valued, and bounded integrand function 𝑓(𝑡, 𝜏) over an observation 

window, [𝑡 − 𝑇, 𝑇] using StSa technique. If the i  egra d fu c io ’s FOD, 𝑓′(𝑡, 𝜏), is 

piecewise-continuous with a finite number of bounded discontinuities, 𝑀. Then, 

1. the StSa filter estimator’s variance, 𝕍[�̂�(𝑡)], is  
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𝕍[�̂�(𝑡)] =
𝑇4

12(2𝑁)4
∑ (3𝛽𝑗

4𝐹1𝑗
2 + (𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

)



𝑗∈𝐼𝑀

+
𝑇3

12(2𝑁)3
∑ ((𝑓′(𝑡, 𝐶𝑗))

2

∆)

2𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(𝑁−3), 

(5.15a) 

where 𝛽𝑗 = 𝐾𝑗 − 1, and 

2. the StSa filter estimator converges uniformly at a rate of 𝑁−3 and satisfies 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)3 × 𝕍[�̂�(𝑡)]) =
𝑇3

12
∑ ∫ (𝑓′(𝑡, 𝜏))

2
𝑑𝜏

𝑇𝑘

𝑇𝑘−1

𝑀+1

𝑘=1

, (5.15b) 

where {𝑇𝑘}𝑘=1
𝑀  is a set of time instants at which 𝑓′(𝑡, 𝜏) has jump discontinuities, 

whereas 𝑇0 ∶= 𝑡 − 𝑇 and 𝑇𝑀+1 ∶= 𝑡. 

It is evident from (5.15b) of Theorem 5.1 that if 𝑀 = 0, i.e. the FOD has no 

discontinuities at all, then the estimator still uniformly converges at a speed of 𝑁−3, 

and (5.15b) will simplify to (5.16), which is identical to (3.30b) for the continuous 

case of the StSa filter estimator, as discussed in Chapter 3 of this thesis, 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)3 × 𝕍[�̂�(𝑡)]) =
𝑇3

12
∫ (𝑓′(𝑡, 𝜏))

2
𝑑𝜏

𝑡

𝑡−𝑇

. (5.16) 

The results of Theorem 5.1 emphasise that even if the integrand function is not smooth 

over the whole observation window, then the convergence rate is identical to the 

continuous case under the presumed conditions. This particular finding is stronger 

than that in [52] for the StSa Fourier transform (FT) estimator, which stipulated that 

smoothness of the integrand function is a necessary condition for the StSa FT 

estimator to work properly. 

5.3.2. Piecewise-Continuous ZOD  

I now consider the second case regarding the smoothness of the integrand function. If 

the integrand function itself is not smooth and has a limited and bounded 

discontinuities at 𝑀 time instants, {𝜏𝐷𝑗}𝑗∈𝐼𝑀 , then 
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𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗), (5.17a) 

𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗). (5.17b) 

Similar analysis to the previous sub-section is conducted here, taking into account the 

jump discontinuities given in (5.17a-b). To cut long story short, I conclude the final 

results of the analysis in the following theorem, Theorem 5.2. Appendix B presents 

the proof of this theorem. 

 

Theorem 5.2. Assume there are 𝑀 bounded ZOD discontinuities in 𝑓(𝑡, 𝜏) within an 

observation interval [𝑡 − 𝑇, 𝑇], where 𝑀 is a finite integer. Suppose that the set of 

integers 𝐼𝑀 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑀 }  represents the strata indices where such 

discontinuities happen. Then,  

1. the variance of StSa filter estimator utilising 2𝑁 sample points is  

 

𝕍[�̂�(𝑡)] = ∑ (𝛽𝑗
2𝐹0𝑗

2∆2 − 𝛽𝑗
3𝐹0𝑗 𝐹1𝑗 ∆

3 +
1

4
𝛽𝑗
4𝐹1𝑗

2∆4


𝑗∈𝐼𝑀

+
1

12
(𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

∆4) + ∑ (
1

12
(𝑓′(𝑡, 𝐶𝑗))

2

∆4)

2𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(∆3), 

(5.18a) 

where 𝛽𝑗 = (𝐾𝑗 − 1), and 

2. the StSa filter estimator converges uniformly at an exact rate of 𝑁−2, and satisfies 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)2 × 𝕍[�̂�(𝑡)]) = 𝑇2 ∑ 𝛽𝑗
2𝐹0𝑗

2



𝑗∈𝐼𝑀

. (5.18b) 

The results of Theorem 5.2 emphasise my findings in the previous sub-section. 

Namely, if {𝐹0𝑗 = 0}𝑗∈𝐼𝑀
, that is, the integrand function’s ZOD discontinuities do not 

exist at all, then (5.18a) will exactly reduce to (5.15a). Consequently, the StSa 

estimator will then be converging at 𝑁−3 rate. 
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5.4. ToRa Estimator and the Presence of Discontinuities 

Based on (3.23a) and (A.3), I can confirm that if there are FOD discontinuities then 

ToRa filter estimator still converges at a speed of 𝑁−1. More interestingly, if the 

integrand function itself is also piecewise-continuous, i.e. there is a finite number of 

bounded ZOD discontinuities, then it follows from (3.23a) and (B.6) that the ToRa 

estimator will still be converging at the same rate, 𝑁−1. 

5.5. Numerical Results 

To validate my analytical derivations and findings, two sets of simulation examples 

have been conducted. First, simple abstract functions are considered, where either 

there are no discontinuities at all (i.e. infinitely differentiable functions) or there are a 

finite number of bounded discontinuities in the FOD. I estimate the integrals of the 

abstract functions using my StSa estimator, then compare the results with the true 

integral values. In the second set of numerical examples, however, the StSa estimator 

is tested on true filter designs and smooth and non-smooth input signals. 

5.5.1. Abstract Functions and the StSa Estimator 

I have randomly sampled the following functions using StSa technique within an 

observation window [0,0.5) sec, 

𝑓1(𝑡) = 2.5 𝑠𝑖𝑛(18𝜋𝑡) − 3.8 𝑐𝑜𝑠(42𝜋𝑡), (5.19a) 

𝑓2(𝑡) = 𝑓1(𝑡) − 18 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(24𝜋(𝑡 − 0.1825),0.5), (5.19b) 

𝑓3(𝑡) = 𝑓1(𝑡) − 18 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(60𝜋(𝑡 − 0.262),1), (5.19c) 

where 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(𝑔(𝑡),𝑚) is the built-in sawtooth function in the MATLAB. if 𝑚 

is equal to either zero or one, then the 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻 is identical to 𝑔(𝑡) − ⌊𝑔(𝑡)⌋, 

where the ⌊. ⌋ sign denotes the standard floor function. Whereas, setting 𝑚 between 

zero and one renders the 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻 function as the triangle wave function, where 

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑔(𝑡)) =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛(𝑔(𝑡))).  
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Note that 𝑓1(𝑡) is smooth with no jumps at any order of the derivative. The FOD of 

𝑓2(𝑡) is piecewise-continuous with twelve jump discontinuities. And finally, 𝑓3(𝑡) is 

piecewise-continuous and it has fifteen ZOD jumps. Figs. 42-45 depict the functions’ 

plots together with their respective StSa estimators’ variances. 

To guarantee that the depicted performance is not associated with a specific realisation 

of the StSa random sampling settings, I have conducted 100 Monte Carlo simulations 

(except for Fig. 43 which comprises one MC iteration only, and it is included here 

intentionally for comparison purposes) for each single function. Thus, the 

demonstrated figures are reliable and reflects the true behaviour of the StSa estimator.  

Remark that the asymptotic convergence rates of the StSa estimator, as shown in Figs. 

42-45, are 𝑁−3, 𝑁−3, 𝑁−3, and 𝑁−2 for the respective abstract functions 𝑓1(𝑡) and 

MC=100, 𝑓1(𝑡) and MC=1, 𝑓2(𝑡), and 𝑓3(𝑡). This precisely confirms the analytical 

results established in the previous two sub-sections. 

 

 

Fig. 42.    The abstract function 𝑓1(𝑡) is smooth, and there are no FOD 

discontinuities at all. Remark the uniform convergence rate of StSa estimator, 

which is equal to 𝑁−3. MC=100 iterations have been carried out independently. 
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Fig. 43.    The abstract function 𝑓1(𝑡) is smooth, and there are no FOD 

discontinuities at all. The uniform convergence rate of StSa estimator is 𝑁−3. Only 

one MC iteration is used. 

 

Fig. 44.    The FOD of the abstract function 𝑓2(𝑡) is piecewise-continuous. Indeed, 

there are 12 jumps in the FOD, but the function itself is continuous. Hence, the StSa 

estimator converges at is 𝑁−3 rate. 
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Fig. 45.    Here, the function 𝑓3(𝑡) is non-smooth, and so is its FOD. 15 ZOD jumps 

occur in the function itself. Consequently, the StSa estimator is converging at a 

slower speed of 𝑁−2. 

5.5.2. StSa Estimation of FIR Filter Output  

Three analog input signals, 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡), need to be filtered out using a 

10𝑘𝐻𝑧 bandwidth LBF filter. The first signal is smooth and infinitely differentiable. 

Whereas, the other two or their derivatives are non-smooth. More precisely, 𝑥2(𝑡) has 

a piecewise-continuous FOD, and 𝑥3(𝑡) has a piecewise-continuous ZOD. 

The utilised LPF is similar to the analog filter designed in Chapter 3 (boxcar filter 

smoothed out by a Hanning window function). However, this time the filter has a 

cutoff frequency of 10𝑘𝐻𝑧, as shown in Fig. 46 below with the dashed blue line. 

The output signals, 𝑦1(𝑡), 𝑦2(𝑡), and 𝑦3(𝑡), are estimated using a StSa filter estimator. 

The estimates, �̂�1(𝑡), �̂�2(𝑡), and �̂�3(𝑡) are then used again to estimate the FT of the 

output signals, �̂�1(𝑓), �̂�2(𝑓), and �̂�3(𝑓) respectively. This is a two-fold DASP 

processing. The behaviour of the estimator is examined for each input signal using 

different average random sampling frequencies. To observe the difference between 

traditional DSP approach and StSa DASP approach, Fig. 46 also shows the FT of 
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uniformly sampled versions of the input signals with a sampling frequency (𝐹𝑠 =

131.072𝑘𝐻𝑧) fulfilling the Nyquist rate, and Fig. 47 depicts the filtered output signals 

using uniform sampling approach and the same sampling rate as 𝐹𝑠. 

𝑥1(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡), 

(5.20a) 

𝑥2(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡) + 2 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(1280𝜋(𝑡 − 0.007),0.5), 

(5.20b) 

𝑥3(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡) + 2 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(1280𝜋(𝑡 − 0.007), 1), 

(5.20c) 

where 𝐹1 = 2.048𝑘𝐻𝑧, 𝐹2 = 8.192𝑘𝐻𝑧, 𝐹3 = 25.4𝑘𝐻𝑧, 𝐹4 = 2.5𝑘𝐻𝑧, 𝐹5 = 33𝑘𝐻𝑧, 

𝐹6 = 42𝑘𝐻𝑧, 𝐹7 = 61.9𝑘𝐻𝑧. 

Assuming no analog antialiasing pre-filtering is used, the traditional DSP filter is 

working fine using uniform sampling rates at least matching the required Nyquist rate. 

Whereas the case is different if lower sampling rate is considered. Fig. 48 shows how 

alias components appear in the spectra of uniformly sampled input signals at a rate of 

only 19.2𝑘𝐻𝑧. However, no aliasing exists when the DASP StSa filter estimator is 

utilised instead of DSP’s with this sub-Nyquist average sampling rate, as illustrated in 

Fig. 49. 
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Fig. 46.    Spectra of input signals (solid black) and the LPF (dashed blue) sampled 

uniformly at 𝐹𝑠 = 131.072𝑘𝐻𝑧. 𝑥1(𝑡) is continuous and smooth, 𝑥2(𝑡) is 

piecewise-continuous in FOD, and 𝑥3(𝑡) is piecewise-continuous in ZOD. The 

bandwidth of the LPF is 10𝑘𝐻𝑧. 

 

Fig. 47.    Spectra of filtered output signals for the uniformly sampled input signals 

at 𝐹𝑠 = 131.072𝑘𝐻𝑧. These uniform output spectra serve as references for 

corresponding subsequent figures.  Ref 1 = |𝑌1(𝑓)| is the reference spectrum for 

smooth signals. Ref 2 = |𝑌2(𝑓)| is the reference spectrum for signals with 

piecewise-continuous FOD, and Ref 3 = |𝑌3(𝑓)| is the reference spectrum for 

signals with piecewise-continuous ZOD. 
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Fig. 48.    Spectra of filtered output signals for the uniformly sampled input signals 

at 𝐹𝑠 = 19.2𝑘𝐻𝑧. No antialiasing prefiltering is used. 

 

Fig. 49.    Estimated spectra of output signals using DASP StSa filter estimator and 

an average random sampling frequency of 𝐴𝑣. 𝐹𝑟 = 19.2𝑘𝐻𝑧. 100 independent MC 

iterations are carried out to average out the results. Remark how aliasing has been 

mitigated. 
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Fig. 50.    Estimated spectra of output signals using DASP StSa filter estimator and 

an average random sampling frequency of 𝐴𝑣. 𝐹𝑟 = 131.072𝑘𝐻𝑧. MC =100 

independent iterations. The quantification metric TE denotes the total error between 

these spectra and the corresponding reference spectra shown in Fig. 47. 

 

If the utilised average random frequency increases to match the Nyquist rate, then the 

results further enhance, as shown in Fig. 50. Nothing is perfect except Allah, the MC 

averaging for the StSa estimator plays a vital role in providing a level of guarantee 

that the depicted plots are not due to a single realisation of the random variables 

comprising the estimator. Nonetheless, the statistical errors accompanying 

randomisation can sometimes be large, and this is actually the main weakness of 

DASP in general, as indicated elsewhere in this thesis, despite there are a few methods 

to reduce these errors, where MC averaging is just one of them. Another method is 

SECOEX discussed in [13, pp. 401-403], which depends on sequential component 

extraction of frequency pins with high magnitude until reaching a preassigned 

threshold. This iterative method normally consumes more time to extract all frequency 

components especially if the spectrum is not sparse enough. 

To spot the drawback of sampling randomisation, Fig. 51 and Fig. 52 show the spectra 

of StSa estimator when only one MC iteration is considered using average sampling 

frequencies of 𝐴𝑣. 𝐹𝑟 = 19.2𝑘𝐻𝑧 and 𝐴𝑣. 𝐹𝑟 = 131.072𝑘𝐻𝑧 respectively. 
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Fig. 51.    Spectra of estimated filter output signals using a single realisation 

(MC=1) and an average random sampling frequency 𝐴𝑣. 𝐹𝑠 = 19.2𝑘𝐻𝑧. 

 

Fig. 52.    Estimated spectra of filter output signals using a single realisation 

(MC=1) and an average random sampling frequency 𝐴𝑣. 𝐹𝑠 = 131.072𝑘𝐻𝑧. 
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Antithetical Stratified Estimator: 

Piecewise-Continuous Case 

6.1. Overview 

In Chapter 3, it was proved that the AnSt filter estimator is unbiased, consistent, and 

its rate of uniform convergence is equal to 𝑁−5. All these findings were based on the 

assumptions that the integrand function, 𝑓(𝑡, 𝜏), and its first two derivatives are 

continuous and bounded. The assumptions were necessary for the analytical derivation 

of various statistical properties of the estimator since applying Taylor series expansion 

of the integrand function at any stratum requires that the function under consideration 

is continuous (i.e. smooth ZOD), and so are its FOD and SOD. 

On the other hand, in many situations, the integrand function and/or its first two 

derivatives might not be smooth. This chapter investigates the impact of such non-

smoothness of 𝑓(𝑡, 𝜏) on the statistical features of the AnSt filter estimator. Remark 

that since 𝑓(𝑡, 𝜏), 𝑓′(𝑡, 𝜏), or 𝑓′′(𝑡, 𝜏) are now assumed to be piecewise-continuous, 

they cannot be directly expanded using Taylor series, and so, the analysis that has been 

carried out in Chapter 3 needs to be re-done again for the non-smoothness case. 

This chapter revises my paper, [90], on this regard. Basically, I examine the AnSt filter 

estimator’s variance and asymptotic behaviour in three main cases characterising the 

integrand function: 

1. piecewise-continuous SOD; 

2. piecewise-continuous FOD; 

3. piecewise-continuous ZOD.  
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In any of the three cases above, the number of jump discontinuities are assumed to be 

finite and bounded. 

In the next section, I quickly demonstrate how the AnSt sampling scheme works, as 

this is vital for addressing subsequent sections. In Section 6.3, the AnSt filter estimator 

in the case of discontinuities is introduced and its statistical characteristics are verified. 

Lastly, in Section 6.4, I validate my analytical findings and results by carrying out 

some simulation examples.  

6.2. Revisiting AnSt Random Sampling Technique 

In AnSt random sampling scheme with 𝑁 strata, 2𝑁 signal sample points are collected 

within an observation window [𝑡 − 𝑇, 𝑡]. Two sample points per stratum are collected, 

I call them the antithetical sample pair (ASP). 

Considering the 𝑗-th stratum, the time instant of the first point, 𝜏𝑗 , is randomly selected 

from the stratum’s interval, 𝐴𝑗 = [𝑆𝑗−1, 𝑆𝑗), while the time instant of the other point 

in the ASP is precisely the antithetical counterpart of the first one. Consequently, if 𝐶𝑗  

is the centre of the 𝑗-th stratum, then the time instants of the 𝑗-th ASP would be 

{𝜏𝑗 , 𝜏𝑗
𝑎} = {𝜏𝑗 , 2𝐶𝑗 − 𝜏𝑗}, as shown in Fig. 53. The strata lengths are assumed to be 

equal in this chapter, as well. Meaning that the length of any stratum is 𝑇/𝑁. 

 

 

Fig. 53.    AnSt sampling scheme example, where the first sampling instant in the 

𝑗-th stratum, 𝜏𝑗 , is randomly selected from the stratum’s time interval. Whereas the 

second sampling instant, 𝜏𝑗
𝑎, is its antithetical counterpart. Note that 𝜏𝑗  needs not to 

be less than 𝜏𝑗
𝑎 . 
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6.3. Non-Smoothness and the AnSt Estimator 

The AnSt filter estimator presented in Chapter 3 was 

�̂�(𝑡) =
∆

2
∑(𝑓(𝑡, 𝜏𝑗) + 𝑓(𝑡, 𝜏𝑗

𝑎))

𝑁

𝑗=1

, (6.1) 

where ∆ is the stratum length (= 𝑇/𝑁), and 𝜏𝑗  and 𝜏𝑗
𝑎 are the ASP in the 𝑗-th stratum. 

All random variables {𝜏𝑗}𝑗=1
𝑁

 are i.i.d and having a PDF  

𝑝𝑗(𝜏) = {
1/∆, 𝜏 ∈ 𝐴𝑗
0, elsewhere

. (6.2) 

with 𝐴𝑗 = [𝑆𝑗−1, 𝑆𝑗) is the subinterval associated with the 𝑗-th stratum. Note that 𝑝𝑗(𝜏) 

is also the PDF of 𝜏𝑗
𝑎, as it is directly correlated with 𝜏𝑗 . 

Fig. 54 depicts an exemplar 𝑗-th stratum that involves a discontinuity at time instant 

𝜏𝐷𝑗  in both integrand function’s FOD and SOD. In the analysis to follow, it is assumed 

that only one discontinuity would be present within any given stratum, except for the 

case when multiple different-order-derivative discontinuities occur at the same time 

instant, i.e. there might be FOD and SOD, or ZOD, FOD, and SOD at a given 𝜏𝐷𝑗 .  

Similar to the approach in the previous chapter, I introduce two subfunctions, 𝑓𝑗,𝐿(𝑡, 𝜏) 

and 𝑓𝑗,𝑅(𝑡, 𝜏), as they appear in Fig. 54. Both subfunctions are continuous and 

differentiable, and therefore are Taylor series expandable about any time instant 

within their time span, including the discontinuity point, 𝜏𝐷𝑗 . 

The two subfunctions, 𝑓𝑗,𝐿(𝑡, 𝜏) and 𝑓𝑗,𝑅(𝑡, 𝜏), are defined in (5.5) and (5.6) 

respectively. This make it plausible to define the integrand function, 𝑓(𝑡, 𝜏), across 

the whole observation window as  

𝑓(𝑡, 𝜏) =∑{
𝑓𝑗,𝐿(𝑡, 𝜏), 𝜏 ∈ 𝐴𝑗,𝐿
𝑓𝑗,𝑅(𝑡, 𝜏), 𝜏 ∈ 𝐴𝑗,𝑅

𝑁

𝑗=1

. (6.3) 
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Fig. 54.    An exemplar of a 𝑗-th stratum with a discontinuity in both FOD and SOD 

of 𝑓(𝑡, 𝜏). 𝑓𝑗,𝐿(𝑡, 𝜏) and 𝑓𝑗,𝑅(𝑡, 𝜏) subfunctions and their respective first two 

derivatives are smooth and differentiable. 

 

The impact of non-smooth integrand function, with discontinuities in its ZOD, FOD, 

or SOD, is to be investigated in this section. So, let us begin with the following 

definitions for the magnitude of the jumps in different order of the derivative of 𝑓(𝑡, 𝜏) 

which are going to be used frequently in my analytical derivation below, 

𝐹2𝑗 ∶= 𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗), (6.4a) 

𝐹1𝑗 ∶= 𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗), (6.4b) 

𝐹0𝑗 ∶= 𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗). (6.4c) 

6.3.1. Non-smooth SOD 

If 𝑓′′(𝑡, 𝜏) involves 𝑀 bounded discontinuities whereas both 𝑓′(𝑡, 𝜏) and 𝑓(𝑡, 𝜏) do 

not have any discontinuity across the observation window, and if the discontinuities 

appear at time instants {𝜏𝐷𝑗}𝑗=1
𝑀 , then  

𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) = 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) = 𝑓 (𝑡, 𝜏𝐷𝑗), (6.5a) 
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𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) = 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗) = 𝑓
′ (𝑡, 𝜏𝐷𝑗), (6.5b) 

𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗). (6.5c) 

Equivalently, I have 𝐹0𝑗 = 𝐹1𝑗 = 0, but 𝐹2𝑗 ≠ 0.  

To validate the consistency of the AnSt estimator, (6.1), for non-smooth SOD of the 

integrand function, it is essential to examine the statistical behaviour of the estimator 

as the sample size increases towards infinity. To check this behaviour, I start by 

defining the 𝑗-th sub-estimator, 𝜙𝑗, as 

𝜙𝑗 ∶=
1

2
(𝑓(𝑡, 𝜏𝑗) + 𝑓(𝑡, 𝜏𝑗

𝑎)) ∆ (6.6a) 

𝜙𝑗 =
∆

2
{
𝑓𝑗,𝐿(𝑡, 𝜏𝑗),𝜏𝑗 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑅(𝑡, 𝜏𝑗),𝜏𝑗 ∈ 𝐴𝑗,𝑅
} +

∆

2
{
𝑓𝑗,𝐿(𝑡, 𝜏𝑗

𝑎),𝜏𝑗
𝑎 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑅(𝑡, 𝜏𝑗
𝑎),𝜏𝑗

𝑎 ∈ 𝐴𝑗,𝑅
} (6.6b) 

𝜙𝑗 =
∆

2

{
 
 
 

 
 
 
𝑓𝑗,𝐿(𝑡, 𝜏𝑗) + 𝑓𝑗,𝐿(𝑡, 𝜏𝑗

𝑎),𝜏𝑗 , 𝜏𝑗
𝑎 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝐿(𝑡, 𝜏𝑗) + 𝑓𝑗,𝑅(𝑡, 𝜏𝑗
𝑎),𝜏𝑗 ∈ 𝐴𝑗,𝐿, 𝜏𝑗

𝑎 ∈ 𝐴𝑗,𝑅

𝑓𝑗,𝑅(𝑡, 𝜏𝑗) + 𝑓𝑗,𝐿(𝑡, 𝜏𝑗
𝑎),𝜏𝑗 ∈ 𝐴𝑗,𝑅 , 𝜏𝑗

𝑎 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑅(𝑡, 𝜏𝑗) + 𝑓𝑗,𝑅(𝑡, 𝜏𝑗
𝑎),𝜏𝑗 , 𝜏𝑗

𝑎 ∈ 𝐴𝑗,𝑅}
 
 
 

 
 
 

 (6.6c) 

Now, I calculate the expected value of 𝜙𝑗. Thus 

 

𝐸[𝜙𝑗] =
1

2
∫ 𝑝𝑗(𝜏)(𝑓(𝑡, 𝜏) + 𝑓(𝑡, 𝜏

𝑎))∆𝑑𝜏
∞

−∞

, (6.7a) 

 

=
1

2
∫ 𝑓(𝑡, 𝜏)𝑑𝜏
𝑆𝑗

𝑆𝑗−1

+
1

2
∫ 𝑓(𝑡, 𝜏𝑎)𝑑𝜏
𝑆𝑗

𝑆𝑗−1

, (6.7b) 
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=
1

2
∫ 𝑓𝑗,𝐿(𝑡, 𝜏)𝑑𝜏


𝐴𝑗,𝐿

+
1

2
∫ 𝑓𝑗,𝑅(𝑡, 𝜏)𝑑𝜏


𝐴𝑗,𝑅

+
1

2
∫ 𝑓𝑗,𝐿(𝑡, 𝜏

𝑎)𝑑𝜏𝑎


𝐴𝑗,𝐿

+
1

2
∫ 𝑓𝑗,𝑅(𝑡, 𝜏

𝑎)𝑑𝜏𝑎


𝐴𝑗,𝑅

. 

(6.7c) 

Since the subfunctions 𝑓𝑗,𝐿(𝑡, 𝜏), 𝑓𝑗,𝑅(𝑡, 𝜏), 𝑓𝑗,𝐿(𝑡, 𝜏
𝑎) and 𝑓𝑗,𝑅(𝑡, 𝜏

𝑎) are all assumed 

to be smooth and differentiable, I can expand them about 𝜏 = 𝜏𝐷𝑗  using Taylor. Thus, 

(6.7c) can be rewritten as 

 

𝐸[𝜙𝑗] =
1

2
∫ (𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) + (𝜏 − 𝜏𝐷𝑗) 𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗)


𝐴𝑗,𝐿

+
1

2
(𝜏 − 𝜏𝐷𝑗)

2

𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏 − 𝜏𝐷𝑗|

2
)) 𝑑𝜏

+
1

2
∫ (𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) + (𝜏 − 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)


𝐴𝑗,𝑅

+
1

2
(𝜏 − 𝜏𝐷𝑗)

2

𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏 − 𝜏𝐷𝑗|

2
))𝑑𝜏

+
1

2
∫ (𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) + (𝜏

𝑎 − 𝜏𝐷𝑗) 𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗)



𝐴𝑗,𝐿

+
1

2
(𝜏𝑎 − 𝜏𝐷𝑗)

2

𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏

𝑎 − 𝜏𝐷𝑗|
2
))𝑑𝜏𝑎

+
1

2
∫ (𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) + (𝜏

𝑎 − 𝜏𝐷𝑗) 𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗)



𝐴𝑗,𝑅

+
1

2
(𝜏𝑎 − 𝜏𝐷𝑗)

2

𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏

𝑎 − 𝜏𝐷𝑗|
2
)) 𝑑𝜏𝑎 , 

(6.8) 

By calculating the integrals in (6.8) while considering (6.5a-c), we get 

 

𝐸[𝜙𝑗] =
1

6
(𝐾𝑗

3𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) − (𝐾𝑗

3 − 3𝐾𝑗
2 + 3𝐾𝑗 − 1)𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗)) ∆
3

+
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 + 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗)∆ + 𝑜(∆

3). 

(6.9) 

All constituents of (6.9) are real-valued, either by their nature or by assumption. 

Hence, the error of estimation related to the 𝑗-th stratum, 𝑒𝑗 , can be found by 

subtracting (6.9) from (6.6b), so 
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𝑒𝑗  = 𝜙𝑗 − 𝐸[𝜙𝑗], (6.10a) 

 

𝑒𝑗  =
∆

2
{
𝑓𝑗,𝐿(𝑡, 𝜏𝑗),𝜏𝑗 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑅(𝑡, 𝜏𝑗),𝜏𝑗 ∈ 𝐴𝑗,𝑅
} +

∆

2
{
𝑓𝑗,𝐿(𝑡, 𝜏𝑗

𝑎),𝜏𝑗
𝑎 ∈ 𝐴𝑗,𝐿

𝑓𝑗,𝑅(𝑡, 𝜏𝑗
𝑎),𝜏𝑗

𝑎 ∈ 𝐴𝑗,𝑅
}

− (
1

6
(𝐾𝑗

3𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) − 𝑐1𝑗𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗)) ∆
3 + 𝑐2𝑗𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗) ∆
2

+ 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗)∆) + 𝑜(∆
3), 

(6.10b) 

where 𝑐1𝑗  and 𝑐2𝑗  are 𝑐1𝑗 = 𝐾𝑗
3 − 3𝐾𝑗

2 + 3𝐾𝑗 − 1 and 𝑐2𝑗 = (1 − 2𝐾𝑗)/2. 

The error term in (6.10b) may have different values according to the time-instant of 

the discontinuity instant (= 𝜏𝐷𝑗) with respect to the time-instants of the 𝑗-th stratum’s 

ASP, i.e. 𝜏𝑗  and 𝜏𝑗
𝑎. Apart from the centre and end points of the stratum’s interval, 𝑒𝑗  

has four possible results, as indicated by (6.6c). Nevertheless, they are almost alike. 

Their differences don’t affect the convergence rate of the estimator as all of them 

characterise identical degree polynomial of ∆ (the critical variable to determine the 

speed of estimator convergence.) The core differences between the error polynomials 

are in their constant coefficients. To avoid repetition, only one case will be considered 

here, namely, when the discontinuity happens anywhere between the two time-instants 

of the ASP, that is when 𝜏𝑗 < 𝜏𝐷𝑗 < 𝜏𝑗
𝑎, i.e. 𝜏𝑗 ∈ 𝐴𝑗,𝐿, 𝜏𝑗

𝑎 ∈ 𝐴𝑗,𝑅, so 

 

𝑒𝑗  =
1

4
(𝑓𝑗,𝐿

′′ (𝑡, 𝜏𝐷𝑗) + 𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗)) (𝜏𝑗 − 𝜏𝐷𝑗)

2

∆

− 𝑐2𝑗 𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗) (𝜏𝑗 − 𝜏𝐷𝑗)∆

2

+
1

12
(𝑐3𝑗𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗) − 2𝐾𝑗
3𝑓𝑗,𝐿

′′ (𝑡, 𝜏𝐷𝑗)) ∆
3 + 𝑜(∆3), 

(6.11) 

where 𝑐3𝑗 = 1 − 6𝐾𝑗 + 6𝐾𝑗
2 + 2𝐾𝑗

3. 

By calculating the second moment of the error term in the 𝑗-th stratum, 𝑒𝑗 , I obtain the 

value of the variance associated with the 𝑗-th sub-estimator, 𝕍[𝜙𝑗], 

𝕍[𝜙𝑗] = ∫ 𝑝𝑗(𝜏)(𝑒𝑗)
2
𝑑𝜏

∞

−∞

. (6.12) 
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The following theorem can now be established for the whole variance of the AnSt 

filter estimator. Note that the proof of this theorem is provided in Appendix C. 

 

Theorem 6.1. Assume that the integrand function, 𝑓(𝑡, 𝜏), and its FOD, 𝑓′(𝑡, 𝜏), are 

continuous, real-valued, and bounded over an observation interval, [𝑡 − 𝑇, 𝑇], 

whereas the SOD, 𝑓′′(𝑡, 𝜏), is piecewise-continuous and involves a limited number of 

bounded discontinuities, 𝑀, within the whole observation window. Then, 

3. the variance of the AnSt filter estimator, 𝕍[�̂�(𝑡)], using 2𝑁 sample points is 

 

𝕍[�̂�(𝑡)] =
𝑇6

720(N)6
∑ (𝑐4𝑗𝐹2𝑗

2 + 𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗))



𝑗∈𝐼𝑀

+
𝑇5

720(N)5
∑ ((𝑓′′(𝑡, 𝐶𝑗))

2

∆)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(𝑁−5), 

(6.13a) 

where 𝐼𝑀 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑀} is a set of indices for the 𝑀 strata with discontinuities 

and 𝑐4𝑗 = 9 − 45𝐾𝑗 + 90𝐾𝑗
2 − 110𝐾𝑗

3 + 105𝐾𝑗
4 − 60𝐾𝑗

5 + 20𝐾𝑗
6, and 

4. the uniform convergence rate of the AnSt filter estimator is exactly 𝑁−5 and 

satisfies 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)5 × 𝕍[�̂�(𝑡)]) =
2𝑇5

45
∑ ∫ (𝑓′′(𝑡, 𝜏))

2
𝑑𝜏

𝑇𝑘

𝑇𝑘−1

𝑀+1

𝑘=1

, (6.13b) 

where {𝑇𝑘}𝑘=1
𝑀  is a set of time instants at which 𝑓′′(𝑡, 𝜏) has jump discontinuities, 

whereas 𝑇0 ∶= 𝑡 − 𝑇 and 𝑇𝑀+1 ∶= 𝑡. 

 

If 𝑀 = 0, which means 𝑓′′(𝑡, 𝜏) is also smooth and has no discontinuities at all, then 

it is obvious from (6.13b) that the estimator is still converging at a speed of 𝑁−5, and 

(6.13b) will simplify to (6.14), which is equal to (3.30b), the convergence value of the 

AnSt filter estimator in the continuous case, of discussed in Chapter 3, 
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𝑙𝑖𝑚
𝑁→∞

((2𝑁)5 × 𝕍[�̂�(𝑡)]) =
2𝑇5

45
∫ (𝑓′′(𝑡, 𝜏))

2
𝑑𝜏

𝑡

t−T

. (6.14) 

According to the results of Theorem 6.1, the AnSt estimator converges at the same 

rate regardless of the smoothness or non-smoothness of the integrand function’s SOD. 

This very conclusion is stronger than the AnSt FT estimator discussed in [53], which 

basically emphasised that the integrand function should be smooth for the analytical 

derivation of the AnSt FT estimator’s statistical features to be valid. 

6.3.2. Non-smooth FOD 

If the FOD of the integrand function is piecewise-continuous (and implicitly the SOD, 

as well) but the ZOD (= the integrand function itself) is continuous, and if the 

discontinuities in the FOD and SOD occur exactly at some 𝜏𝐷𝑗  time instants, then we 

have 

𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) = 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) = 𝑓 (𝑡, 𝜏𝐷𝑗), (6.15a) 

𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗), (6.15b) 

𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗). (6.15c) 

The variance of the AnSt filter estimator in this case is adversely affected by such non-

smoothness of the integrand function. This is clearly seen in the new variance and 

convergence rate of the estimator. Theorem 6.2 concludes the changes and provides 

new mathematical expressions for these two statistical features of the AnSt estimator. 

For the proof, reader is referred to Appendix D. 

 

Theorem 6.2. Assume that the integrand function, 𝑓(𝑡, 𝜏), is smooth and real-valued 

over an observation interval [𝑡 − 𝑇, 𝑡), whereas its first two derivatives are piecewise-

continuous and bounded. Assume also that the number of discontinuities in both the 

FOD and SOD is finite and is equal to 𝑀.Then, 

1. the variance of the AnSt filter estimator, 𝕍[�̂�(𝑡)], using 2𝑁 sample points is 
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𝕍[�̂�(𝑡)] =
∆4

12
∑ (𝑐5𝑗𝐹1𝑗

2)



𝑗∈𝐼𝑀

+
∆5

720
∑ ((𝑓′′(𝑡, 𝐶𝑗))

2

∆)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(∆5), (6.16a) 

where 𝑐5𝑗 = 1 − 3𝐾𝑗 + 6𝐾𝑗
2 − 6𝐾𝑗

3 + 3𝐾𝑗
4, and 

2. the uniform convergence rate is exactly 𝑁−4 and satisfies 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)4 × 𝕍[�̂�(𝑡)]) =
4𝑇4

3
∑ 𝑐5𝑗 𝐹1𝑗

2



𝑗∈𝐼𝑀

, (6.16b) 

Remark that the ∆ high-power terms of the variance in (6.16a) can be ignored 

compared to ∆−4 as ∆→ 0. Therefore, additional simplification of (6.16a) can be 

obtained as 

𝕍[�̂�(𝑡)] =
𝑇4

12𝑁4
∑(𝑐5𝑗 𝐹1𝑗

2)



𝑗∈𝐼𝑀

+ 𝑜(𝑁−4). (6.17) 

Moreover, it is rational to get a faster convergence rate of 𝑁−5 for the variance in 

(6.16a) when all 𝐹1𝑗  values are equal to zero, i.e. smooth FOD, which matches the 

speed of convergence of AnSt estimator in the previous sub-section. 

6.3.3. Piecewise-Continuous ZOD  

If the integrand function itself is non-smooth and has a limited and bounded 

discontinuities at 𝑀 time instants, {𝜏𝐷𝑗}𝑗=1
𝑀 , then 

𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗), (6.18a) 

𝑓𝑗,𝐿
′ (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗), (6.18b) 

𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) ≠ 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗). (6.18c) 

Considering the new ZOD jump discontinuities equations as given in (6.18a-c), 

analogous investigation to the previous sub-section is carried out here. To avoid 
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repetition, I conclude the final findings of the analysis in Theorem 6.3. Appendix E 

presents the proof of this theorem. 

 

Theorem 6.3. Assume there are 𝑀 bounded ZOD discontinuities in 𝑓(𝑡, 𝜏) within an 

observation interval, where 𝑀 is a finite integer. Suppose that the set of integers 𝐼𝑀 =

{𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑀 }  represents the strata indices where such discontinuities happen. 

Then,  

1. the variance of AnSt filter estimator utilising 2𝑁 sample points is  

 

𝕍[�̂�(𝑡)] = ∑ (𝑐2𝑗
2𝐹0𝑗

2∆2 +
1

2
𝑐2𝑗 𝑐7𝑗 𝐹1𝑗𝐹0𝑗∆

3



𝑗∈𝐼𝑀

+
1

12
(𝑐5𝑗 𝐹1𝑗

2 + 4𝑐2𝑗
2𝑐8𝑗 𝐹2𝑗𝐹0𝑗)∆

4 +
1

48
𝑐6𝑗 𝐹2𝑗𝐹1𝑗∆

5

+
1

720
𝑐4𝑗 𝐹2𝑗

2∆6 +
1

720
𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗) ∆
6)

+ ∑ (
1

720
(𝑓′′(𝑡, 𝐶𝑗))

2

∆6)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(∆5). 

(6.19a) 

where 𝑐7𝑗 = 1 − 2𝐾𝑗 + 2𝐾𝑗
2 and 𝑐8𝑗 = 1 − 𝐾𝑗 + 𝐾𝑗

2, and 

 

2. the AnSt filter estimator converges uniformly at an exact rate of 𝑁−2 and satisfies 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)2 × 𝕍[�̂�(𝑡)]) = 16𝑇2 ∑(𝑐2𝑗
2𝐹0𝑗

2)



𝑗∈𝐼𝑀

, (6.19b) 

The results of Theorem 6.3 emphasise my findings in the previous sub-sections. 

Namely, if {𝐹0𝑗 = 0}𝑗∈𝐼𝑀
, that is, the integrand function’s ZOD discontinuities don’t 

exist at all, then (6.19a) will exactly reduce to (6.16a). Therefore, the AnSt estimator 

will be converging precisely at 𝑁−4 rate. Whereas, if {𝐹0𝑗 = 𝐹1𝑗 = 0}𝑗∈𝐼𝑀
, then 

(6.19a) shows that the convergence rate of AnSt estimator will be 𝑁−5. 
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6.4. Numerical and Simulation Examples 

AnSt estimation of non-smooth functions is examined in the next sub-section, where 

theoretical abstract functions are numerically integrated to calculate AUC within a 

definite interval. The samples of the integrated functions are randomly selected 

according to AnSt sampling technique. Then, a comparison is held between the 

estimated AUC and the actual AUC based on the definite integral of the function of 

interest. Variance versus number of samples are then plotted to demonstrate the 

uniform convergence rate of the AnSt estimator and when this asymptotic behaviour 

starts to happen. 

Almost similar examples are carried out again, but this time the piecewise-continuous 

functions are set as input signals to a BPF. The output of the filter is estimated using 

AnSt approach and then compared to a uniform version of the output signal when the 

Nyquist rate is respected. 

In both sets of examples, the simulation results, as will be seen shortly, emphasise on 

my analytical findings. 

6.4.1. AnSt Estimation of Abstract Functions 

The following set of functions have been randomly sampled based on the AnSt 

sampling technique within an observation window [0,0.4) sec, 

𝑓1(𝑡) = −3.5 𝑠𝑖𝑛(42𝜋𝑡) + 2.9 𝑐𝑜𝑠(35𝜋𝑡), (6.20a) 

𝑓2(𝑡) = 𝑓1(𝑡) + 60 × (𝑡 − 0.1) × |𝑡 − 0.1| − 90 × (𝑡 − 0.27) × |𝑡 − 0.27|

+ 180 × (𝑡 − 0.35) × |𝑡 − 0.35|, 
(6.20b) 

𝑓3(𝑡) = −9𝑐𝑜𝑠(6.3𝜋𝑡) + 20 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(30𝜋(𝑡 − 0.1),0.4), (6.20c) 

𝑓4(𝑡) = −9𝑐𝑜𝑠(63𝜋𝑡) + 20 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(45𝜋(𝑡 − 0.21), 1), (6.20d) 

where 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(𝑔(𝑡),𝑚) is the MATLAB built-in sawtooth function, with more 

details are given in the sub-section 5.4.1 of previous chapter. Note that the smoothness 

status of the above four functions are given in Table V below.  
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TABLE V: SMOOTHNESS STATUS OF INTEGRATED FUNCTIONS 

Function Smoothness Status Discontinuities 

𝑓1(𝑡) ZOD, FOD, and SOD are all smooth None 

𝑓2(𝑡) ZOD and FOD are smooth, but SOD is piecewise-

continuous. 

3 SODDs 

𝑓3(𝑡) ZOD is smooth, but FOD and SOD are piecewise-

continuous. 

12 FODDs 

𝑓4(𝑡) ZOD, FOD, and SOD are all non-smooth 9 ZODDs 

  

After estimating the numerical definite integrals of the given functions using AnSt 

random sampling scheme and calculating the mean-squared error (MSE = variance 

since the estimator is unbiased), I get the results illustrated in Figs. 55-58, where 100 

independent Monte Carlo simulations is conducted per each figure to guarantee it is 

not a result of only one specific realisation of the randomly sampled function. 

 

 

Fig. 55.    The abstract function 𝑓1(𝑡) is smooth, and there are no ZOD, FOD, and 

SOD discontinuities at all. The uniform convergence rate of AnSt estimator is 𝑁−5. 

                             

 

  

 

 

  
  

 

  
 

  
 

  
 

  
 

                 

  
   

  
   

  
  

  
 

  
 

 
 

 

    

   
  

 

   
  

 

   
  

 

   
  

 

   
  

 



139 

 

Fig. 56.    The abstract function 𝑓2(𝑡) and its FOD are continuous, whereas the 

SOD is piecewise-continuous with three jumps at 𝑡 = 0.1, 0.27,and0.35 sec. The 

AnSt estimator is still converging at 𝑁−5 rate. 

 

Fig. 57.    The FOD of the abstract function 𝑓3(𝑡) is piecewise-continuous. Indeed, 

there are twelve jumps in the FOD, but the function itself is continuous. Hence, the 

AnSt estimator convergence rate is 𝑁−4. 
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Fig. 58.    Here, the function 𝑓4(𝑡) is non-smooth, and so are its FOD and SOD. 

Nine ZOD jumps occur in the function itself. Consequently, the AnSt estimator is 

converging at its slowest speed, i.e. 𝑁−2. 

 

As can be clearly seen, AnSt estimator uniform convergence rates are 𝑁−5, 𝑁−5, 𝑁−4, 

and 𝑁−2 for the respective abstract functions 𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡), and 𝑓4(𝑡). These rates 

are exactly what I expect as per my analytical expressions devised in the previous 

three sub-sections. 

6.4.2. FIR AnSt Filter Estimation 

Similar to the BPF estimation example in the sub-section 3.10.2, but this time the input 

analog signal, 𝑥(𝑡), has been changed to include non-smooth functions. For each case 

of non-smoothness discussed above (i.e. piecewise-continuous SOD, piecewise-

continuous FOD, piecewise-continuous ZOD), I examine the behaviour of the AnSt 

filter estimator using different average random sampling frequencies. Therefore, I 

consider the following three input signals (𝑥2(𝑡), 𝑥3(𝑡), and 𝑥4(𝑡)) for the three non-

smoothness cases respectively, together with a smooth signal, 𝑥1(𝑡), just for 

comparison purposes, 
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𝑥1(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡), 

(6.21a) 

𝑥1(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡) + (𝑡 − 0.002) × |𝑡 − 0.002|

− 1.5 × (𝑡 − 0.005) × |𝑡 − 0.005| + 3 × (𝑡

− 0.013) × |𝑡 − 0.013|, 

(6.21b) 

𝑥2(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡) + 2 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(1280𝜋(𝑡 − 0.007),0.5), 

(6.21c) 

𝑥3(𝑡) = 𝑠𝑖𝑛(2𝜋𝐹1𝑡) + 3 × 𝑠𝑖𝑛(2𝜋𝐹2𝑡) + 2 × 𝑠𝑖𝑛(2𝜋𝐹3𝑡)

+ 1.5 × 𝑇 × 𝐹4 × 𝑠𝑖𝑛𝑐(2𝐹4𝑡) × 𝑐𝑜𝑠(2𝜋𝐹5𝑡) − 1.5 × 𝑠𝑖𝑛(2𝜋𝐹6𝑡)

+ 2.5 × 𝑠𝑖𝑛(2𝜋𝐹7𝑡) + 2 × 𝑆𝐴𝑊𝑇𝑂𝑂𝑇𝐻(1280𝜋(𝑡 − 0.007), 1), 

(6.21d) 

where 𝐹1 = 2.048𝑘𝐻𝑧, 𝐹2 = 8.192𝑘𝐻𝑧, 𝐹3 = 25.4𝑘𝐻𝑧, 𝐹4 = 2.5𝑘𝐻𝑧, 𝐹5 = 33𝑘𝐻𝑧, 

𝐹6 = 42𝑘𝐻𝑧, 𝐹7 = 61.9𝑘𝐻𝑧. 

The bandwidth of the BPF is 22𝑘𝐻𝑧 and its centre frequency is 33𝑘𝐻𝑧. Fig. 59 depicts 

the spectra of input signals X1(𝑓), …, X4(𝑓) uniformly sampled at the requested 

Nyquist rate (i.e. 𝐹𝑠 = 131.072𝑘𝐻𝑧). The frequency response of the BPF is also 

included in dashed blue line. The spectra of the corresponding filter output signals 

using uniform sampling are shown in Fig. 60. This is included here to be compared 

with the randomly estimated one to follow. 

Under the assumption of no antialiasing prefiltering is available, that conventional 

DSP filtering works well only if the utilised uniform sampling rate is not less than the 

Nyquist rate, which is equal to 131.072𝑘𝐻𝑧 in this example. Whereas no such 

restriction on the sampling rate is imposed if random sampling approaches are used, 

instead. Fig. 61 shows how alias components appear in the spectra of uniformly 

sampled input signals at a rate of only 89.6𝑘𝐻𝑧. However, no aliasing exists when the 
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DASP AnSt filter estimator is utilised instead of DSP’s, even with this sub-Nyquist 

average sampling rate, as illustrated in Fig. 62. While Fig. 63 shows an enhanced 

estimate of filter output since the utilised average random sampling rate is now 

identical to the Nyquist rate. 

On the other hand, the statistical errors yielded as a result of randomisation can 

sometimes be significant. To spot this drawback, I have conducted two further 

simulation examples using AnSt filter estimator and considering only one MC 

iteration. In the first example, I used an average sampling frequency of 𝐴𝑣. 𝐹𝑟 =

89.6𝑘𝐻𝑧, and in the second one, the average sampling rate was 𝐴𝑣. 𝐹𝑟 =

131.072𝑘𝐻𝑧. Fig. 64 and Fig. 65 depicts the spectra of the estimated output signals 

for the two examples, respectively. 

 

 

Fig. 59.    Spectra of input signals (solid black) and the BPF (dashed blue) sampled 

uniformly at 𝐹𝑠 = 131.072𝑘𝐻𝑧. 𝑥1(𝑡) is continuous and smooth, 𝑥2(𝑡) is 

piecewise-continuous in SOD, 𝑥3(𝑡) is piecewise-continuous in FOD, and 𝑥4(𝑡) is 

piecewise-continuous in ZOD. The bandwidth of the BPF is 22𝑘𝐻𝑧 cantered at 

33𝑘𝐻𝑧, i.e. spanning the frequency range from 22𝑘𝐻𝑧 to 44𝑘𝐻𝑧. 
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Fig. 60.    Spectra of output signals for the uniformly sampled input signals with a 

sampling rate matching the Nyquist rate, i.e. 𝐹𝑠 = 131.072𝑘𝐻𝑧. Ref 1 to Ref 4 are 

the reference spectra for the subsequent corresponding estimated spectra. 

 

 

Fig. 61.    Spectra of filtered output signals for the uniformly sampled input signals. 

In this figure, the utilised sampling rate is 𝐹𝑠 = 89.6𝑘𝐻𝑧. No antialiasing analog 

prefiltering is used, therefore aliases appear when the sampling rate is less than the 

Nyquist rate. 
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Fig. 62.    Estimated spectra of output signals using DASP AnSt filter estimator and 

an average random sampling frequency of 𝐴𝑣. 𝐹𝑟 = 89.6𝑘𝐻𝑧. 100 independent MC 

iterations are carried out. Remark that aliasing components are wiped out. 

 

Fig. 63.    Estimated spectra of output signals using DASP AnSt filter estimator and 

an average random sampling frequency of 𝐴𝑣. 𝐹𝑟 = 131.072𝑘𝐻𝑧. 100 independent 

MC iterations are conducted to average out the results. 
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Fig. 64.    Spectra of estimated filter output signals using a single realisation 

(MC=1) and an average random sampling frequency 𝐴𝑣. 𝐹𝑠 = 89.6𝑘𝐻𝑧. 

 

Fig. 65.    Estimated spectra of filter output signals using a single realisation 

(MC=1) and an average random sampling frequency 𝐴𝑣. 𝐹𝑠 = 131.072𝑘𝐻𝑧. 

 

 

  



146 

Conclusions and Future Work 

In this chapter, I outline the main conclusions of the thesis as per each chapter from 

Chapter 3 to Chapter 6. Some conclusions in a specific chapter may look like other 

chapter(s). But the ground truth is that each conclusion listed below is genuinely 

related to the respective chapter, and it was either introduced, devised, found, verified, 

or concluded within that very chapter. Moreover, I include some research areas and 

extensions to be addressed in any future work. 

7.1. Conclusions 

Up to the author knowledge, the conclusions summarised in the following list reflect 

the original contributions to knowledge that were made by this thesis: 

 

Chapter 3 

Three random sampling techniques (ToRa, StSa, and AnSt) were introduced and 

investigated as filter estimators in digital alias-free signal processing environment 

under the assumption that the input analog signal and/or filter impulse response are 

smooth continuous-time functions, and so are their derivatives. Furthermore, a 

generalised form filter estimator that encompasses the three estimators together was 

also established to make analysis concise and help developers/designers to implement 

such estimators in one general inclusive code. 

The filter estimators were examined in terms of their main statistical characteristics, 

where they were all found to be unbiased and consistent, and their variances converge 

uniformly after certain numbers of sample points, depending mainly on the type of 

estimator. I also found that the uniform convergence rates vary according to which 

estimator is being considered. The fastest filter estimator is AnSt which converges at 

CHAPTER 7
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a rate of 𝑁−5, where 2𝑁 is the total number of sample points. The second one is StSa 

estimator with a converging speed of 𝑁−3, however, in general, it starts to converge 

at a smaller number of sample points than the AnSt estimator does. The slowest 

estimator of all is ToRa with only 𝑁−1 decaying rate, but this rate is constant across 

any number of sample points. Meaning, it is the earliest estimator of the three to 

establish such a converging speed. 

ToRa filter estimator was also proposed in this chapter in such a way that have never 

been addressed before in literature. I dealt with ToRa as if it is a special form of 

stratification-based sampling technique with only one stratum but 2𝑁 Monte Carlo 

iterations. This enabled us to devise a new variance expression for ToRa estimator, 

which is novel and original to the literature knowledge, even for other applications of 

ToRa estimator, such as Fourier transform. 

Additionally, as analytically and numerically demonstrated in Chapter 3, we have seen 

how using suitable random sampling and filtering techniques helped in estimating 

filter output signal, even by using average random sampling rates less than the 

required Nyquist rate. This important advantage of the proposed random filter 

estimators cannot be achieved with the conventional DSP approaches. When the 

spectral support of the analog input signal is sparse and not fully known, and when 

utilising antialiasing analog pre-filtering is not viable, for any reason, then random 

filtering approaches are more cost-effective solutions than equivalent uniform ones. 

The final conclusion in this chapter is that I proposed a mechanism for obtaining 

synchronised random sample points for both the input analog signal and the filter 

impulse response by using software defined analog filter representation, where the 

impulse response is formulated as an analog continuous-time function that could be 

instantly sampled together with the input signal and, therefore, no need for large bulk 

of memory to save high order filter coefficients. 

 

Chapter 4 

An oversampled on-grid filter impulse response is proposed in this chapter. The high-

resolution impulse response is to be saved on a lookup table in the sampling circuit. 
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This arrangement is suitable for implementation on hardware testbeds, such as 

FPGAs, ASICs, or even DSP microcontrollers. The key purpose of oversampling on 

a uniform grid is to make use of pseudorandom sampling of both input signal and 

impulse response simultaneously to implement filter output estimation using my three 

random estimators, ToRa, StSa, and AnSt. 

Furthermore, a new non-equidistant interpolation rule, composite 3-nonuniform 

sampling (C3NS), has been proposed. This rule relies on Lagrange interpolation 

polynomials to estimate an integrand/summand function AUC within a given time 

interval. It was used along with StSa approach to provide the fastest estimator of all 

considered ones that mainly rely on the simple Rectangular rule.  

All proposed on-grid filter estimators are again proved to be unbiased and consistent. 

Though, their rates of uniform convergence are not identical. The C3NS estimator is 

the fastest to converge, after the asymptotic behaviour is established, with a rate of 

𝑁−7. The other Rectangular rule-based on-grid estimators, ToRa, StSa, and AnSt, 

have the same convergence speeds as in the previous chapter, i.e. 𝑁−1, 𝑁−3, and 𝑁−5 

respectively. This is an interesting finding, since it widens the applications of filtering 

estimation, not only by using mixed hardware and software defined analog filtering 

(based on computers) solutions, but also standalone hardware ones (microcontrollers, 

FPGAs, ASICs, etc). 

 

Chapter 5 

I investigated the effect of non-smooth input signals and/or impulse response of a 

given FIR filter (which both comprise the integrand function of the filtering 

convolution operation) on the statistical features of estimated filter output signals 

using StSa random sampling technique. The StSa filter estimator is an unbiassed 

estimator, as proven in Chapter 3, and this is also applicable for the non-smoothness 

case. In Chapter 5, I verified its consistency, and devised exact mathematical 

expressions for its variance in two main cases regarding smoothness of the integrand 

function: piecewise-continuous first-order derivative; and piecewise-continuous zero-

order derivative (i.e. the integrand function itself is non-smooth). 
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I found that despite the discontinuities that might present in the input signal/impulse 

response and/or their derivatives, the StSa filter estimator is still converging 

uniformly, after a certain number of sample points, to the true filter output at a rate 

depending on the order of the derivative where the discontinuities happen. If they 

appear on the first-order derivative, then the decaying rate is proportional to the 

negative third-power of the number of utilised input sample points as long as the 

number of discontinuities is finite, and they are bounded in magnitude. This 

converging rate slows down to the negative second-power of the sample sequence size 

if the discontinuities occur in the zero-order derivative. This means that the slowest 

converging speed of StSa filter estimator happens when either the analog input signal 

or filter impulse response, or both, is (are) piecewise-continuous, i.e. discontinuous at 

some limited number of time-instants. 

I also conclude that it is possible to speed up the convergence rate of StSa filter 

estimator if, somehow, I was able to detect and eliminate jump discontinuities mainly 

from the input signal, since the impulse response of the filter can be managed and 

controlled locally. This very point is also added to the future works suggested to 

extend this research. 

 

Chapter 6 

In this chapter, I investigated the AnSt filter estimator performance and asymptotic 

behaviour in the non-smooth integrand function and/or its first two derivatives case. 

As an unbiassed estimator, AnSt was also proven to be consistent but with different 

converging rates according to the nonsmoothness status of the input signal/impulse 

response.  

My mathematical derivations showed that estimation errors increase largely if the 

discontinuities appear in the input signal/impulse response functions themselves. If 

this is the case, then the convergence rate of the AnSt filter estimator is proportional 

to 𝑁−2 where 2𝑁 is the random sample sequence size. 

The convergence rate of the estimator is greatly enhanced if the input signal/impulse 

response functions are continuous, but their first-order derivative(s) is (are) piecewise-
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continuous. A faster converging rate of 𝑁−4 is achieved in this case, outperforming 

the previous case.  

The last case addressed in this chapter was when the second-order derivative of the 

integrand function (input signal/impulse response) is piecewise-continuous involving 

limited number of jump discontinuities. The asymptotic behaviour of the AnSt filter 

estimator had not been affected with such non-smoothness, where the convergence 

rate was found to be equal to the case of continuous and smooth integrand function 

and its derivatives. That is, the rate of convergence is still be equal to 𝑁−5 as 

analytically validated. 

Moreover, the demonstrated examples for AnSt filter estimator showed that despite 

the non-smoothness of the input signal, it was possible to carry out the filtering 

estimation with reduced average random sampling frequencies compared to the 

required Nyquist rate for the case of uniform filtering approaches. However, this 

advantage is not for free. Statistical errors appeared on the estimated outputs, 

especially when a single realisation of the randomly sampled input signal was 

considered. This could greatly be tackled with by means of Monte Carlo averaging, as 

also illustrated in this chapter. 

7.2. Future Work  

The work in this thesis could be extended to address the following areas/topics: 

• Additive White Gaussian Noise (AWGN). It is possible to advance this research 

and verify the performance of the filter estimators under the presence of AWGN. 

As expected, this would increase estimation errors in general (i.e. the absolute 

MSE of the estimator), however, the exact new convergence rates of the estimators 

and their unbiasedness and consistency need to be investigated again.  

In this particular area of potential extension of this research, I would build on top 

of Pawlak et al’s works [30], [65] for sampling and reconstruction of noisy signals 

based on equidistributed sequences or quasi-Monte Carlo algorithms and 

techniques. 
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• Non-equidistant Stratification. Although StSa and AnSt filter estimators 

discussed in this thesis is based on equal partitioning of strata, it is by no means 

restricted to this type of stratification setup. Indeed, both estimators can work with 

even enhanced performance if sufficient information about the input signal, or part 

of it, is available in advance. Thereafter, non-equidistant partitioning could be 

better to consider. If this is the case, then all devised expressions and decaying 

rates mentioned above will still be valid. However, the main difference is that the 

asymptotic convergence of the StSa estimator will be established earlier than 

equidistant stratification. Meaning, the absolute value of the variance will be 

smaller for the same number of sample points. 

• Infinite Impulse Response (IIR) Filters. One may also investigate the case of 

IIR filters instead of FIR’s. I addressed FIR filters mainly for their stability, 

causality and phase-linearity, which make filter estimation less prone to errors on 

top of the statistical errors due to sampling irregularities. However, lower-order 

IIR filters can be designed to achieve almost similar frequency response to higher-

order FIR filters. If the drawbacks of IIR filters for a specific application can be 

tolerated, then considering them in filtering estimation would be more cost-

effective than FIRs, especially in the case of on-grid pseudorandomisation. 

• Random Quantisation. I addressed some irregular quantisation techniques in 

Chapter 2 which was dedicated to literature review. Nonetheless, I did not 

investigate any filter estimator, either in continuous or discontinuous cases, based 

on nonuniform/random quantisation. Advancing this research in this track would 

be plausible. 

• Detection and Elimination of Discontinuities. In the second part of this thesis, I 

discussed filtering estimation in the presence of finite and bounded discontinuities 

in the integrand function or its first two derivatives. Though, I did not address 

techniques or algorithms to potentially detect and/or eliminate such discontinuities 

from the input signal to speed up the convergence rate of estimation. It is worth it 

to dig deeply into this area to find possible opportunities. 

• Hardware Implementation. Although I have implemented many filter examples 

throughout this thesis by using software (i.e. MATLAB simulations), which is also 
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easy to be converted to any software-based solution (SDR, CR, etc.), I think one 

could try to implement filter estimators considered above by using hardware 

circuits. As we have pointed out earlier, FPGA, ASIC or any other microcontroller-

based circuit is a capable device to host such filtering estimation applications.
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Appendices 

Appendix A: Proof of Theorem 5.1 

From (5.13c-d) and (5.14b), we get 

 

𝕍[𝜙𝑗] =
1

∆
∫ ((𝑓𝑗,𝐿(𝑡, 𝜏) − 𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗)) ∆ +

1

2
𝐾𝑗
2𝐹1𝑗∆

2
𝜏𝐷𝑗

𝑆𝑗−1

−
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 − 𝑜(∆2))

2

𝑑𝜏

+
1

∆
∫ ((𝑓𝑗,𝑅(𝑡, 𝜏) − 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗)) ∆ +

1

2
𝐾𝑗
2𝐹1𝑗∆

2
𝑆𝑗

𝜏𝐷𝑗

−
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 − 𝑜(∆2))

2

𝑑𝜏. 

(A.1) 

 By expanding 𝑓𝑗,𝐿(𝑡, 𝜏) and 𝑓𝑗,𝑅(𝑡, 𝜏) about 𝜏𝐷𝑗  using Taylor series and noticing that 

the absolute time instant of potential discontinuity is 𝜏𝐷𝑗 = 𝑆𝑗−1 + 𝐾𝑗∆= 𝑆𝑗 −

(1 − 𝐾𝑗)∆, then (A.1) becomes 

 

𝕍[𝜙𝑗] =
1

∆
∫ (((𝜏 − 𝜏𝐷𝑗) 𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏 − 𝜏𝐷𝑗|)) ∆
𝑆𝑗−1+𝐾𝑗∆

𝑆𝑗−1

+
1

2
𝐾𝑗
2𝐹1𝑗∆

2 −
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 − 𝑜(∆2))

2

𝑑𝜏

+
1

∆
∫ (((𝜏 − 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗) + 𝑜 (|𝜏 − 𝜏𝐷𝑗|)) ∆
𝑆𝑗

𝑆𝑗−(1−𝐾𝑗)∆

+
1

2
𝐾𝑗
2𝐹1𝑗∆

2 −
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2 − 𝑜(∆2))

2

𝑑𝜏. 

(A.2) 

By calculating the definite integral in (A.2), we obtain 
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𝕍[𝜙𝑗] =
1

4
𝛽𝑗
4𝐹1𝑗

2∆4 +
1

12
(𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

∆4 + 𝑜(∆4),where𝛽𝑗 = 𝐾𝑗 − 1. (A.3) 

(A.3) represents the part of variance associated with the sub-estimator of the 𝑗-th 

stratum in which there is a discontinuity in the integrand function’s FOD at time 

instant 𝜏𝐷𝑗 . For other strata with no discontinuities at all, we have from Chapter 3 for 

the continuous integrand function and its derivatives case that the sub-variance 

associated with any 𝑗-th stratum is equal to 
1

12
(𝑓′(𝐶𝑗))

2

∆4 + 𝑜(∆4), cf. (3.20b), 

where 𝐶𝑗  is the centre of the stratum.  To find the total value of the variance, we need 

to sum up the sub-variance values of 𝑀 sub-estimators with discontinuities and 2𝑁 −

𝑀 sub-estimators with no discontinuities.  Thus, 

 

𝕍[�̂�(𝑡)] =∑𝕍[𝜙𝑗]

2𝑁

𝑗=1

= ∑ (
1

4
𝛽𝑗
4𝐹1𝑗

2∆4 +
1

12
(𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

∆4 + 𝑜(∆4))



𝑗∈𝐼𝑀

+ ∑ (
1

12
(𝑓′(𝑡, 𝐶𝑗))

2

∆4 + 𝑜(∆4))

2𝑁

𝑗=1
𝑗∉𝐼𝑀

, 

(A.4) 

 

𝕍[�̂�(𝑡)] =
𝑇4

12(2𝑁)4
∑ (3𝛽𝑗

4𝐹1𝑗
2 + (𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

)



𝑗∈𝐼𝑀

+
𝑇3

12(2𝑁)3
∑ ((𝑓′(𝑡, 𝐶𝑗))

2

∆)

2𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(𝑁−3), 

(A.5) 

where 𝐼𝑀 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑀} is a finite set of indices of size 𝑀 for the strata with FOD 

discontinuities.  

Remark that when 𝑀 = 0, i.e. 𝐼𝑀 is an empty set, then there are no discontinuities at 

all and (A.5) simplifies to 
𝑇3

12(2𝑁)3
∑ ((𝑓′(𝑡, 𝐶𝑗))

2

∆)2𝑁
𝑗=1 + 𝑜(𝑁−3)  which is the same 

as the variance of StSa estimator in the case of smooth integrand function.  
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By using Riemann integration of the variance in (A.5) to find the convergence rate of 

the StSa filter estimator, we get 

 
𝑙𝑖𝑚
𝑁→∞

((2𝑁)3

× 𝕍[�̂�(𝑡)]) 

= 𝑙𝑖𝑚
𝑁→∞

(

  
 (2𝑁)3

×

(

 
 

𝑇4

12(2𝑁)4
∑ (3𝛽𝑗

4𝐹1𝑗
2 + (𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

)



𝑗∈𝐼𝑀

+
𝑇3

12(2𝑁)3
∑ ((𝑓′(𝑡, 𝐶𝑗))

2

∆)

2𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(𝑁−3)

)

 
 

)

  
 . 

(A.6) 

The first summation in (A.6) drops out since it is finite and approaches to zero at a 

faster rate than the other summation. Moreover, since there are only 𝑀 discontinuities 

in the FOD of the integrand function within the whole observation interval, this means 

that 𝑓′(𝑡, 𝜏) is a piecewise-continuous function having exactly 𝑀 + 1 integrable 

pieces. Thus, 

 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)5

× 𝕍[�̂�(𝑡)]) 

=
𝑇3

12
∑ ∫ (𝑓′(𝑡, 𝜏))

2
𝑑𝜏

𝑇𝑘

𝑇𝑘−1

𝑀+1

𝑘=1

. (A.7) 

This completes the proof of Theorem 5.1.  ∎ 

 

Appendix B: Proof of Theorem 5.2 

Evaluating the integrals in (5.12a) under the assumptions, (5.17a-b), regarding non-

smoothness of the ZOD of the integrand function, I obtain this new expression for the 

expected value of the 𝑗-th sub-estimator, 
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𝐸[𝜙𝑗] = 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) ∆ + 𝐾𝑗𝐹0𝑗∆ + 𝑐2𝑗𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗) ∆

2 −
1

2
𝐾𝑗
2𝐹1𝑗 ∆

2

+ 𝑜(∆2). 

(B.1) 

We compute 𝑒𝑗 = 𝜙𝑗 − 𝐸[𝜙𝑗] = {
𝑒𝑗,𝐿 ,𝜏𝑗 ∈ 𝐴𝑗,𝐿
𝑒𝑗,𝑅 ,𝜏𝑗 ∈ 𝐴𝑗,𝑅

 by subtracting (B.1) from (5.10b). 

Then we get 

 

𝑒𝑗,𝐿  = (𝑓𝑗,𝐿(𝑡, 𝜏𝑗) − 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗)) ∆ − 𝐾𝑗𝐹0𝑗∆ − 𝑐2𝑗𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗) ∆

2

+
1

2
𝐾𝑗
2𝐹1𝑗 ∆

2 − 𝑜(∆2) 

(B.2) 

 

𝑒𝑗,𝑅  = (𝑓𝑗,𝑅(𝑡, 𝜏𝑗) − 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗)) ∆ − 𝐾𝑗𝐹0𝑗∆ − 𝑐2𝑗𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗) ∆

2

+
1

2
𝐾𝑗
2𝐹1𝑗 ∆

2 − 𝑜(∆2) 

(B.3) 

The variance value associated with the 𝑗-th sub-estimator is equal to the second 

moment of the error term 𝑒𝑗 . That is, 𝕍[𝜙𝑗] = ∫ 𝑝𝑗(𝜏)(𝑒𝑗)
2
𝑑𝜏

∞

−∞
=

1

∆
∫ (𝑒𝑗)

2
𝑑𝜏

𝑆𝑗
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. 

Hence,  
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 (B.4) 

 

𝕍[𝜙𝑗] =
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 (B.5) 

 

𝕍[𝜙𝑗] = 𝛽𝑗
2𝐹0𝑗

2∆2 − 𝛽𝑗
3𝐹0𝑗 𝐹1𝑗 ∆
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4
𝛽𝑗
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1
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(𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

∆4

+ 𝑜(∆4) 

(B.6) 

The variance of the 𝑗-th sub-estimator found in (B.6) is for those strata which involve 

ZOD discontinuity exactly at time instant 𝜏𝐷𝑗 . Whereas for other strata which do not 

include any discontinuity, I again apply the 𝑗-th sub-estimator in (3.20b) as 𝑓(𝑡, 𝜏) is 

continuous within those strata. To find the whole variance of the StSa filter estimator 
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in the case of non-smooth integrand function, I add up all smooth and non-smooth 

variance values of the 2𝑁 sub-estimators. Therefore, 
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1
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+ 𝑜(∆3), 

(B.7) 

Note that 𝑀 × 𝑜(∆4) is still equal to 𝑜(∆4) since 𝑀 is finite and does not depend on 

𝑁, hence it drops out in the presence of 𝑜(∆3). Thus, 

 

𝕍[�̂�(𝑡)] = ∑ (𝛽𝑗
2𝐹0𝑗

2∆2 − 𝛽𝑗
3𝐹0𝑗 𝐹1𝑗 ∆

3 +
1

4
𝛽𝑗
4𝐹1𝑗

2∆4


𝑗∈𝐼𝑀

+
1

12
(𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗))
2

∆4) + ∑ (
1

12
(𝑓′(𝑡, 𝐶𝑗))

2

∆4)

2𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(∆3). 

(B.8) 

However, the dominant term in (B.8) as 𝑁 → ∞ is the first term, 𝛽𝑗
2𝐹0𝑗

2∆2, as it 

involves the least-power term of ∆=
𝑇

2𝑁
. So, the variance of the estimator (B.8) 

simplifies to 

 

𝕍[�̂�(𝑡)] = ∑ (𝛽𝑗
2𝐹0𝑗

2∆2)



𝑗∈𝐼𝑀

+ 𝑜(∆2) =
𝑇2

(2𝑁)2
∑ (𝛽𝑗

2𝐹0𝑗
2)



𝑗∈𝐼𝑀

+ 𝑜(∆2). (B.9) 

It is clear from (B.9) that the uniform convergence rate of the StSa filter estimator is 

precisely 𝑁−2, since the limit of (B.9) as 𝑁 → ∞ is 

 
𝑙𝑖𝑚
𝑁→∞

((2𝑁)2𝕍[�̂�(𝑡)]) = 𝑙𝑖𝑚
𝑁→∞

((2𝑁)2(
𝑇2

(2𝑁)2
∑(𝛽𝑗

2𝐹0𝑗
2)



𝑗∈𝐼𝑀

+ 𝑜(∆2))), (B.10) 
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= 𝑇2 ∑(𝛽𝑗

2𝐹0𝑗
2)



𝑗∈𝐼𝑀

  

This completes the proof of Theorem 5.2.  ∎ 

 

Appendix C: Proof of Theorem 6.1 

From (6.16) and (6.15), we get 

 

𝕍[𝜙𝑗] = ∫
1

∆
(
1

4
(𝑓𝑗,𝐿

′′ (𝑡, 𝜏𝐷𝑗) + 𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗)) (𝜏𝑗 − 𝜏𝐷𝑗)

2

∆
𝑆𝑗

𝑆𝑗−1

− 𝑐2𝑗 𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗) (𝜏𝑗 − 𝜏𝐷𝑗)∆

2

+
1

12
(𝑐3𝑗𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗) − 2𝐾𝑗
3𝑓𝑗,𝐿

′′ (𝑡, 𝜏𝐷𝑗)) ∆
3 + 𝑜(∆3))

2

𝑑𝜏. 

(C.1) 

 By expanding the integrand in (C.1) and calculating the definite integral, we obtain 

 

𝕍[𝜙𝑗] =
1

720
(𝑐4𝑗𝐹2𝑗

2 + 𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗)) ∆
6 + 𝑜(∆6), (C.2) 

where 𝑐4𝑗 = 9 − 45𝐾𝑗 + 90𝐾𝑗
2 − 110𝐾𝑗

3 + 105𝐾𝑗
4 − 60𝐾𝑗

5 + 20𝐾𝑗
6, and 𝐹2𝑗 is given 

in (6.8a), and denotes the difference between values of the left- and right-hand SOD 

sub-functions at the discontinuity time-instant of the 𝑗-th stratum (= 𝜏𝐷𝑗). 

(C.2) is related to those 𝑀 strata which have SOD discontinuities of the integrand 

function, whereas other strata involving smooth parts of the integrand function’s SOD, 

the 𝑗-th sub-estimator’s variance is given in (3.22), which is associated with the 

continuous part discussed in Chapter 3. Now, the whole variance can be calculated by 

adding 𝑀 terms of (C.2) and 𝑁 −𝑀 terms of (3.22).  So, we get 
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𝕍[�̂�(𝑡)] = ∑ (
1

720
(𝑐4𝑗𝐹2𝑗

2 + 𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗)) ∆
6 + 𝑜(∆6))



𝑗∈𝐼𝑀

+ ∑ (
1

720
(𝑓′′(𝑡, 𝐶𝑗))

2

∆6 + 𝑜(∆6))

𝑁

𝑗=1
𝑗∉𝐼𝑀

, 

(C.3) 

 

𝕍[�̂�(𝑡)] =
𝑇6

720(N)6
∑ (𝑐4𝑗𝐹2𝑗

2 + 𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗))



𝑗∈𝐼𝑀

+
𝑇5

720(N)5
∑ ((𝑓′′(𝑡, 𝐶𝑗))

2

∆)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(𝑁−5), 

(C.4) 

 

𝕍[�̂�(𝑡)] =
𝑇5

720(N)5
∑ ((𝑓′′(𝑡, 𝐶𝑗))

2

∆)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(𝑁−5). (C.5) 

where 𝐼𝑀 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑀} is a set of indices for the 𝑀 strata with SOD 

discontinuities. Remark that the first summation in (C.4) comprises finite items and 

depends not on 𝑁. Hence, as 𝑁 → ∞ it tends to zero at a rate of 𝑁−6, i.e. faster than 

the other summation. Thus, it can be embedded in 𝑜(𝑁−5) term appearing in (C.5). 

By using Riemann integration, the variance of the AnSt filter estimator, (C.5), can be 

verified for its convergence rate. Thus, 

 
𝑙𝑖𝑚
𝑁→∞

((2𝑁)5

× 𝕍[�̂�(𝑡)]) 

= 𝑙𝑖𝑚
𝑁→∞

(

  
 (2𝑁)5 ×

(

 
 

𝑇5

720(N)5
∑ ((𝑓′′(𝑡, 𝐶𝑗))

2

∆)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(𝑁−5)

)

 
 

)

  
 . 

(C.6) 

Note that ∆= 𝑇/𝑁, and 𝑙𝑖𝑚
𝑁→∞

((2𝑁)5 × 𝑜(𝑁−5)) = 0. Moreover, since there are only 

𝑀 discontinuities in the SOD within the whole observation interval, this means that  

𝑓′′(𝑡, 𝜏) is a piecewise-continuous function having exactly 𝑀 + 1 pieces. Thus, 

 

=
2𝑇5

45
∑ ∫ (𝑓′′(𝑡, 𝜏))

2
𝑑𝜏

𝑇𝑘

𝑇𝑘−1

𝑀+1

𝑘=1

. (C.8) 
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𝑙𝑖𝑚
𝑁→∞

((2𝑁)5

× 𝕍[�̂�(𝑡)]) 

This completes the proof of Theorem 6.1.  ∎ 

 

Appendix D: Proof of Theorem 6.2 

Recalculating the integrals in (6.12), this time taking (6.19a-c) into consideration 

instead of (6.9a-c), we get a new expression for the expected value of the 𝑗-th sub-

estimator, 

 

𝐸[𝜙𝑗] =
1

6
(𝐾𝑗

3𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) − (𝐾𝑗

3 − 3𝐾𝑗
2 + 3𝐾𝑗 − 1)𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗)) ∆
3

+
1

2
(1 − 2𝐾𝑗)𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗)∆
2

−
1

2
𝐾𝑗
2 (𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗))∆

2 + 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) ∆ + 𝑜(∆
3). 

(D.1) 

 

=
1

6
(𝐾𝑗

3𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) − 𝑐1𝑗 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗)) ∆
3 + 𝑐2𝑗 𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗) ∆
2

−
1

2
𝐾𝑗
2𝐹1𝑗 ∆

2 + 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) ∆ + 𝑜(∆
3). 

(D.2) 

where 𝑐1𝑗 = 𝐾𝑗
3 − 3𝐾𝑗

2 + 3𝐾𝑗 − 1, 𝑐2𝑗 =
1

2
(1 − 2𝐾𝑗), and 𝐹1𝑗 ∶= 𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) −

𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗). 

 

Computing the new error term 𝑒𝑗 = 𝜙𝑗 − 𝐸[𝜙𝑗] from (6.10b) and (D.1), for the case 

when  𝜏𝑗 < 𝜏𝐷𝑗 < 𝜏𝑗
𝑎, we get 
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𝑒𝑗  =
1

2
∆(2𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) −𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) (𝜏𝐷𝑗 − 𝜏𝑗)

− 𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗)(𝜏𝑗 − 𝜏𝐷𝑗 + 2∆ (𝐾𝑗 −

1

2
)) +

1

2
𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) (𝜏𝐷𝑗 − 𝜏𝑗)

2

+
1

2
𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗)(𝜏𝑗 − 𝜏𝐷𝑗 + 2∆ (𝐾𝑗 −

1

2
))

2

)

+
1

6
∆ (−3∆𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗) (𝐾𝑗 − 1)
2
+ 6𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) (𝐾𝑗 − 1)

+ ∆2𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗) (𝐾𝑗 − 1)

3
)

−
1

6
∆𝐾𝑗 (6𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) − 3∆𝐾𝑗𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) + ∆
2𝐾𝑗

2𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗)) + 𝑜(∆

3). 

(D.3) 

Since the error term, 𝑒𝑗 , is real-valued and the estimator is unbiassed, the expected 

value associated with the 𝑗-th sub-estimator is equal to the variance of the sub-

estimator, i.e. 𝕍[𝜙𝑗] = ∫ 𝑝𝑗(𝜏)(𝑒𝑗)
2
𝑑𝜏

∞

−∞
=

1

∆
∫ (𝑒𝑗)

2
𝑑𝜏

𝑆𝑗
𝑆𝑗−1

. Evaluating such integral 

here would require substantial space, as it is very long. However, it is easy to calculate 

for it is a collection of various degree polynomials. Hence, I present here the final 

result, 

 

𝕍[𝜙𝑗] =
𝑐5𝑗

12
𝐹1𝑗

2∆4 +
𝑐6𝑗

48
𝐹2𝑗𝐹1𝑗∆

5 +
𝑐4𝑗

720
𝐹2𝑗

2∆6

+
1

720
𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑛)𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑛)∆
6 + 𝑜(∆6), 

(D.4) 

where 𝑐4𝑗 = 9 − 45𝐾𝑗 + 90𝐾𝑗
2 − 110𝐾𝑗

3 + 105𝐾𝑗
4 − 60𝐾𝑗

5 + 20𝐾𝑗
6, 𝑐5𝑗 = 1 −

3𝐾𝑗 + 6𝐾𝑗
2 − 6𝐾𝑗

3 + 3𝐾𝑗
4, and 𝑐6𝑗 = 2𝑐2𝑗(3 − 6𝐾𝑗 + 10𝐾𝑗

2 − 8𝐾𝑗
3 + 4𝐾𝑗

4). 

The whole variance of the AnSt filter estimator, 𝕍[�̂�(𝑡)], utilising 𝑁-strata (i.e. 2𝑁 

sample points) in the case of non-smooth FOD with 𝑀 bounded discontinuities is 

simply the summation of the individual sub-variances in each stratum, as they are all 

calculated using statistically independent random variables. However, only M strata 

have such FOD discontinuities, whereas N-M strata do not. Therefore, I need to add a 

mix of (D.4) and (3.22), as follows 
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𝕍[�̂�(𝑡)] = ∑ (
𝑐5𝑗

12
𝐹1𝑗

2∆4 +
𝑐6𝑗

48
𝐹2𝑗𝐹1𝑗∆

5 +
𝑐4𝑗

720
𝐹2𝑗

2∆6


𝑗∈𝐼𝑀

+
1

720
𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗) ∆
6 + 𝑜(∆6))

+ ∑ (
1

720
(𝑓′′(𝑡, 𝐶𝑗))

2

∆6 + 𝑜(∆6))

𝑁

𝑗=1
𝑗∉𝐼𝑀

, 

(D.5) 

 

𝕍[�̂�(𝑡)] =
∆4

12
∑ (𝑐5𝑗𝐹1𝑗

2)



𝑗∈𝐼𝑀

+
∆5

720
∑ ((𝑓′′(𝑡, 𝐶𝑗))

2

∆)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(∆5), (D.6) 

To compute the convergence rate of the variance in (D.6), I take the limit as 𝑁 → ∞. 

Note that the second and third terms of the RHS of (D.6) will then be equal to zero. 

Thus, 

 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)4

× 𝕍[�̂�(𝑡)]) 

= 𝑙𝑖𝑚
𝑁→∞

((2𝑁)4 × (
𝑇4

12𝑁4
∑ (𝑐5𝑗𝐹1𝑗

2)



𝑗∈𝐼𝑀

)), (D.7) 

 =
4𝑇4

3
∑ 𝑐5𝑗 𝐹1𝑗

2



𝑗∈𝐼𝑀

. (D.8) 

Which means that the AnSt estimator converges at a rate of 𝑁−4 if the integrand 

function’s first-order derivative is non-smooth (i.e. piecewise-continuous).  

This completes the proof of Theorem 6.2.  ∎ 

 

Appendix E: Proof of Theorem 6.3 

Evaluating the integrals in (6.12) under the new assumptions, (6.22a-c), regarding 

non-smoothness of the ZOD of the integrand function, I obtain this new expression 

for the expected value of the 𝑗-th sub-estimator, 
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𝐸[𝜙𝑗] =
1

6
(𝐾𝑗

3𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) − 𝑐1𝑗𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗)) ∆
3 + 𝑐2𝑗𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗) ∆
2

−
1

2
𝐾𝑗
2𝐹1𝑗 ∆

2 + 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) ∆ + 𝐾𝑗𝐹0𝑗∆ + 𝑜(∆
3). 

(E.1) 

Similar to the previous two appendices, I compute 𝑒𝑗 = 𝜙𝑗 − 𝐸[𝜙𝑗] when 𝜏𝑗 < 𝜏𝐷𝑗 <

𝜏𝑗
𝑎, since other possibilities for the location of 𝜏𝐷𝑗  with respect to 𝜏𝑗  and 𝜏𝑗

𝑎 has no 

effect on the convergence rate of the estimator, excluding the stratum centre and 

borders. Consequently, by subtracting (E.1) from (6.10b) and doing some algebra, the 

error term 𝑒𝑗  simplifies to 

 

𝑒𝑗  =
1

2
∆(𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) + 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) −𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) (𝜏𝐷𝑗 − 𝜏𝑗)

− 𝑓𝑗,𝑅
′ (𝑡, 𝜏𝐷𝑗)(𝜏𝑗 − 𝜏𝐷𝑗 + 2∆ (𝐾𝑗 −

1

2
)) +

1

2
𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) (𝜏𝐷𝑗 − 𝜏𝑗)

2

+
1

2
𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗)(𝜏𝑗 − 𝜏𝐷𝑗 + 2∆ (𝐾𝑗 −

1

2
))

2

)

+
1

6
∆(𝐾𝑗 − 1) (−3∆𝑓𝑗,𝑅

′ (𝑡, 𝜏𝐷𝑗) (𝐾𝑗 − 1) + 6𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗)

+ ∆2𝑓𝑗,𝑅
′′ (𝑡, 𝜏𝐷𝑗) (𝐾𝑗 − 1)

2
)

−
1

6
∆𝐾𝑗 (6𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) − 3∆𝐾𝑗𝑓𝑗,𝐿

′ (𝑡, 𝜏𝐷𝑗) + ∆
2𝐾𝑗

2𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗)) + 𝑜(∆

3). 

(E.2) 

The variance value associated with the 𝑗-th sub-estimator is equal to the second 

moment of the error 𝑒𝑗 . That is, 𝕍[𝜙𝑗] = ∫ 𝑝𝑗(𝜏)(𝑒𝑗)
2
𝑑𝜏

∞

−∞
=

1

∆
∫ (𝑒𝑗)

2
𝑑𝜏

𝑆𝑗
𝑆𝑗−1

. Hence,  

 

𝕍[𝜙𝑗] = 𝑐2𝑗
2𝐹0𝑗

2∆2 +
1

2
𝑐2𝑗 𝑐7𝑗 𝐹1𝑗𝐹0𝑗∆

3

+
1

12
(𝑐5𝑗 𝐹1𝑗

2 + 4𝑐2𝑗
2𝑐8𝑗 𝐹2𝑗𝐹0𝑗)∆

4 +
1

48
𝑐6𝑗 𝐹2𝑗𝐹1𝑗∆

5

+
1

720
𝑐4𝑗 𝐹2𝑗

2∆6 +
1

720
𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗) ∆
6 + 𝑜(∆6), 

(E.3) 

where 𝑐6𝑗 = 2𝑐2𝑗(3 − 6𝐾𝑗 + 10𝐾𝑗
2 − 8𝐾𝑗

3 + 4𝐾𝑗
4), 𝑐7𝑗 = 1 − 2𝐾𝑗 + 2𝐾𝑗

2 and 

𝑐8𝑗 = 1 − 𝐾𝑗 + 𝐾𝑗
2. 
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To find the whole variance of the AnSt filter estimator in the case of non-smooth 

integrand function, I add up all variance values of the 𝑁 sub-estimators. So, I have 𝑀 

strata with ZOD discontinuities and 𝑁 −𝑀 strata with smooth ZOD. Hence, 

 

𝕍[�̂�(𝑡)] = ∑ (𝑐2𝑗
2𝐹0𝑗

2∆2 +
1

2
𝑐2𝑗 𝑐7𝑗 𝐹1𝑗𝐹0𝑗∆

3



𝑗∈𝐼𝑀

+
1

12
(𝑐5𝑗 𝐹1𝑗

2 + 4𝑐2𝑗
2𝑐8𝑗 𝐹2𝑗𝐹0𝑗)∆

4 +
1

48
𝑐6𝑗 𝐹2𝑗𝐹1𝑗∆

5

+
1

720
𝑐4𝑗 𝐹2𝑗

2∆6 +
1

720
𝑓𝑗,𝐿
′′ (𝑡, 𝜏𝐷𝑗) 𝑓𝑗,𝑅

′′ (𝑡, 𝜏𝐷𝑗) ∆
6)

+ ∑ (
1

720
(𝑓′′(𝑡, 𝐶𝑗))

2

∆6)

𝑁

𝑗=1
𝑗∉𝐼𝑀

+ 𝑜(∆5). 

(E.4) 

Since the term 𝑐2𝑗
2𝐹0𝑗

2∆2 in the first summation of (E.4) involves second-power of 

∆=
𝑇

𝑁
, while all other terms contain ∆ raised to higher powers, then the first term will 

be the dominant as 𝑁 → ∞. Therefore, the variance of the estimator (E.4) simplifies 

to 

 

𝕍[�̂�(𝑡)] = ∑ (𝑐2𝑗
2𝐹0𝑗

2∆2)



𝑗∈𝐼𝑀

+ 𝑜(∆2) =
𝑇2

𝑁2
∑(𝑐2𝑗

2𝐹0𝑗
2)



𝑗∈𝐼𝑀

+ 𝑜(𝑁−2). (E.5) 

Remark that 𝐹0𝑗 = 𝑓𝑗,𝐿 (𝑡, 𝜏𝐷𝑗) − 𝑓𝑗,𝑅 (𝑡, 𝜏𝐷𝑗) is a nonzero value only for those 𝑀 

strata having ZOD discontinuities in the integrand function, that is why the summation 

in (E.5) includes only 𝑀 terms with 𝑗 ∈𝐼𝑀 . 

It is clear from (E.5) that the uniform convergence rate of the AnSt filter estimator is 

precisely 𝑁−2, since the limit of (E.5) when the number of strata approaches infinity 

is 

 

𝑙𝑖𝑚
𝑁→∞

((2𝑁)4𝕍[�̂�(𝑡)]) = 𝑙𝑖𝑚
𝑁→∞

(

 
 
(2𝑁)4(

𝑇2

𝑁2
∑(𝑐2𝑗

2𝐹0𝑗
2)



𝑗∈𝐼𝑀

+ 𝑜(𝑁−2))

)

 
 
, (E.6) 
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= 16𝑇2 ∑(𝑐2𝑗

2𝐹0𝑗
2)



𝑗∈𝐼𝑀

  

This completes the proof of Theorem 6.3.  ∎ 
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