2,816 research outputs found

    Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

    Get PDF
    We study nearly-linear time approximation algorithms for non-preemptive scheduling problems in two settings: the unrelated machine setting, and the identical machine with job precedence constraints setting, under the well-studied objectives such as makespan and weighted completion time. For many problems, we develop nearly-linear time approximation algorithms with approximation ratios matching the current best ones achieved in polynomial time. Our main technique is linear programming relaxation. For the unrelated machine setting, we formulate mixed packing and covering LP relaxations of nearly-linear size, and solve them approximately using the nearly-linear time solver of Young. For the makespan objective, we develop a rounding algorithm with (2+?)-approximation ratio. For the weighted completion time objective, we prove the LP is as strong as the rectangle LP used by Im and Li, leading to a nearly-linear time (1.45 + ?)-approximation for the problem. For problems in the identical machine with precedence constraints setting, the precedence constraints can not be formulated as packing or covering constraints. To achieve the nearly-linear running time, we define a polytope for the constraints, and leverage the multiplicative weight update (MWU) method with an oracle which always returns solutions in the polytope

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    Nearly-Linear Time Approximate Scheduling Algorithms

    Full text link
    We study nearly-linear time approximation algorithms for non-preemptive scheduling problems in two settings: the unrelated machine setting, and the identical machine with job precedence constraints setting. The objectives we study include makespan, weighted completion time, and LqL_q norm of machine loads. We develop nearly-linear time approximation algorithms for the studied problems with O(1)O(1)-approximation ratios, many of which match the correspondent best known ratios achievable in polynomial time. Our main technique is linear programming relaxation. For problems in the unrelated machine setting, we formulate mixed packing and covering LP relaxations of nearly-linear size, and solve them approximately using the nearly-linear time solver of Young. We show the LP solutions can be rounded within O(1)O(1)-factor loss. For problems in the identical machine with precedence constraints setting, the precedence constraints can not be formulated as packing or covering constraints. To achieve the claimed running time, we define a polytope for the constraints, and leverage the multiplicative weight update (MWU) method with an oracle which always returns solutions in the polytope. Along the way of designing the oracle, we encounter the single-commodity maximum flow problem over a directed acyclic graph G=(V,E)G = (V, E), where sources and sinks have limited supplies and demands, but edges have infinite capacities. We develop a 11+ϵ\frac{1}{1+\epsilon}-approximation for the problem in time O(EϵlogV)O\left(\frac{|E|}{\epsilon}\log |V|\right), which may be of independent interest

    On Network Coding Capacity - Matroidal Networks and Network Capacity Regions

    Get PDF
    One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.Comment: Master of Engineering Thesis, MIT, September 2010, 70 pages, 10 figure

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also TtTt1| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(logmlogr)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(logm)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant ϵ>0\epsilon>0, there is no O(n1ϵ)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case

    On the Combinatorial Complexity of Approximating Polytopes

    Get PDF
    Approximating convex bodies succinctly by convex polytopes is a fundamental problem in discrete geometry. A convex body KK of diameter diam(K)\mathrm{diam}(K) is given in Euclidean dd-dimensional space, where dd is a constant. Given an error parameter ε>0\varepsilon > 0, the objective is to determine a polytope of minimum combinatorial complexity whose Hausdorff distance from KK is at most εdiam(K)\varepsilon \cdot \mathrm{diam}(K). By combinatorial complexity we mean the total number of faces of all dimensions of the polytope. A well-known result by Dudley implies that O(1/ε(d1)/2)O(1/\varepsilon^{(d-1)/2}) facets suffice, and a dual result by Bronshteyn and Ivanov similarly bounds the number of vertices, but neither result bounds the total combinatorial complexity. We show that there exists an approximating polytope whose total combinatorial complexity is O~(1/ε(d1)/2)\tilde{O}(1/\varepsilon^{(d-1)/2}), where O~\tilde{O} conceals a polylogarithmic factor in 1/ε1/\varepsilon. This is a significant improvement upon the best known bound, which is roughly O(1/εd2)O(1/\varepsilon^{d-2}). Our result is based on a novel combination of both old and new ideas. First, we employ Macbeath regions, a classical structure from the theory of convexity. The construction of our approximating polytope employs a new stratified placement of these regions. Second, in order to analyze the combinatorial complexity of the approximating polytope, we present a tight analysis of a width-based variant of B\'{a}r\'{a}ny and Larman's economical cap covering. Finally, we use a deterministic adaptation of the witness-collector technique (developed recently by Devillers et al.) in the context of our stratified construction.Comment: In Proceedings of the 32nd International Symposium Computational Geometry (SoCG 2016) and accepted to SoCG 2016 special issue of Discrete and Computational Geometr

    Lift & Project Systems Performing on the Partial-Vertex-Cover Polytope

    Full text link
    We study integrality gap (IG) lower bounds on strong LP and SDP relaxations derived by the Sherali-Adams (SA), Lovasz-Schrijver-SDP (LS+), and Sherali-Adams-SDP (SA+) lift-and-project (L&P) systems for the t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-Cover problem in which only t edges need to be covered. t-PVC admits a 2-approximation using various algorithmic techniques, all relying on a natural LP relaxation. Starting from this LP relaxation, our main results assert that for every epsilon > 0, level-Theta(n) LPs or SDPs derived by all known L&P systems that have been used for positive algorithmic results (but the Lasserre hierarchy) have IGs at least (1-epsilon)n/t, where n is the number of vertices of the input graph. Our lower bounds are nearly tight. Our results show that restricted yet powerful models of computation derived by many L&P systems fail to witness c-approximate solutions to t-PVC for any constant c, and for t = O(n). This is one of the very few known examples of an intractable combinatorial optimization problem for which LP-based algorithms induce a constant approximation ratio, still lift-and-project LP and SDP tightenings of the same LP have unbounded IGs. We also show that the SDP that has given the best algorithm known for t-PVC has integrality gap n/t on instances that can be solved by the level-1 LP relaxation derived by the LS system. This constitutes another rare phenomenon where (even in specific instances) a static LP outperforms an SDP that has been used for the best approximation guarantee for the problem at hand. Finally, one of our main contributions is that we make explicit of a new and simple methodology of constructing solutions to LP relaxations that almost trivially satisfy constraints derived by all SDP L&P systems known to be useful for algorithmic positive results (except the La system).Comment: 26 page
    corecore