6,921 research outputs found

    A Bi-level Nonlinear Eigenvector Algorithm for Wasserstein Discriminant Analysis

    Full text link
    Much like the classical Fisher linear discriminant analysis, Wasserstein discriminant analysis (WDA) is a supervised linear dimensionality reduction method that seeks a projection matrix to maximize the dispersion of different data classes and minimize the dispersion of same data classes. However, in contrast, WDA can account for both global and local inter-connections between data classes using a regularized Wasserstein distance. WDA is formulated as a bi-level nonlinear trace ratio optimization. In this paper, we present a bi-level nonlinear eigenvector (NEPv) algorithm, called WDA-nepv. The inner kernel of WDA-nepv for computing the optimal transport matrix of the regularized Wasserstein distance is formulated as an NEPv, and meanwhile the outer kernel for the trace ratio optimization is also formulated as another NEPv. Consequently, both kernels can be computed efficiently via self-consistent-field iterations and modern solvers for linear eigenvalue problems. Comparing with the existing algorithms for WDA, WDA-nepv is derivative-free and surrogate-model-free. The computational efficiency and applications in classification accuracy of WDA-nepv are demonstrated using synthetic and real-life datasets

    Boosting performance for 2D linear discriminant analysis via regression

    Full text link
    Two Dimensional Linear Discriminant Analysis (2DLDA) has received much interest in recent years. However, 2DLDA could make pairwise distances between any two classes become significantly unbalanced, which may affect its performance. Moreover 2DLDA could also suffer from the small sample size problem. Based on these observations, we propose two novel algorithms called Regularized 2DLDA and Ridge Regression for 2DLDA (RR-2DLDA). Regularized 2DLDA is an extension of 2DLDA with the introduction of a regularization parameter to deal with the small sample size problem. RR-2DLDA integrates ridge regression into Regularized 2DLDA to balance the distances among different classes after the transformation. These proposed algorithms overcome the limitations of 2DLDA and boost recognition accuracy. The experimental results on the Yale, PIE and FERET databases showed that RR-2DLDA is superior not only to 2DLDA but also other state-of-the-art algorithms

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Over-optimism in bioinformatics: an illustration

    Get PDF
    In statistical bioinformatics research, different optimization mechanisms potentially lead to "over-optimism" in published papers. The present empirical study illustrates these mechanisms through a concrete example from an active research field. The investigated sources of over-optimism include the optimization of the data sets, of the settings, of the competing methods and, most importantly, of the method’s characteristics. We consider a "promising" new classification algorithm that turns out to yield disappointing results in terms of error rate, namely linear discriminant analysis incorporating prior knowledge on gene functional groups through an appropriate shrinkage of the within-group covariance matrix. We quantitatively demonstrate that this disappointing method can artificially seem superior to existing approaches if we "fish for significance”. We conclude that, if the improvement of a quantitative criterion such as the error rate is the main contribution of a paper, the superiority of new algorithms should be validated using "fresh" validation data sets

    Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.Comment: This paper has been withdrawn by the author due to the terrible writin
    corecore