9,430 research outputs found

    Controlled Quantum Amplification

    Get PDF
    We propose a new framework for turning quantum search algorithms that decide into quantum algorithms for finding a solution. Consider we are given an abstract quantum search algorithm A that can determine whether a target g exists or not. We give a general construction of another operator U that both determines and finds the target, whenever one exists. Our amplification method at most doubles the cost over using A, has little overhead, and works by controlling the evolution of A. This is the first known general framework to the open question of turning abstract quantum search algorithms into quantum algorithms for finding a solution. We next apply the framework to random walks. We develop a new classical algorithm and a new quantum algorithm for finding a unique marked element. Our new random walk finds a unique marked element using H update operations and 1/eps checking operations. Here H is the hitting time, and eps is the probability that the stationary distribution of the walk is in the marked state. Our classical walk is derived via quantum arguments. Our new quantum algorithm finds a unique marked element using H^(1/2) update operations and 1/eps^(1/2) checking operations, up to logarithmic factors. This is the first known quantum algorithm being simultaneously quadratically faster in both parameters. We also show that the framework can simulate Grover\u27s quantum search algorithm, amplitude amplification, Szegedy\u27s quantum walks, and quantum interpolated walks

    Towards interpretable quantum machine learning via single-photon quantum walks

    Full text link
    Variational quantum algorithms represent a promising approach to quantum machine learning where classical neural networks are replaced by parametrized quantum circuits. However, both approaches suffer from a clear limitation, that is a lack of interpretability. Here, we present a variational method to quantize projective simulation (PS), a reinforcement learning model aimed at interpretable artificial intelligence. Decision making in PS is modeled as a random walk on a graph describing the agent's memory. To implement the quantized model, we consider quantum walks of single photons in a lattice of tunable Mach-Zehnder interferometers trained via variational algorithms. Using an example from transfer learning, we show that the quantized PS model can exploit quantum interference to acquire capabilities beyond those of its classical counterpart. Finally, we discuss the role of quantum interference for training and tracing the decision making process, paving the way for realizations of interpretable quantum learning agents.Comment: 11+8 pages, 6+9 figures, 2 tables. F. Flamini and M. Krumm contributed equally to this wor

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Almost uniform sampling via quantum walks

    Get PDF
    Many classical randomized algorithms (e.g., approximation algorithms for #P-complete problems) utilize the following random walk algorithm for {\em almost uniform sampling} from a state space SS of cardinality NN: run a symmetric ergodic Markov chain PP on SS for long enough to obtain a random state from within ϵ\epsilon total variation distance of the uniform distribution over SS. The running time of this algorithm, the so-called {\em mixing time} of PP, is O(δ1(logN+logϵ1))O(\delta^{-1} (\log N + \log \epsilon^{-1})), where δ\delta is the spectral gap of PP. We present a natural quantum version of this algorithm based on repeated measurements of the {\em quantum walk} Ut=eiPtU_t = e^{-iPt}. We show that it samples almost uniformly from SS with logarithmic dependence on ϵ1\epsilon^{-1} just as the classical walk PP does; previously, no such quantum walk algorithm was known. We then outline a framework for analyzing its running time and formulate two plausible conjectures which together would imply that it runs in time O(δ1/2logNlogϵ1)O(\delta^{-1/2} \log N \log \epsilon^{-1}) when PP is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.Comment: 13 pages; v2 added NSF grant info; v3 incorporated feedbac

    On analog quantum algorithms for the mixing of Markov chains

    Full text link
    The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd\"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.Comment: The section concerning time-averaged mixing (Sec VIII) has been updated: Now contains numerical plots and an intuitive discussion on the random matrix theory results used to derive the results of arXiv:2001.0630

    Optimal computation with non-unitary quantum walks

    Get PDF
    Quantum versions of random walks on the line and the cycle show a quadratic improvement over classical random walks in their spreading rates and mixing times, respectively. Non-unitary quantum walks can provide a useful optimisation of these properties, producing a more uniform distribution on the line, and faster mixing times on the cycle. We investigate the interplay between quantum and random dynamics by comparing the resources required, and examining numerically how the level of quantum correlations varies during the walk. We show numerically that the optimal non-unitary quantum walk proceeds such that the quantum correlations are nearly all removed at the point of the final measurement. This requires only O(logT) random bits for a quantum walk of T steps
    corecore