365 research outputs found

    Energy sink-holes avoidance method based on fuzzy system in wireless sensor networks

    Get PDF
    The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink

    QoS BASED ENERGY EFFICIENT ROUTING IN WIRELESS SENSOR NETWORK

    Get PDF
    A Wireless Sensor Networks (WSN) is composed of a large number of low-powered sensor nodes that are randomly deployed to collect environmental data. In a WSN, because of energy scarceness, energy efficient gathering of sensed information is one of the most critical issues. Thus, most of the WSN routing protocols found in the literature have considered energy awareness as a key design issue. Factors like throughput, latency and delay are not considered as critical issues in these protocols. However, emerging WSN applications that involve multimedia and imagining sensors require end-to-end delay within acceptable limits. Hence, in addition to energy efficiency, the parameters (delay, packet loss ratio, throughput and coverage) have now become issues of primary concern. Such performance metrics are usually referred to as the Quality of Service (QoS) in communication systems. Therefore, to have efficient use of a sensor node’s energy, and the ability to transmit the imaging and multimedia data in a timely manner, requires both a QoS based and energy efficient routing protocol. In this research work, a QoS based energy efficient routing protocol for WSN is proposed. To achieve QoS based energy efficient routing, three protocols are proposed, namely the QoS based Energy Efficient Clustering (QoSEC) for a WSN, the QoS based Energy Efficient Sleep/Wake Scheduling (QoSES) for a WSN, and the QoS based Energy Efficient Mobile Sink (QoSEM) based Routing for a Clustered WSN. Firstly, in the QoSEC, to achieve energy efficiency and to prolong network/coverage lifetime, some nodes with additional energy resources, termed as super-nodes, in addition to normal capability nodes, are deployed. Multi-hierarchy clustering is done by having super-nodes (acting as a local sink) at the top tier, cluster head (normal node) at the middle tier, and cluster member (normal node) at the lowest tier in the hierarchy. Clustering within normal sensor nodes is done by optimizing the network/coverage lifetime through a cluster-head-selection algorithm and a sleep/wake scheduling algorithm. QoSEC resolves the hot spot problem and prolongs network/coverage lifetime. Secondly, the QoSES addressed the delay-minimization problem in sleep/wake scheduling for event-driven sensor networks for delay-sensitive applications. For this purpose, QoSES assigns different sleep/wake intervals (longer wake interval) to potential overloaded nodes, according to their varied traffic load requirement defined a) by node position in the network, b) by node topological importance, and c) by handling burst traffic in the proximity of the event occurrence node. Using these heuristics, QoSES minimizes the congestion at nodes having heavy traffic loads and ultimately reduces end-to-end delay while maximizing the throughput. Lastly, the QoSEM addresses hot spot problem, delay minimization, and QoS assurance. To address hot-spot problem, mobile sink is used, that move in the network to gather data by virtue of which nodes near to the mobile sink changes with each movement, consequently hot spot problem is minimized. To achieve delay minimization, static sink is used in addition to the mobile sink. Delay sensitive data is forwarded to the static sink, while the delay tolerant data is sent through the mobile sink. For QoS assurance, incoming traffic is divided into different traffic classes and each traffic class is assigned different priority based on their QoS requirement (bandwidth, delay) determine by its message type and content. Furthermore, to minimize delay in mobile sink data gathering, the mobile sink is moved throughout the network based on the priority messages at the nodes. Using these heuristics, QoSEM incur less end-to-end delay, is energy efficient, as well as being able to ensure QoS. Simulations are carried out to evaluate the performance of the proposed protocols of QoSEC, QoSES and QoSEM, by comparing their performance with the established contemporary protocols. Simulation results have demonstrated that when compared with contemporary protocols, each of the proposed protocol significantly prolong the network and coverage lifetime, as well as improve the other QoS routing parameters, such as delay, packet loss ratio, and throughput

    Wireless Sensor Networks for Building Robotic Paths - A Survey of Problems and Restrictions

    Get PDF
    The conjugation of small nodes with sensing, communication and processing capabilities allows for the creation of wireless sensor networks (WSNs). These networks can be deployed to measure a very wide range of environmental phenomena and send data from remote locations back to users. They offer new and exciting possibilities for applications and research. This paper presents the background of WSNs by firstly exploring the different fields applications, with examples for each of these fields, then the challenges faced by these networks in areas such as energy-efficiency, node localization, node deployment, limited storage and routing. It aims at explaining each issue and giving solutions that have been proposed in the research literature. Finally, the paper proposes a practical scenario of deploying a WSN by autonomous robot path construction. The requirements for such a scenario and the open issues that can be tackled by it are exposed, namely the issues of associated with measuring RSSI, the degree of autonomy of the robot and connectivity restoration.The authors would like to acknowledge the company Inspiring Sci, Lda for the interest and valuable contribution to the successful development of this work.info:eu-repo/semantics/publishedVersio

    An Energy Efficient Routing Protocol for Wireless Sensor Networks using A-star Algorithm

    Get PDF
    AbstractSensors are regarded as significant components of electronic devices. In most applications of wireless sensor networks (WSNs), important and critical information must be delivered to the sink in a multi-hop and energy-efficient manner. Inasmuch as the energy of sensor nodes is limited, prolonging network lifetime in WSNs is considered to be a critical issue. In order to extend the network lifetime, researchers should consider energy consumption in routing protocols of WSNs. In this paper, a new energy-efficient routing protocol (EERP) has been proposed for WSNs using A-star algorithm. The proposed routing scheme improves the network lifetime by forwarding data packets via the optimal shortest path. The optimal path can be discovered with regard to the maximum residual energy of the next hop sensor node, high link quality, buffer occupancy and minimum hop counts. Simulation results indicate that the proposed scheme improves network lifetime in comparison with A-star and fuzzy logic(A&F) protocol

    Energy-aware Dual-path Geographic Routing to Bypass Routing Holes in Wireless Sensor Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Geographic routing has been considered as an attractive approach for resource-constrained wireless sensor networks (WSNs) since it exploits local location information instead of global topology information to route data. However, this routing approach often suffers from the routing hole (i.e., an area free of nodes in the direction closer to destination) in various environments such as buildings and obstacles during data delivery, resulting in route failure. Currently, existing geographic routing protocols tend to walk along only one side of the routing holes to recover the route, thus achieving suboptimal network performance such as longer delivery delay and lower delivery ratio. Furthermore, these protocols cannot guarantee that all packets are delivered in an energy-efficient manner once encountering routing holes. In this paper, we focus on addressing these issues and propose an energy-aware dual-path geographic routing (EDGR) protocol for better route recovery from routing holes. EDGR adaptively utilizes the location information, residual energy, and the characteristics of energy consumption to make routing decisions, and dynamically exploits two node-disjoint anchor lists, passing through two sides of the routing holes, to shift routing path for load balance. Moreover, we extend EDGR into three-dimensional (3D) sensor networks to provide energy-aware routing for routing hole detour. Simulation results demonstrate that EDGR exhibits higher energy efficiency, and has moderate performance improvements on network lifetime, packet delivery ratio, and delivery delay, compared to other geographic routing protocols in WSNs over a variety of communication scenarios passing through routing holes. The proposed EDGR is much applicable to resource-constrained WSNs with routing holes.This work has been partially supported by the National Natural Science Foundation of China (No. 61402343, No. 61672318, No. U1504614, No. 61631013, and No. 61303241), the National Key Research and Development Program (No. 2016YFB1000102), the Natural Science Foundation of Suzhou/Jiangsu Province (No. BK20160385), the EU FP7 QUICK Project (No. PIRSESGA- 2013-612652), and the projects of Tsinghua National Laboratory for Information Science and Technology (TNList)

    An Energy Efficient Self-healing Mechanism for Long Life Wireless Sensor Networks

    Full text link
    In this paper, we provide an energy efficient self- healing mechanism for Wireless Sensor Networks. The proposed solution is based on our probabilistic sentinel scheme. To reduce energy consumption while maintaining good connectivity between sentinel nodes, we compose our solution on two main concepts, node adaptation and link adaptation. The first algorithm uses node adaptation technique and permits to distributively schedule nodes activities and select a minimum subset of active nodes (sentry) to monitor the interest region. And secondly, we in- troduce a link control algorithm to ensure better connectiv- ity between sentinel nodes while avoiding outliers appearance. Without increasing control messages overhead, performances evaluations show that our solution is scalable with a steady energy consumption. Simulations carried out also show that the proposed mechanism ensures good connectivity between sentry nodes while considerably reducing the total energy spent.Comment: 6 pages, 8 figures. arXiv admin note: text overlap with arXiv:1309.600

    Improvement of non-uniform node deployment mechanism for corona-based wireless sensor networks

    Get PDF
    The promising technology of Wireless Sensor Networks (WSNs), lots of applications have been developed for monitoring and tracking in military, commercial, and educational environments. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In corona-based Wireless Sensor Networks (WSNs), nodes that are positioned in coronas near the sink drain their energy faster than others as they are burdened with relaying traffic come from distant coronas forming energy holes in the network. This situation shows significant effects on the network efficiency in terms of lifetime and energy consumption. The network may stop operation prematurely even though there is much energy left unused at the distant nodes. In this thesis, non-uniform node deployments and energy provisioning strategies are proposed to mitigate energy holes problem. These strategies concerns the optimal number of sensors required in each corona in order to balance the energy consumption and to meet the coverage and connectivity requirements in the network. In order to achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption. The energy provisioning technique is proposed for harmonizing the energy consumption among coronas by computing the extra needed energy in every corona. In the proposed mechanism, the energy required in each corona for balanced energy consumption is computed by determining the initial energy in each node with respect to its corona, and according to the corona load while satisfying the network coverage and connectivity requirements. The theoretical design and modeling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The proposed technique could improve the network lifetime noticeably via fair balancing of energy consumption ratio among coronas about 9.4 times more than other work. This is confirmed by the evaluation results that have been showed that the proposed solution offers efficient energy distribution that can enhance the lifetime about 40% compared to previous research works
    • …
    corecore