8 research outputs found

    Embedding Graphs under Centrality Constraints for Network Visualization

    Full text link
    Visual rendering of graphs is a key task in the mapping of complex network data. Although most graph drawing algorithms emphasize aesthetic appeal, certain applications such as travel-time maps place more importance on visualization of structural network properties. The present paper advocates two graph embedding approaches with centrality considerations to comply with node hierarchy. The problem is formulated first as one of constrained multi-dimensional scaling (MDS), and it is solved via block coordinate descent iterations with successive approximations and guaranteed convergence to a KKT point. In addition, a regularization term enforcing graph smoothness is incorporated with the goal of reducing edge crossings. A second approach leverages the locally-linear embedding (LLE) algorithm which assumes that the graph encodes data sampled from a low-dimensional manifold. Closed-form solutions to the resulting centrality-constrained optimization problems are determined yielding meaningful embeddings. Experimental results demonstrate the efficacy of both approaches, especially for visualizing large networks on the order of thousands of nodes.Comment: Submitted to IEEE Transactions on Visualization and Computer Graphic

    The DFS-heuristic for orthogonal graph drawing☆☆Some of these result were published in the author's PhD thesis at Rutgers University; the author would like to thank her advisor, Prof. Endre Boros, for much helpful input. The results in Section 5 have been presented at the 8th Canadian Conference on Computational Geometry, Ottawa, 1996, see [1].

    Get PDF
    AbstractIn this paper, we present a new heuristic for orthogonal graph drawings, which creates drawings by performing a depth-first search and placing the nodes in the order they are encountered. This DFS-heuristic works for graphs with arbitrarily high degrees, and particularly well for graphs with maximum degree 3. It yields drawings with at most one bend per edge, and a total number of m−n+1 bends for a graph with n nodes and m edges; this improves significantly on the best previous bound of m−2 bends

    Drawing with SAT: four methods and A tool for producing railway infrastructure schematics

    Get PDF
    Schematic drawings showing railway tracks and equipment are commonly used to visualize railway operations and to communicate system specifications and construction blueprints. Recent advances in on-line collaboration and modeling tools have raised the expectations for quickly making changes to models, resulting in frequent changes to layouts, text, and/or symbols in schematic drawings. Automating the creation of high-quality schematic views from geographical and topological models can help engineers produce and update drawings efficiently. This paper introduces four methods for automatically producing schematic railway drawings with increasing level of quality and control over the result. The final method, implemented in the open-source tool that we have developed, can use any combination of the following optimization criteria, which can have different priorities in different use cases: width and height of the drawing, the diagonal line lengths, and the number of bends. We show how to encode schematic railway drawings as an optimization problem over Boolean and numerical domains, using combinations of unary number encoding, lazy difference constraints, and numerical optimization into an incremental SAT formulation. We compare drawings resulting from each of the four methods, applied to models of real-world engineering projects and existing railway infrastructure. We also show how to add symbols and labels to the track plan, which is important for the usefulness of the final outputs. Since the proposed tool is customizable and efficiently produces high-quality drawings from railML 2.x models, it can be used (as it is or extended) both as an integrated module in an industrial design tool like RailCOMPLETE, or by researchers for visualization purposes.publishedVersio

    Algorithms for area-efficient orthogonal drawings

    Get PDF
    n+1 2 \Theta n+1 2 area and, if the graph is biconnected, at most b n 2 c + 3 bends. These upper bounds match the upper bounds known for planar graphs of maximum degree 3. This algorithm produces optimal drawings (within a constant of 2) with respect to the number of bends, since we also depict a lower bound o
    corecore