6,066 research outputs found

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    A Faster Parameterized Algorithm for Treedepth

    Full text link
    The width measure \emph{treedepth}, also known as vertex ranking, centered coloring and elimination tree height, is a well-established notion which has recently seen a resurgence of interest. We present an algorithm which---given as input an nn-vertex graph, a tree decomposition of the graph of width ww, and an integer tt---decides Treedepth, i.e. whether the treedepth of the graph is at most tt, in time 2O(wt)n2^{O(wt)} \cdot n. If necessary, a witness structure for the treedepth can be constructed in the same running time. In conjunction with previous results we provide a simple algorithm and a fast algorithm which decide treedepth in time 22O(t)n2^{2^{O(t)}} \cdot n and 2O(t2)n2^{O(t^2)} \cdot n, respectively, which do not require a tree decomposition as part of their input. The former answers an open question posed by Ossona de Mendez and Nesetril as to whether deciding Treedepth admits an algorithm with a linear running time (for every fixed tt) that does not rely on Courcelle's Theorem or other heavy machinery. For chordal graphs we can prove a running time of 2O(tlogt)n2^{O(t \log t)}\cdot n for the same algorithm.Comment: An extended abstract was published in ICALP 2014, Track

    Tractable Optimization Problems through Hypergraph-Based Structural Restrictions

    Full text link
    Several variants of the Constraint Satisfaction Problem have been proposed and investigated in the literature for modelling those scenarios where solutions are associated with some given costs. Within these frameworks computing an optimal solution is an NP-hard problem in general; yet, when restricted over classes of instances whose constraint interactions can be modelled via (nearly-)acyclic graphs, this problem is known to be solvable in polynomial time. In this paper, larger classes of tractable instances are singled out, by discussing solution approaches based on exploiting hypergraph acyclicity and, more generally, structural decomposition methods, such as (hyper)tree decompositions

    Space Saving by Dynamic Algebraization

    Full text link
    Dynamic programming is widely used for exact computations based on tree decompositions of graphs. However, the space complexity is usually exponential in the treewidth. We study the problem of designing efficient dynamic programming algorithm based on tree decompositions in polynomial space. We show how to construct a tree decomposition and extend the algebraic techniques of Lokshtanov and Nederlof such that the dynamic programming algorithm runs in time O(2h)O^*(2^h), where hh is the maximum number of vertices in the union of bags on the root to leaf paths on a given tree decomposition, which is a parameter closely related to the tree-depth of a graph. We apply our algorithm to the problem of counting perfect matchings on grids and show that it outperforms other polynomial-space solutions. We also apply the algorithm to other set covering and partitioning problems.Comment: 14 pages, 1 figur

    Efficient Decomposition of Image and Mesh Graphs by Lifted Multicuts

    Full text link
    Formulations of the Image Decomposition Problem as a Multicut Problem (MP) w.r.t. a superpixel graph have received considerable attention. In contrast, instances of the MP w.r.t. a pixel grid graph have received little attention, firstly, because the MP is NP-hard and instances w.r.t. a pixel grid graph are hard to solve in practice, and, secondly, due to the lack of long-range terms in the objective function of the MP. We propose a generalization of the MP with long-range terms (LMP). We design and implement two efficient algorithms (primal feasible heuristics) for the MP and LMP which allow us to study instances of both problems w.r.t. the pixel grid graphs of the images in the BSDS-500 benchmark. The decompositions we obtain do not differ significantly from the state of the art, suggesting that the LMP is a competitive formulation of the Image Decomposition Problem. To demonstrate the generality of the LMP, we apply it also to the Mesh Decomposition Problem posed by the Princeton benchmark, obtaining state-of-the-art decompositions

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    The condition number of join decompositions

    Full text link
    The join set of a finite collection of smooth embedded submanifolds of a mutual vector space is defined as their Minkowski sum. Join decompositions generalize some ubiquitous decompositions in multilinear algebra, namely tensor rank, Waring, partially symmetric rank and block term decompositions. This paper examines the numerical sensitivity of join decompositions to perturbations; specifically, we consider the condition number for general join decompositions. It is characterized as a distance to a set of ill-posed points in a supplementary product of Grassmannians. We prove that this condition number can be computed efficiently as the smallest singular value of an auxiliary matrix. For some special join sets, we characterized the behavior of sequences in the join set converging to the latter's boundary points. Finally, we specialize our discussion to the tensor rank and Waring decompositions and provide several numerical experiments confirming the key results
    corecore