
Controlled Quantum Amplification∗

Cătălin Dohotaru1 and Peter Høyer2

1 Department of Computer Science, University of Calgary, Calgary, Canada
cdohotaru@gmail.com

2 Department of Computer Science, University of Calgary, Calgary, Canada
hoyer@ucalgary.ca

Abstract
We propose a new framework for turning quantum search algorithms that decide into quantum
algorithms for finding a solution. Consider we are given an abstract quantum search algorithm
A that can determine whether a target g exists or not. We give a general construction of another
operator U that both determines and finds the target, whenever one exists. Our amplification
method at most doubles the cost over using A, has little overhead, and works by controlling the
evolution of A. This is the first known general framework to the open question of turning abstract
quantum search algorithms into quantum algorithms for finding a solution.

We next apply the framework to random walks. We develop a new classical algorithm and
a new quantum algorithm for finding a unique marked element. Our new random walk finds a
unique marked element using H update operations and 1/ε checking operations. Here H is the
hitting time, and ε is the probability that the stationary distribution of the walk is in the marked
state. Our classical walk is derived via quantum arguments. Our new quantum algorithm
finds a unique marked element using

√
H update operations and

√
1/ε checking operations,

up to logarithmic factors. This is the first known quantum algorithm being simultaneously
quadratically faster in both parameters. We also show that the framework can simulate Grover’s
quantum search algorithm, amplitude amplification, Szegedy’s quantum walks, and quantum
interpolated walks.
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1 Introduction

Grover’s search algorithm [15], amplitude amplification [8], and quantum walks [3, 30] are
highly successful methodologies for searching in quantum algorithms. They are used in search
problems in which we are given some unitary operator W as a black-box. We start in some
initial state |init〉 which is a (+1)-eigenvector of the unitary W. Our goal is to produce some
unknown target state |g〉. We are given a reflection1 operator G = 1− 2|g〉〈g| that permits us
to distinguish the target state |g〉 from any other orthogonal state. Our task is to construct
an algorithm that evolves the initial state |init〉 into a state that has constant overlap with

∗ This work has been supported in part by the Canadian Institute for Advanced Research (CIFAR) and
Canada’s Natural Sciences and Engineering Research Council (NSERC).

1 To simplify later calculations, we define the operator G as the reflection about the subspace orthogonal
to |g〉.
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18:2 Controlled Quantum Amplification

the target state |g〉, using the operator W. The standard approach in quantum algorithmics
for doing so is to use operator A = W · G [5].

Much work on search problems on quantum computers has been specifically developed
within quantum walks. The operator W is often derived from a random walk, in which case
it is referred to as the walk or update operator. The cost of the quantum search algorithm is
then typically phrased in terms of the spectral gap δ or the hitting time of the associated
random walk.

The study of quantum walks has been a highly successful and active line of research,
with recent results such as a quantum algorithm for triangle finding [13] using only O(n5/4)
queries. Other applications of quantum walks include verification of matrix products [9],
testing group commutativity [27], formula evaluation [4], subgraph finding [10], triangle
finding [26, 13, 14], and 3-distinctness [7].

These and other applications were found after the seminal works of Ambainis [3] and
Szegedy [30]. Ambainis [3] gave a quantum walk for element distinctness, and Szegedy [30]
gave a general method for obtaining an quantum search algorithm from any symmetric
random walk [30]. Magniez et al. [25] gave a quantum algorithm that finds a unique marked
element for any reversible random walk2 of cost in the order of S +

√
1/(εδ)U +

√
1/εC. Here

S, U, and C are the setup, update and checking costs of the quantum walk, δ the spectral gap
of the walk, and ε the probability that the stationary state is in the marked state [29, 28].

Magniez et al. [23] gave a quantum algorithm that finds a unique marked element for
any state-transitive random walk of cost in the order of S +

√
HU +

√
HC. Here H is the

hitting time of the random walk. Krovi et al. [22] introduced the novel idea of interpolating
walks. Krovi et al. show in [20, 21] that interpolated walks can find a marked element for any
reversible random walk. Their algorithm works for multiple marked elements and has cost in
the order of S +

√
H+U +

√
H+C, where H+ is a quantity introduced in [21] and referred to

as the extended hitting time. When there is a unique marked element, the extended hitting
time and hitting time coincide, H+ = H. When there are multiple marked elements, the
extended hitting time is bounded by H ≤ H+ ≤ 1

εδ . Excellent surveys on quantum walks,
their history and applications, include [2, 18, 29, 32, 28].

In this work, we propose a new framework for the general setting of search problems.
Our framework does not require that the operator W is derived from a random walk and it
makes no explicit use of properties of quantum walks or random walks. The most obvious
application of our framework is naturally to random walks, but is not limited to such cases.
We will assume that W has only real entries, and that our target |g〉 has real coordinates in
a canonical orthogonal basis for the space acted upon by W. This assumption is fulfilled in
all the applications we consider here, including quantum walks.

Our framework consists of several parts. We give a new generic quantum algorithm for
solving search problems. Our algorithm is based on a circuit U which controls the search,
and we refer to this process as controlled quantum amplification. We prove that whenever
the operator A = W · G determines whether a target |g〉 exists or not, in some number of
iterations T , with constant success probability, then our circuit U both determines and finds
the target using at most 2T iterations, with constant success probability.

We apply our analysis to quantum walks and prove that we can obtain a quadratic speedup
for reversible random walks. We show that our framework can simulate quantum interpolated

2 A Markov chain P with a unique stationary distribution π = (πx) is said to be reversible if πxPy,x =
πyPx,y for all states x, y. All Markov chains obtained from a random walk on undirected graphs are
reversible. We will below use the wording “random walk” and “Markov chain” interchangeably.
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0̃ 0

G W

Figure 1 Our circuit U for controlled quantum amplification, expressed in terms of the reflection
operator G and the unitary W, here given in its simplest form. We apply circuit U successively to
the initial state |0〉|init〉, say T times, thus producing the final state UT |0〉|init〉, which we measure.
If the outcome of the measurement is |1̃〉|g〉, the circuit has successfully found the marked state g.

walks [21], thus eliminating the need for running an interpolation of a random walk and its
absorbing analog. We prove a relation between the operator W and the operator A, and
we use this relation to construct a new quantum algorithm that, up to a logarithmic factor,
finds a unique marked element in cost S +

√
HU +

√
1/εC. This is superior to the existing

algorithms. We also use this relation to construct a new classical algorithm that finds a
unique marked element in cost S +HU + 1/εC. Our classical walk is derived using quantum
arguments.

2 Controlled quantum amplification

In a quantum search problem, we are given an arbitrary unitary operator W, through which
we would like to extract some unknown target state |g〉. The operator W can be given as a
black box, which we can apply to any state |ψ〉, producing the state W|ψ〉. An application of
W has some cost, which is called the update cost.

We are also given a reflection operator G = 1− 2ΠG, where ΠG = |g〉〈g| is a projection on
the target state |g〉. Operator G permits us to distinguish the target state |g〉 from any other
orthogonal state. The operator G can be given as a black box as well. An application of G
has some cost, which is called the checking cost.

Our first step is to prepare the initial state |init〉. Preparing this state has a cost, which
is called the setup cost. We then measure whether the initial state contains the target state
or not by applying the measurement {ΠG, 1− ΠG}. The probability by which we measure
|g〉 is some ε = sin2(θ) where sin(θ) = 〈g|init〉. Let |g〉 and this initial angle θ be so that
0 ≤ θ ≤ π/2. If θ = 0, our initial success probability is zero and the quantum search
algorithm A = W · G will not amplify this. If θ = π/2, our initial state is the target state
and there is nothing to be amplified. We shall therefore assume that 0 < θ < π/2. Typically
θ is very close to zero, corresponding to that the non-amplified success probability ε is small.

If our initial measurement yields the outcome |g〉, we terminate the algorithm as we have
produced our target state |g〉. Otherwise, our initial state becomes |init〉 = 1

cos(θ) (|init〉 −
sin(θ)|g〉), which is orthogonal to |g〉 by construction. Thus starting with |init〉, we then
want to produce a state with large overlap with |g〉. To achieve this, we propose the following
circuit U.

The circuit U acts on two registers. The first register contains a qubit which we use to
control the evolution in the second register. The circuit is comprised of two operators, both
of which are controlled on the state in the first register. We fix an angle 0 < θ̃ < π/2 and use
the rotated orthogonal basis |0̃〉 = cos(θ̃)|0〉+ sin(θ̃)|1〉 and |1̃〉 = − sin(θ̃)|0〉+ cos(θ̃)|1〉. The
first operator |0̃〉〈0̃|⊗G + |1̃〉〈1̃|⊗1 in our circuit reflects about the target state |g〉 conditional
on that the control qubit is in state |0̃〉. The second operator |0〉〈0| ⊗W + |1〉〈1| ⊗ 1 applies
the update W conditional on that the control qubit is in state |0〉.

ICALP 2017
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0̃ 0 Z

G W g⊥

Figure 2 W with reflection.

−Rot−2θ̃ 0 Z

g W

Figure 3 W with rotation.

1̃ 0 Z

G A

Figure 4 A = W · G with reflection.

Rot−2θ̃ 0

g A

Figure 5 A with rotation.

The circuit U is parameterized by the angle θ̃. The choice of θ̃ has some algorithmic
consequences, which we may handle by exponential searching similar to past work [8, 23].
The framework applies with no increase in asymptotic cost if we are given a multiplicatively
approximate value for the initial success amplitude sin(θ). We apply circuit U successively
to the initial state |0〉|init〉, say T times, thus producing the final state UT |0〉|init〉, which we
measure. We prove here that for an appropriately chosen value of T , the final measurement
yields the target |g〉 with probability at least a constant, and we thus refer to this process as
controlled quantum amplification.

The circuit has multiple interpretations and forms which both provide us with flexibility
in terms of implementations as well as a foundation for proving properties on quantum
amplification processes. We give here four circuits, all of which act equivalently to U. In
Figure 2, the third gate Z⊗ (1− |g〉〈g|) + 1⊗ |g〉〈g|) applies the phase gate Z = |0〉〈0| − |1〉〈1|
on the control qubit conditional on that the search space does not contain the target state |g〉.
In Figures 3 and 5, the first gate rotates the ancilla qubit by an angle of π − 2θ̃ and −2θ̃,
respectively, conditional on the search space contains the target state |g〉.

One of our aims is to compare our new controlled amplification circuit U with the operator
A = W ·G. The operator A has been used extensively in quantum walks and, when applied to
random walks, it corresponds to an absorbing random walk [30, 3, 5]. The main limitation of
the operator A is that it does not necessarily produce the target state, even when one exists.
Significant research has been put into understanding when the operator A does and does
not produce the target state. Our proposed controlled circuit circumvents this barrier in
all generality. We prove that whenever the operator A determines whether a unique target
exists or not, in some number of iterations, then our circuit U both determines and finds the
target in the same asymptotic number of iterations.

Controlled quantum computations have been successfully applied in quantum computing
dating back to at least the notion of phase kick-back [11]. Tulsi used a quantum walk
with controlled operators for the problem of finding a unique target |g〉 on a grid [31]. His
algorithm finds a unique target in cost O(

√
n logn), which is quadratically smaller than the

classical hitting time of Θ(n logn) [1]. The grid graph is a two-dimensional torus of size√
n×
√
n and has been a notoriously hard case for quantum searching because all of its edges

are local. Magniez, Nayak, Richter, and Santha [23] extended this and gave a controlled
operator that finds a unique target |g〉 for any state-transitive graph.
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Our controlled amplifier does not rely on any graph-theoretic properties. We prove the
general statement that whenever A determines whether a unique target state exists or not,
our controlled amplifier finds the target state in asymptotically the same cost.

3 Quantum hitting times

The hitting time is a notion used in the analysis of stochastic processes such as random
walks. It is the expected number of steps some stochastic process U uses to reach the target
state g, starting from some appropriately defined initial distribution π. The choice of an
appropriate corresponding definition of quantum hitting time is non-trivial.

Let U be any real unitary, and let |w〉 be any normalized target state with real coordinates
in a canonical orthogonal basis for the space acted upon by U. The possible eigenvalues for U
are +1, −1, and conjugated pairs (eiα, e−iα) for some eigenphase 0 < α < π. Each such pair of
eigenvalues corresponds to a distinct two-dimensional subspace acted upon by U by a rotation
of angle α. We order these non-trivial eigenphases of U as 0 < α1 ≤ α2 ≤ · · · ≤ αm < π,
for some m ≥ 0. Let |U+

j 〉 and |U
−
j 〉 be the conjugated eigenvectors of U corresponding to

the eigenvalues eiαj and e−iαj , for each 1 ≤ j ≤ m. We decompose |w〉 into this ordered
eigenbasis of U, as w0|U0〉 +

∑m
j=1

(
w+
j |U

+
j 〉 + w−j |U

−
j 〉
)

+ w−1|U−1〉. Here we group all
(+1)-eigenvectors of U into |U0〉, and all the (−1)-eigenvectors into |U−1〉. Since U and
|w〉 have real components, we can choose the scalars of the eigenvectors of U such that
w+
j = w−j = wj ∈ R. Given this basis, we define the quantum hitting time as follows.

I Definition 1. The quantum hitting time of U on |w〉 = w0|U0〉+
m∑
j=1

wj
(
|U+
j 〉+ |U−j 〉

)
+

w−1|U−1〉 is

QHTα(U, |w〉) =

√√√√2
m∑
j=1
|wj |2

1
α2
j

. (1)

Since our proofs use the specifics of this definition, we mention that our definition
differs from the more commonly used quantity QHT1(U, |w〉) = 2

∑m
j=1 |wj |2

1
αj

+ |w−1|. Our
notion of quantum hitting time QHTα is quadratically smaller than the classical hitting
time for reversible random walks, by Szegedy’s correspondence [30]. Thus, if a quantum
algorithm has cost in the order of QHTα, then it has cost quadratically smaller than the
classical hitting time. For technical reasons, we need to introduce a second notion of
quantum hitting time, which we refer to as the cotangent quantum hitting time and define as
QHTcot(U, |w〉) =

√
2
∑m
j=1 |wj |2 cot2(αj2 ). Our two notions of quantum hitting times QHTα

and QHTcot are asymptotically of the same order, as shown in Lemma 9 in the appendix.
We use QHT as a shorthand for QHTα.

4 Finding in the quantum hitting time

Our goal is to prove that the circuit U finds a target state in the quantum hitting time,
stated as Corollary 6 below. We first identify the principal eigenvector of the circuit U.

I Lemma 2. The unnormalized state |v0〉 = sin(θ̃) |0, init〉− sin(θ)
cos(θ) |1̃, g〉 is a (+1)-eigenvector

of circuit U.

Proof. The proof follows be considering the action of the circuit U given in Figure 1.

ICALP 2017
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The first operator in the circuit reflects the state |0̃, g〉. The first term in the state |v0〉
is orthogonal to this reflection state since |init〉 is orthogonal to |g〉 by definition. The
second term in |v0〉 is also orthogonal to the reflection state since |0̃〉 and |1̃〉 constitute an
orthonormal basis. The reflection operator thus acts trivially on |v0〉.

The second operator in the circuit applies the operator W on the search register conditional
on that the control qubit is in state |0〉. Rewrite |v0〉 on the form

sin(θ̃)
cos(θ) |0, init〉 −

sin(θ)
cos(θ)cos(θ̃) |1, g〉.

Then each of the two terms is again invariant, and we conclude that the second operator
similarly acts trivially on |v0〉. J

We want this principal eigenvector to be an equally weighted superposition of our initial
state |0, init〉 and our target state |1̃, g〉. We therefore choose and fix the angle θ̃ such that
0 < θ̃ < π/2 and sin(θ̃) = sin(θ)

cos(θ) , and write the principal eigenvector on the normalized form
|U0〉 = 1√

2

(
|0, init〉 − |1̃, g〉

)
.

When considering quantum search problems, it is commonly assumed that the walk
operator W has a unique (+1)-eigenvector (up to scalars), which we adapt here for convenience.
The purpose of a quantum search problem is to produce a state that has large overlap with the
target state |g〉. Our proposed algorithm for doing so, is to apply our circuit U successively a
number of T times on the initial state |0, init〉, producing the final state UT |0, init〉. We show
that it suffices to pick the number of iterations T to be in the order of the quantum hitting
time QHT(U, |1̃, g〉) of U. We divide the proof up into two cases. When W is a reflection, our
circuit emulates amplitude amplification. For general operators W, we use that the principal
(+1)-eigenvector of U has large overlap with both the initial state and the target state |1̃, g〉.

Consider first that W = 2|init〉〈init|−1 is a reflection about the initial state. In amplitude
amplification [8], we apply the operator A = W ·G a number of T times, thus constructing the
state |final〉 = (W ·G)T |init〉. By picking T = d π4θ e ∈ Θ( 1√

ε
), a measurement of the final state

|final〉 yields the target state |g〉 with probability at least 1− ε, where ε = sin2(θ) = 〈g|init〉2
is the initial success probability. Amplitude amplification thus amplifies quadratically faster
than classical repetition.

Now consider circuit U given in Figure 1 when W = 2|init〉〈init| − 1 is a reflection about
the initial state. Then U is the product of two reflections and effectively implements a
rotation in the two-dimensional subspace spanned by |0̃, g〉 and |0, g〉, where |g〉 = 1

cos(θ) (|g〉−
sin(θ)|init〉) is defined analogously to |init〉. The rotational angle is 2ϕ, where ϕ is given
by the inner product cos(ϕ) = 〈0, g|0̃, g〉 = cos(θ̃) cos(θ) =

√
cos(2θ). This gives us that

2ϕ ≈ 2
√

2θ. The initial state is |0, init〉 = 1√
2 (|U0〉+ |Urot〉), where |Urot〉 belongs to the two-

dimensional rotational subspace. We pick T = d π
2
√

2θ e, and produce the final state UT |0, init〉,
a measurement of which yields the target |1̃, g〉 = 1√

2 (|U0〉 − |Urot〉) with probability at least
1−O(ε).

4.1 Finding in the quantum hitting time for general A
When W is a reflection about the initial state |init〉, the previous subsection implies that
it suffices to choose T to be in the order of 1

θ , just as in amplitude amplification. For
arbitrary operators W, it suffices to choose T to be in the order of the quantum hitting
time QHT(U, |0, init〉) of U on the initial state |0, init〉.
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I Theorem 3. There is an algorithm that applies U an expected number of order QHT(U, |0, init〉)
times to the initial state |0, init〉, and produces a final state with constant overlap with |1̃, g〉.

The proof is as follows. By Lemma 2, the initial state |0, init〉 can be written as an equal
superposition of the principal eigenvector |U0〉 of U and the state |Urot〉 = 1√

2

(
|0, init〉+ |1̃, g〉

)
.

The state |U0〉 has constant overlap with the target state |1̃, g〉. The state |U0〉 is an eigenvector
of U with eigenphase 0, whereas the state |Urot〉 is a superposition of states with non-zero
eigenphases. Following a standard argument via phase estimation [19, 11, 8, 24, 23], we
can determine which is the case by successive (controlled) U applications. The primary
observations are that the success probability in phase estimation can be expressed naturally
in terms of our quantum hitting time QHTα, and the controls on U can be dropped.

The theorem remains true if we replace the quantum hitting time with the effective
quantum hitting time, at the expense of a drop in the overlap by at most a small constant.
Here the effective quantum hitting time is the smallest number of applications of (controlled) U
required to produce a final state with constant overlap with |1̃, g〉. By Markov’s inequality,
the effective quantum hitting time is at most in the order of the quantum hitting time.

Theorem 3 provides us with an expression of the cost of U in terms of the quantum hitting
time of U itself. We next relate the quantum hitting time of U to the quantum hitting times
of quantum search operators A and W. Let ε = sin2(θ) be the initial success probability,
where angle 0 < θ < π/2 is so that sin(θ) = |〈g|init〉|, and set angle 0 < θ̃ < π/2 so that
sin(θ̃) = sin(θ)

cos(θ) .

I Theorem 4.

QHT(U, |0, init〉) = QHT(U, |1̃, g〉) = Θ
(

1√
ε
QHT(W, |g〉)

)
= Θ

(
QHT(A, |init〉)

)
.

Consider Theorem 4. The first equality follows since the principal (+1)-eigenvector
|U0〉 = 1√

2 (|0, init〉 − |1̃, g〉) of the controlled amplifier U is an equal superposition of the
starting state and the target state. To prove the remaining two equalities, we relate the
computational quantity QHT to a structural quantity, an inner product.

I Lemma 5. Let V be any real unitary, and let |w〉 be a real state that does not overlap the
(+1)-eigenspace V+ of V. Then the operator S = V·(1−2|w〉〈w|) has a unique (+1)-eigenvector
|+S〉 orthogonal to V+, and it satisfies that QHT(V, |w〉) = Θ

( 1
|〈w|+S〉|

)
.

Proof. We first decompose |w〉 into the eigenbasis of V as |w〉 =
∑
j wj(|V

+
j 〉 + |V −j 〉) +

w−1|V−1〉, where wj ∈ R for all j. The states |V +
j 〉 and |V

−
j 〉 are the two conjugated

eigenstates for the jth rotational subspace of V with eigenphases ±ϕj . The state |V−1〉 is the
normalized projection of |w〉 onto the (−1)-eigenspace of V (when it exists). Then S has a
(+1)-eigenvector on the form |+ w〉 = |w〉+ i|w⊥〉 = |w〉+ i

∑
j wj cot

(ϕj
2
)(
|V −j 〉 − |V

+
j 〉
)
,

and it is the unique (+1)-eigenvector orthogonal to the trivial (+1)-eigenspace V+. The
norm ‖+ w‖ of |+w〉 is√

1 + ‖w⊥‖2 =
√

1 + 2
∑
j

w2
j cot2 (ϕj

2
)

= Θ(QHTcot(V, |w〉)) = Θ(QHT(V, |w〉)),

where the last equality follows by Lemma 9 given in the appendix. The normalized eigenvector
is then |+S〉 = 1

Θ(QHT(V,|w〉)) (|w〉+ i|w⊥〉). J

Note that in Theorem 4, the last two vectors are orthogonal to the (+1)-eigenspaces of
the respective operators, and hence Lemma 5 applies. Since the corresponding inner products

ICALP 2017
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0̃ 0̃ 0

G1 G2 W

Figure 6 The circuit U rewritten to permit an analysis of its action when there are multiple
targets.

are of the same order and also of the same order as the quantity QHT(U, |1̃, g〉), we deduce
the four quantum hitting times are of the same order, implying Theorem 4.

Theorem 4 implies that the quantum hitting time of U on |0, init〉 is asymptotically the
same as the quantum hitting time of A on |init〉.

I Corollary 6. There is an algorithm that applies circuit U an expected number in the order
of QHT(A, |init〉) times to the initial state |0, init〉 and produces a final state with constant
overlap with |1̃, g〉.

When A is a quantum walk derived from a reversible random walk P using Szegedy’s
construction [30], then A can detect the presence of a unique target in cost in the order
of QHT(A, |init〉) ∈ O(

√
HT(P, {m})), which is quadratically less than the hitting time

of P [23, 28]. The corollary thus implies that U finds a unique target quadratically faster
than classically.

5 Finding with multiple targets

We have analyzed our circuit U given in Figure 1 for a single target state |g〉. Consider
now we have t targets. Let |g1〉, . . . , |gt〉 be a set of t orthogonal states spanning this target
subspace G, and let ΠG be the projection onto G. In our circuit U in Figure 1, consider
we now have G = 1− 2ΠG. Let |gπ〉 be the normalized projection of |init〉 onto the target
subspace. Then επ = sin2(θ) = |〈gπ|init〉|2 is the total probability that a measurement of the
initial state would successfully produce any of the target states.

To analyze the circuit U when there are multiple targets, we again rewrite the circuit. Set
G1 = 1− 2|gπ〉〈gπ| and let G2 = 1− 2(ΠG − |gπ〉〈gπ|). We can then write our circuit U on the
form given in Figure 6. The rewritten circuit differs in form from our original circuit by the
second gate |0̃〉〈0̃| ⊗ G2 + |1̃〉〈1̃| ⊗ 1. In general, this second gate changes the quantum hitting
time of the circuit. For some classes of operators W, though, the second gate has no impact.
In particular, for quantum walks on reversible graphs when the operator W is comprised of a
reflection and a swap operator [30], we can compute an explicit expression of the complexity.

I Theorem 7. Let W be a reversible quantum walk with multiple marked elements. There is
an algorithm that applies U an expected number in the order of 1√

επ
· QHT(W, |gπ〉) times on

the initial state |0, init〉 and produces a final state with constant overlap with |1̃, gπ〉.

Note that in this theorem, |gπ〉 is the normalized projection of |init〉 onto the marked
subspace and επ is the total probability a measurement of |init〉 yields a marked element.
The state |gπ〉 is the normalized projection of |gπ〉 onto the subspace orthogonal to |init〉.
The theorem follows by observing that the quantum hitting times on the input |0, init〉 with
or without the second gate are the same.
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6 Faster algorithms for a unique marked element

Consider there is a unique marked element g. By Theorem 4, we can write QHT2(A, |init〉)
as a product of the two factors 1

ε and QHT2(W, |g〉). This decomposition permits us to
device a new quantum algorithm for finding a unique marked element with constant success
probability of cost in the order of

S +
√
HU + 1√

ε
C. (2)

Here H ∈ Õ(QHT2(A, |init〉)) is in the order of the square of the quantum hitting time, up to
logarithmic factors. When A is the quantum walk derived from a reversible random walk P
using Szegedy’s construction, then QHT2(A, |init〉) ∈ O(HT(P, {g})) is in the order of the
hitting time of P with unique marked element g.

Since the hitting time HT(P, {g}) is upper bounded by 1
εδ , the cost of our algorithm

is, up to logarithmic factors, upper bounded by the cost of the existing algorithms in [25,
23, 21]. Our algorithm is derived by using Theorem 4 and is based on recursive amplitude
amplification [17, 16, 25]. In terms of the checking cost C, our algorithm has the same cost
as amplitude amplification would have, which offers a quadratic speed-up over any classical
algorithm.

We also obtain a new classical algorithm that has cost of order

S +HU + 1
ε

C. (3)

Here H ∈ O(HT(P, {g})) is the hitting time of the reversible walk P with unique marked
element g, without logarithmic factors. This combines the best of two natural choices of
random walks having cost in the order of S+H(U+C) and S+ 1

ε ( 1
δU+C) (see e.g. Santha [29]

for a discussion on classical search algorithms). The main structure in our classical algorithm
is as follows.

1. Sample an initial vertex x according to the stationary distribution π.
2. Repeat the following of order H/E times

a. Let x denote the current state.
b. Check if x is marked. If so, halt and output x.
c. Else apply the random walk P a number of E times, starting from x.

3. If the current state x is marked, output x. Otherwise output “no marked element found.”

The proof is by showing that QHT2(W(PE), {g}) is upper bounded by a constant when E
is of order QHT2(W(P), {g}). This statement is effectively an example of a classical theorem
derived via quantum arguments. We have not been able to find this classical algorithm
discussed in the literature before, and it is to the best of our knowledge new. We neither know
of a way to prove that this classical algorithm finds a marked element in cost in the order of
the expression in Eq. 3 without explicitly or implicitly applying arguments resembling the
arguments introduced in this paper. It is, as far as we know, the first known random walk
derived through the notion of quantum walks. We refer the reader to the excellent survey by
Drucker and de Wolf [12] for further examples on quantum proofs for classical theorems.

7 Simulation of quantum interpolated walks

Our controlled amplifier can be applied to arbitrary real operators W, and we prove a general
bound on the cost of the amplifier given in terms of the quantum hitting time QHTα. We
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now consider operators W derived from reversible random walks. This is the broadest class
of random walks for which quantum algorithms of costs in the order of the quantum hitting
time have been derived. The general problem is given by a state space X on which we defined
a reversible random walk P. A subsetM of the states of X are marked (the elements ofM
correspond to the solutions to some computational problem). Our goal is to find an element
ofM.

Szegedy gives a general method for constructing a quantum walk W(P) from a reversible
random walk P [30, 23]. Krovi et al. give in [21] a notion of interpolation between a reversible
random walk P and its corresponding absorbing walk P′, which is obtained from P by
replacing all the transitions from marked vertices with self-loops. The interpolation P(s) is
between two classical walks, where we transition according to P′ with some fixed probability s,
and transition according to P with complementary probability 1 − s. The resulting walk
P(s) then yields a quantum walk W(P(s)) by Szegedy’s construction. We use W and W(s)
as shorthands for W(P) and W(P(s)), respectively. Let HT(P(s),M) denote the classical
hitting time of P(s). The quantum interpolated walk introduced in [21] finds a marked
element. It takes a number of steps that is in the order of HT+(P,M), where HT+(P,M)
is defined as HT+(P,M) = lims→1 HT(P(s),M). This limit is well-defined and referred to
as the extended hitting time [21]. We use HT and HT+ as shorthands for HT(P,M) and
HT+(P,M) when both P andM are fixed.

We show that controlled quantum amplifiers can simulate quantum interpolated walks.
We do so by giving a constructive embedding Es of W(s) into our framework. For a given
parameter s, we choose the angle θ̃ so that it satisfies that 0 ≤ θ̃ ≤ π/2 and that

sin θ̃ =
√

1− s, (4)

obtaining the circuit U = U(θ̃) (see Figure 1).
Let HM be the subspace of HW with marked items in the first register. Denote by

ε = sin2(θ) the initial success probability, namely the probability that we obtain a marked
state in the first register by measuring |init〉 according to {Π(HM), 1−Π(HM)}. The optimal
value for θ̃, which is θ̃ = arcsin

(
sin(θ)
cos(θ)

)
, corresponds to the optimal value of s, which is given

by s = 1− ε
1−ε .

Denote by HW(s) the space on which the quantum walk W(s) acts non-trivially (which is
the same as the space on which W acts non-trivially), and let HU denote the space on which
U(θ̃) acts. We define an embedding Es from HW(s) to a subspace of HU. We define Es on a
spanning set of HW(s) and then extend it by linearity,

Es


|u, p(s)u〉 7→ |0〉|u, pu〉
|p(s)u, u〉 7→ |0〉|pu, u〉
|m, p(s)m〉 7→ −|1̃〉|m, pm〉
|p(s)m,m〉 7→ sin θ̃|0〉|pm,m〉 − cos θ̃|1〉|m, pm〉.

(5)

The state |px〉 is a superposition of the neighbors of x and is defined by 〈y|px〉 being the
square-root of the probability of transition from state x to state y in the random walk P.
The states |p(s)x〉 are defined similarly the random walk P(s).

By direct inspection, the embedding preserves inner products and is thus well-defined.
Consider the following two maps from HW(s) to HU given by EsW(s) and U(θ̃)Es. The first
map first applies the quantum interpolated walk and then the embedding. The second map
first applies the embedding and then our controlled quantum walk U(θ̃). These two operators
act identically on each of the states given on the left hand sides in Eq. 5, and we thus
conclude that EsW(s) = U(θ̃)Es, implying Theorem 8.
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I Theorem 8. Fix any 0 ≤ s < 1. There is an inner-product preserving map Es from HW
to a subspace of HU such that EsW(s) = U(θ̃)Es.

Theorem 8 readily implies that controlled quantum walks can simulate quantum interpo-
lated walks. Instead of running a quantum interpolated walk on its initial state |init〉, we run a
controlled quantum walk on the initial state |0〉|init〉 = Es|init〉. Instead of measuring whether
we have produced the state |m, p(s)m〉 in a quantum interpolated walk, we run a controlled
quantum walk and measure whether we have produced the state |1̃〉|m, pm〉 = −Es|m, p(s)m〉.

By combining Theorems 7 and 8, we obtain that the extended hitting time HT+(P,M)
of a reversible walk P on a marked subsetM is in the order of 1

επ
QHT2(W(P), |gπ〉). Further,

we also re-derive the following result already shown by Ambainis and Kokainis [6]. Since
QHT(W, |gπ〉) ≤ 1√

δ
, we get that the extended hitting time is never more than a factor of

1/δ larger than the hitting time, and that the extended hitting time HT+(P,M) is in the
order of 1

επδ
for all marked subsetsM. Here δ is the spectral gap of the random walk P.

8 Concluding remarks

An quantum search algorithm takes two ingredients: an operator W and a reflection operator G.
The standard method in quantum search algorithms is to apply the composed operator
A = W · G. This method permits one to distinguish between the case when there is a marked
state and the case when there are none. It does not in general produce a marked state, even
when one exists.

We have here proposed a general method for amplifying the success probability of quantum
search algorithms. The method applies readily to arbitrary (real) operators W, including
operators derived from random walks. Our circuit U can be based equally well on either
of the two operators W or A, depending on the application in mind. We prove that the
controlled amplifier U finds a unique marked element in the same asymptotic cost as the
standard circuit A determines whether one exists or not. We then prove and use properties
of the controlled amplifier U to simulate amplitude amplification and interpolated walks, and
to derive a new quantum and classical algorithm. Up to logarithmic factors, the costs are in
the order of S +

√
HU + 1/

√
εC and S +HU + 1/εC, respectively. Both algorithms improve

upon the best known quantum and classical algorithms.

References
1 D. Aldous and J. Fill. Reversible Markov chains and random walks on graphs, 2002.

Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/
~aldous/RWG/book.

2 A. Ambainis. Quantum walks and their algorithmic applications. International Journal of
Quantum Information, 1:507–518, 2003. arXiv:quant-ph/0403120.

3 A. Ambainis. Quantum walk algorithm for element distinctness. In 45th IEEE Symposium
on Foundations of Computer Science, FOCS’04, pages 22–31, 2004. doi:10.1109/FOCS.
2004.54.

4 A. Ambainis, A.M. Childs, B. Reichardt, R. Špalek, and S. Zhang. Any AND-OR formula
of size N can be evaluated in time N1/2+o(1) on a quantum computer. SIAM Journal on
Computing, 39:2513–2530, 2010. doi:10.1109/FOCS.2007.57.

5 A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks faster. In 16th ACM
Symposium on Discrete Algorithms, SODA’05, pages 1099–1108, 2005. arXiv:quant-ph/
0402107.

ICALP 2017

http://www.stat.berkeley.edu/~aldous/RWG/book
http://www.stat.berkeley.edu/~aldous/RWG/book
http://arxiv.org/abs/quant-ph/0403120
http://dx.doi.org/10.1109/FOCS.2004.54
http://dx.doi.org/10.1109/FOCS.2004.54
http://dx.doi.org/10.1109/FOCS.2007.57
http://arxiv.org/abs/quant-ph/0402107
http://arxiv.org/abs/quant-ph/0402107


18:12 Controlled Quantum Amplification

6 A. Ambainis and M. Kokainis. Analysis of the extended hitting time and its properties.
Poster presented at QIP 2015, 2015.

7 A. Belovs, A.M. Childs, S. Jeffery, R. Kothari, and F. Magniez. Time-efficient quantum
walks for 3-distinctness. In 40th International Colloquium on Automata, Languages, and
Programming, ICALP’13, pages 105–122, 2013. doi:10.1007/978-3-642-39206-1_10.

8 G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and
estimation. Contemporary Mathematics, 305:53–74, 2002. arXiv:quant-ph/0005055.

9 H. Buhrman and R. Špalek. Quantum verification of matrix products. In 17th ACM-SIAM
Symposium on Discrete Algorithms, SODA’06, pages 880–889, 2006. arXiv:quant-ph/
0409035.

10 A.M. Childs and R. Kothari. Quantum query complexity of minor-closed graph properties.
In 28th Symposium on Theoretical Aspects of Computer Science, STACS’11, pages 661–672,
2011. doi:10.4230/LIPIcs.STACS.2011.661.

11 R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Pro-
ceedings of the Royal Society of London, Series A, 454:339–354, 1998. arXiv:quant-ph/
9708016.

12 A. Drucker and R. de Wolf. Quantum Proofs for Classical Theorems. Number 2 in Graduate
Surveys. Theory of Computing Library, 2011. doi:10.4086/toc.gs.2011.002.

13 F. Le Gall. Improved quantum algorithm for triangle finding via combinatorial arguments.
In 55th IEEE Symposium on Foundations of Computer Science, FOCS’14, pages 216–225,
2014. doi:10.1109/FOCS.2014.31.

14 F. Le Gall and S. Nakajima. Quantum algorithm for triangle finding in sparse graphs. In
15th Asian Quantum Information Science Conference, AQIS’15, 2015. arXiv:1507.06878.

15 L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical
Review Letters, 79:325–328, 1997. doi:10.1103/PhysRevLett.79.325.

16 P. Høyer and R. de Wolf. Improved quantum communication complexity bounds for disjoint-
ness and equality. In 19th Symp. on Theoretical Aspects of Computer Science, STACS’02,
pages 299–310, 2002. doi:10.1007/3-540-45841-7_24.

17 P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. In 30th
International Colloquium on Automata, Languages and Programming, ICALP’03, pages
291–299, 2003. doi:10.1007/3-540-45061-0_25.

18 J. Kempe. Quantum random walks: An introductory overview. Contemporary Physics,
44(4):307–327, 2003. doi:10.1080/00107151031000110776.

19 A. Kitaev. Quantum measurements and the abelian stabilizer problem, 1995. arXiv:
quant-ph/9511026.

20 H. Krovi, F. Magniez, M. Ozols, and J. Roland. Finding is as easy as detecting for quan-
tum walks. In 37st International Colloquium on Automata, Languages and Programming,
ICALP’10, pages 540—-551, 2010. arXiv:1002.2419v1.

21 H. Krovi, F. Magniez, M. Ozols, and J. Roland. Quantum walks can find a marked
element on any graph. Algorithmica, 74:851–907, February 2016. doi:10.1007/
s00453-015-9979-8.

22 H. Krovi, M. Ozols, and J. Roland. Adiabatic condition and the quantum hitting time of
Markov chains. Physical Review A, 82:022333, 2010. doi:10.1103/PhysRevA.82.022333.

23 F. Magniez, A. Nayak, P. Richter, and M. Santha. On the hitting times of quantum versus
random walks. Algorithmica, 63(1):91–116, 2012. doi:10.1007/s00453-011-9521-6.

24 F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. 39th ACM
Symposium on Theory of Computing, pages 575–584, 2007. doi:10.1137/090745854.

25 F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. SIAM Journal
on Computing, 40(1):142–164, Jan 2011. doi:10.1137/090745854.

http://dx.doi.org/10.1007/978-3-642-39206-1_10
http://arxiv.org/abs/quant-ph/0005055
http://arxiv.org/abs/quant-ph/0409035
http://arxiv.org/abs/quant-ph/0409035
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.661
http://arxiv.org/abs/quant-ph/9708016
http://arxiv.org/abs/quant-ph/9708016
http://dx.doi.org/10.4086/toc.gs.2011.002
http://dx.doi.org/10.1109/FOCS.2014.31
http://arxiv.org/abs/1507.06878
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1007/3-540-45841-7_24
http://dx.doi.org/10.1007/3-540-45061-0_25
http://dx.doi.org/10.1080/00107151031000110776
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/1002.2419v1
http://dx.doi.org/10.1007/s00453-015-9979-8
http://dx.doi.org/10.1007/s00453-015-9979-8
http://dx.doi.org/10.1103/PhysRevA.82.022333
http://dx.doi.org/10.1007/s00453-011-9521-6
http://dx.doi.org/10.1137/090745854
http://dx.doi.org/10.1137/090745854


C. Dohotaru and P. Høyer 18:13

26 F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem.
SIAM Journal on Computing, 27:413–424, 2007. doi:10.1137/050643684.

27 A. Nayak and F. Magniez. Quantum complexity of testing group commutativity. Algorith-
mica, 48:221–232, 2007. doi:10.1007/s00453-007-0057-8.

28 A. Nayak, P.C. Richter, and M. Szegedy. Quantum analogs of markov chains. In Ming-
Yang Kao, editor, Encyclopedia of Algorithms, pages 1–10. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. doi:10.1007/978-3-642-27848-8_302-2.

29 M. Santha. Quantum walk based search algorithms. In International Conference on
Theory and Applications of Models of Computation, pages 31–46, 2008. doi:10.1007/
978-3-540-79228-4_3.

30 M. Szegedy. Quantum speed-up of Markov chain based algorithms. In 45th IEEE
Symposium on Foundations of Computer Science, FOCS’04, pages 32–41, 2004. doi:
10.1109/FOCS.2004.53.

31 A. Tulsi. Faster quantum walk algorithm for the two dimensional spatial search. Physical
Review A, 78:012310, 2008. doi:10.1103/PhysRevA.78.012310.

32 S. E. Venegas-Andraca. Quantum walks: A comprehensive review. Quantum Information
Processing, 11(5):1015–1106, 2012. arXiv:1201.4780.

A A lemma

The following lemma, referenced in Section 3, shows that the two quantum hitting times,
QHTcot and QHTα are of the same asymptotic order.

I Lemma 9. For any real unitary U and any real state |w〉,

QHTcot(U, |w〉) ≤ 2 QHTα(U, |w〉) ≤
√

2 + QHTcot(U, |w〉).

Proof. Since sin x < x < tan x for any x ∈ (0, π/2),

cot2 x <
1
x2 < 1 + cot2 x. (6)

By the first inequality in Eq. 6,

QHTcot(U, |w〉) =

√√√√2
m∑
j=1
|wj |2 cot2

(αj
2

)
≤

√√√√2
m∑
j=1
|wj |2

(
4
α2
j

)
= 2 QHTα(U, |w〉),

proving the first inequality. Since the eigenphases αj of U belong to (0, π), the half angles
αj/2 belong to the interval (0, π/2). By the second inequality in Eq. 6, then

QHTα(U, |w〉) = 1√
2

√√√√ m∑
j=1
|wj |2

(
4
α2
j

)
≤ 1√

2

√√√√ m∑
j=1
|wj |2

(
1 + cot2

(αj
2

))

= 1√
2

√
1 + 1

2QHT2
cot(U, |w〉).

We obtain the second inequality in the lemma by applying the inequality
√
a+ b ≤

√
a+
√
b,

for positive reals a and b. J
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