4,867 research outputs found

    A greedy approximation algorithm for the group Steiner problem

    Get PDF
    AbstractIn the group Steiner problem we are given an edge-weighted graph G=(V,E,w) and m subsets of vertices {gi}i=1m. Each subset gi is called a group and the vertices in ⋃igi are called terminals. It is required to find a minimum weight tree that contains at least one terminal from every group.We present a poly-logarithmic ratio approximation for this problem when the input graph is a tree. Our algorithm is a recursive greedy algorithm adapted from the greedy algorithm for the directed Steiner tree problem [Approximating the weight of shallow Steiner trees, Discrete Appl. Math. 93 (1999) 265–285, Approximation algorithms for directed Steiner problems, J. Algorithms 33 (1999) 73–91]. This is in contrast to earlier algorithms that are based on rounding a linear programming based relaxation for the problem [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66–84, preliminary version in Proceedings of SODA, 1998 pp. 253–259, On directed Steiner trees, Proceedings of SODA, 2002, pp. 59–63]. We answer in positive a question posed in [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66–84, preliminary version in Proceedings of SODA, 1998 pp. 253–259] on whether there exist good approximation algorithms for the group Steiner problem that are not based on rounding linear programs. For every fixed constant ε>0, our algorithm gives an O((log∑i|gi|)1+ε·logm) approximation in polynomial time. Approximation algorithms for trees can be extended to arbitrary undirected graphs by probabilistically approximating the graph by a tree. This results in an additional multiplicative factor of O(log|V|) in the approximation ratio, where |V| is the number of vertices in the graph. The approximation ratio of our algorithm on trees is slightly worse than the ratio of O(log(maxi|gi|)·logm) provided by the LP based approaches

    Optimal Lower Bounds for Universal and Differentially Private Steiner Tree and TSP

    Get PDF
    Given a metric space on n points, an {\alpha}-approximate universal algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset X of vertices containing the root, the expected cost of the induced subtree is within an {\alpha} factor of the optimal Steiner tree cost for X. An {\alpha}-approximate differentially private algorithm for the Steiner tree problem takes as input a subset X of vertices, and outputs a tree distribution that induces a solution within an {\alpha} factor of the optimal as before, and satisfies the additional property that for any set X' that differs in a single vertex from X, the tree distributions for X and X' are "close" to each other. Universal and differentially private algorithms for TSP are defined similarly. An {\alpha}-approximate universal algorithm for the Steiner tree problem or TSP is also an {\alpha}-approximate differentially private algorithm. It is known that both problems admit O(logn)-approximate universal algorithms, and hence O(log n)-approximate differentially private algorithms as well. We prove an {\Omega}(logn) lower bound on the approximation ratio achievable for the universal Steiner tree problem and the universal TSP, matching the known upper bounds. Our lower bound for the Steiner tree problem holds even when the algorithm is allowed to output a more general solution of a distribution on paths to the root.Comment: 14 page

    Parameterized Complexity Dichotomy for Steiner Multicut

    Get PDF
    The Steiner Multicut problem asks, given an undirected graph G, terminals sets T1,...,Tt \subseteq V(G) of size at most p, and an integer k, whether there is a set S of at most k edges or nodes s.t. of each set Ti at least one pair of terminals is in different connected components of G \ S. This problem generalizes several graph cut problems, in particular the Multicut problem (the case p = 2), which is fixed-parameter tractable for the parameter k [Marx and Razgon, Bousquet et al., STOC 2011]. We provide a dichotomy of the parameterized complexity of Steiner Multicut. That is, for any combination of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of the problem (edge deletion and node deletion with and without deletable terminals), we prove either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or even (para-)NP-complete). We highlight that: - The edge deletion version of Steiner Multicut is fixed-parameter tractable for the parameter k+t on general graphs (but has no polynomial kernel, even on trees). We present two proofs: one using the randomized contractions technique of Chitnis et al, and one relying on new structural lemmas that decompose the Steiner cut into important separators and minimal s-t cuts. - In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the parameter k+t on general graphs. - All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p=3 and the graph is a tree plus one node. Hence, the results of Marx and Razgon, and Bousquet et al. do not generalize to Steiner Multicut. Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy for Steiner Multicut on trees (for tw(G) = 1), and a polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to constant or unbounded).Comment: As submitted to journal. This version also adds a proof of fixed-parameter tractability for parameter k+t using the technique of randomized contraction

    The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree

    Get PDF
    In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an nn-vertex graph G=(V,E,w)G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set SVS \subseteq V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n)o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)(6+\varepsilon)-approximate Steiner tree of a general graph in O~(nlogD)\tilde{O}(\sqrt{n} \log D) time per terminal addition or removal. Here, DD denotes the stretch of the metric induced by GG. For planar graphs we achieve the same running time and the approximation ratio of (2+ε)(2+\varepsilon). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)(4+\varepsilon)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.Comment: Full version of the paper accepted to STOC'1
    corecore