research

A Faster Parameterized Algorithm for Treedepth

Abstract

The width measure \emph{treedepth}, also known as vertex ranking, centered coloring and elimination tree height, is a well-established notion which has recently seen a resurgence of interest. We present an algorithm which---given as input an nn-vertex graph, a tree decomposition of the graph of width ww, and an integer tt---decides Treedepth, i.e. whether the treedepth of the graph is at most tt, in time 2O(wt)n2^{O(wt)} \cdot n. If necessary, a witness structure for the treedepth can be constructed in the same running time. In conjunction with previous results we provide a simple algorithm and a fast algorithm which decide treedepth in time 22O(t)n2^{2^{O(t)}} \cdot n and 2O(t2)n2^{O(t^2)} \cdot n, respectively, which do not require a tree decomposition as part of their input. The former answers an open question posed by Ossona de Mendez and Nesetril as to whether deciding Treedepth admits an algorithm with a linear running time (for every fixed tt) that does not rely on Courcelle's Theorem or other heavy machinery. For chordal graphs we can prove a running time of 2O(tlogt)n2^{O(t \log t)}\cdot n for the same algorithm.Comment: An extended abstract was published in ICALP 2014, Track

    Similar works