8,535 research outputs found

    PURIFY: a new approach to radio-interferometric imaging

    Get PDF
    In a recent article series, the authors have promoted convex optimization algorithms for radio-interferometric imaging in the framework of compressed sensing, which leverages sparsity regularization priors for the associated inverse problem and defines a minimization problem for image reconstruction. This approach was shown, in theory and through simulations in a simple discrete visibility setting, to have the potential to outperform significantly CLEAN and its evolutions. In this work, we leverage the versatility of convex optimization in solving minimization problems to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure promoted relies on the simultaneous-direction method of multipliers (SDMM), and contrasts with the current major-minor cycle structure of CLEAN and its evolutions, which in particular cannot handle the state-of-the-art minimization problems under consideration where neither the regularization term nor the data term are differentiable functions. We release a beta version of an SDMM-based imaging software written in C and dubbed PURIFY (http://basp-group.github.io/purify/) that handles various sparsity priors, including our recent average sparsity approach SARA. We evaluate the performance of different priors through simulations in the continuous visibility setting, confirming the superiority of SARA

    FAASTA: A fast solver for total-variation regularization of ill-conditioned problems with application to brain imaging

    Get PDF
    The total variation (TV) penalty, as many other analysis-sparsity problems, does not lead to separable factors or a proximal operatorwith a closed-form expression, such as soft thresholding for the _1\ell\_1 penalty. As a result, in a variational formulation of an inverse problem or statisticallearning estimation, it leads to challenging non-smooth optimization problemsthat are often solved with elaborate single-step first-order methods. When thedata-fit term arises from empirical measurements, as in brain imaging, it isoften very ill-conditioned and without simple structure. In this situation, in proximal splitting methods, the computation cost of thegradient step can easily dominate each iteration. Thus it is beneficialto minimize the number of gradient steps.We present fAASTA, a variant of FISTA, that relies on an internal solver forthe TV proximal operator, and refines its tolerance to balance computationalcost of the gradient and the proximal steps. We give benchmarks andillustrations on "brain decoding": recovering brain maps from noisymeasurements to predict observed behavior. The algorithm as well as theempirical study of convergence speed are valuable for any non-exact proximaloperator, in particular analysis-sparsity problems

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR
    corecore