
Nearly-Linear Time LP Solvers and Rounding
Algorithms for Scheduling Problems
Shi Li #Ñ

State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract
We study nearly-linear time approximation algorithms for non-preemptive scheduling problems in two
settings: the unrelated machine setting, and the identical machine with job precedence constraints
setting, under the well-studied objectives such as makespan and weighted completion time. For
many problems, we develop nearly-linear time approximation algorithms with approximation ratios
matching the current best ones achieved in polynomial time.

Our main technique is linear programming relaxation. For the unrelated machine setting,
we formulate mixed packing and covering LP relaxations of nearly-linear size, and solve them
approximately using the nearly-linear time solver of Young. For the makespan objective, we develop
a rounding algorithm with (2 + ϵ)-approximation ratio. For the weighted completion time objective,
we prove the LP is as strong as the rectangle LP used by Im and Li, leading to a nearly-linear time
(1.45 + ϵ)-approximation for the problem.

For problems in the identical machine with precedence constraints setting, the precedence
constraints can not be formulated as packing or covering constraints. To achieve the nearly-linear
running time, we define a polytope for the constraints, and leverage the multiplicative weight update
(MWU) method with an oracle which always returns solutions in the polytope.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Nearly-Linear Time, Sheduling, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.86

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2111.04897

Funding Shi Li: Part of the work was supported by NSF-grant CCF-1844890.

1 Introduction

Scheduling theory is an important sub-area of combinatorial optimization, operations research
and approximation algorithms. Over the past few decades, advanced techniques have been
developed to design approximation algorithms for numerous scheduling problems, among
which mathematical relaxation is a prominent one. The algorithms based on the technique
follow a two-step framework: solve some linear/convex/semi-definite programming relaxation
for the problem to obtain a fractional schedule, and round it into an integral one. The main
focus of the algorithm design in the literature has been the best approximation ratios that
can be achieved in polynomial time. Many of the LPs used have size much larger than that
of the input, and a general convex/semi-definite program requires a large polynomial time to
solve, making these algorithms impractical.

To overcome the running time issue, we design approximate LP-based scheduling al-
gorithms that run in nearly-linear time. We focus on two well-studied non-preemptive
scheduling settings:
1. Unrelated machine setting. We are given a set J of n jobs, a set M of m machines, a

bipartite graph G = (M, J, E) between M and J , and a processing time pij ∈ Z>0 for
every ij ∈ E, indicating the time it takes to process job j on machine i. If ij /∈ E, then

EA
T

C
S

© Shi Li;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 86; pp. 86:1–86:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shili@nju.edu.cn
https://tcs.nju.edu.cn/shili/ \protect \@normalcr \relax Department of Computer Science and Engineering, University at Buffalo, NY, USA
https://orcid.org/0000-0001-9140-9415
https://doi.org/10.4230/LIPIcs.ICALP.2023.86
https://arxiv.org/abs/2111.04897
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

86:2 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

the job j can not be processed on machine i. The output of a problem in this setting
is an assignment σ ∈ MJ of jobs to machines so that σjj ∈ E for every j ∈ J . This
indicates that we process the job j on machine σj .

2. Identical machine with job precedence constraints setting. In this setting, we
are given a set J of n jobs, each job j ∈ J with a processing time pj ∈ Z≥0, and the
number m ≥ 1 of identical machines. There are precedence constraints of the form j ≺ j′,
indicating that the job j′ can only start after job j completes. The output of a problem
in the setting is a completion time vector (Cj)j∈J ∈ ZJ

≥0, meaning that a job j ∈ J

is processed during the time interval (Cj − pj , Cj]. We need Cj ≥ pj for every j ∈ J ,
Cj ≤ Cj′ − pj′ for every j ≺ j′, and every integer t ≥ 1 is contained in (Cj − pj , Cj] for
at most m jobs j ∈ J .1

The main objective function we focus on is weighted completion time: We are additionally
given a weight wj ∈ Z>0 for every job j ∈ J , and the goal of the problem is to minimize∑

j∈J wjCj , where Cj is the completion time of j on its assigned machine. For the second
setting, this is explicitly given by the output. For the first setting, given the assignment
σ ∈MJ of jobs to machines, it is well-known that the Smith’s rule2 gives the optimum order
on each machine i. For the first setting, we also consider the objective of minimizing the
makespan, which is defined as maxi

∑
j∈σ−1(i) pij , i.e., the maximum load over all machines.

It is convenient for us to use the classic three-field notation α|β|γ in [19] to denote schedul-
ing problems studied in this paper.3 The makespan and weighted completion time minimiz-
ation problems in the unrelated machine setting are denoted as R||Cmax and R||

∑
j wjCj

respectively. The problem to minimize weighted completion time in the identical machine
with job precedence constraint setting is denoted as P |prec|

∑
j wjCj . We will also consider

special cases of the problem, and give their notations when we discuss them.
There is a rich literature on designing approximation algorithms for these problems. For

the unrelated makespan minimization problem, i.e., R||Cmax, the classic result of Lenstra,
Shmoys and Tardos [32] gives a 2-approximation, which remains the state-of-the-art result.
The problem is NP-hard to approximate within a factor of better than 1.5. Plotkin, Shmoys
and Tardos [39] studied fast approximation algorithms for the problem, as an application of
their packing and covering LP solver. They developed a randomized (2 + ϵ)-approximation
algorithm in time Õϵ(mn).4 So their algorithm is nearly-linear if |E| = Θ(mn). Much work
on the problem has focused on a special setting called the restricted assignment setting
[49, 24, 25], where there is an intrinsic size pj ∈ Z>0 for every j ∈ J , and for every ij ∈ E

we have pij = pj .
For the unrelated machine weighted completion time problem, i.e., R||

∑
j wjCj , many

independent rounding algorithms achieve an approximation ratio of 1.5 [42, 47, 43, 35].
Bansal, Svensson and Srinivasan [5] showed that the barrier of 1.5 is inherent for this type of
algorithms. To overcome the barrier, they developed a novel dependent rounding scheme

1 It is a folklore that if the last property is satisfied, we can assign {(Cj − pj], j ∈ [J]} to m machines so
that the intervals assigned to each machine are disjoint.

2 By this rule, we schedule jobs j assigned to a machine i using non-decreasing order of pij/wj .
3 In the notation, α indicates the machine model, β gives the set of additional constraints, and γ is the

objective. α = R and α = P denote the unrelated and identical machine settings respectively, and
prec ∈ β indicates that jobs have precedence constraints. γ = Cmax and γ =

∑
j

wjCj denote the
makespan and weighted completion time objectives respectively.

4 In this paper, we use Õϵ(·) to hide a factor that is poly-logarithmic in the input size of the instance
being considered, which will be clear from the context, and polynomial in 1/ϵ, where ϵ is a precision
parameter. An algorithm is nearly-linear if its running time is Õϵ(input size).

S. Li 86:3

and a lifted SDP relaxation for the problem, leading to a (1.5− 1/2160000)-approximation
algorithm. The ratio has been improved to 1.5 − 1/6000 by Li [35], to 1.488 by Im and
Shadloo [23] and to the current best ratio of 1.45 by Im and Li [22]. The three subsequent
works are based on the rectangle LP relaxation for the problem.

There is a vast literature on the problem of minimizing weighted completion time in the
identical machine with job precedence constraints setting, i.e., the problem P |prec|

∑
j wjCj .

A special case of the problem where there is only one machine (i.e., m = 1), denoted as
1|prec|

∑
j wjCj , is already non-trivial. Hall et al. [20] developed a 2-approximation for the

problem, which is the best possible under some stronger version of the unique game conjecture
introduced by Bansal and Khot [4]. Another special case that is considered moderately in
the literature is when all jobs have unit-size, denoted as P |prec, pj = 1|

∑
j wjCj . Munier,

Queyranne and Schulz [37] gave approximation ratios of 3 and 4 for the special case and
the general problem P |prec|

∑
j wjCj respectively. The ratios were improved to 1 +

√
2 and

2 + 2 ln 2 by Li [35]. Most algorithms [20, 37, 41, 35] for P |prec|
∑

j wjCj and the two special
cases use the following framework: Solve some linear/convex program to obtain an order of
the jobs respecting the precedence constraints. For every job in this order, schedule it as
early as possible, without violating the precedence and m-machine constraints.

Most of the results we discussed focused on optimizing the approximation ratios with
polynomial time algorithms. Albeit being polynomial, the running times in these results are
often very large. For LP-based algorithms, this may be caused by two factors. First, the
size of an LP might already be large w.r.t the input size. Consider a typical time-indexed
LP relaxation in the unrelated machine setting, one need a variable for every triple ijs

with ij ∈ E and s being the starting time. Assuming the number of possible starting times
is linear in n, the number of variables in the LP is already Θ(n|E|); the size of the LP
can only be bigger. Second, these algorithms often use a general LP solver, which has a
large running time w.r.t the size of the LP. There is a vast literature in recent years on
designing exact and approximate general LP solvers. Here we could only include a few
representative results. To solve a linear program with n̄ variables, m̄ constraints and N̄

non-zero coefficients up to a precision of ϵ, Lee and Sidford [29] developed an algorithm
with running time Õ

(
(N̄ + m̄2)

√
m̄ log 1

ϵ

)
. Lee, Song and Zhang [30] gave an algorithm

with running time Õ(n̄ω log 1
ϵ),5 where ω ≈ 2.373 is the current best exponent for matrix

multiplication. Brand, Lee, Sidford and Song [8] provided a Õ(m̄n̄ + n̄3) time randomized
algorithm that solves the LP exactly with high probability; the running time is nearly linear
if the constraint matrix is dense and tall. However, to solve general linear programs, these
running times are at least quadratic, even if the LP has a linear size. Convex or semi-definite
programming based algorithms need to solve the CP/SDP using the interior point or ellipsoid
methods, which are often time-consuming.

1.1 Our Results
To overcome the above issue, we design approximation algorithms for scheduling problems,
that run in nearly-linear time, i.e., in time Õϵ(input size). So, up to a poly(log n, 1/ϵ)-factor,
our running times are the best possible. Some of the algorithms we developed have been
studied empirically [2]. In the unrelated machine setting, G = (M, J, E) denotes the bipartite
graph between M and J , and a nearly-linear time is of order Õϵ(|E|). For the identical
machine with precedence constraints setting, we use κ to denote the number of precedence

5 The result requires that the LP does not have redundant constraints.

ICALP 2023

86:4 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

constraints. A nearly-linear time algorithm runs in time Õϵ(n + κ). Unlike the polynomial
running time scenario, we can not assume ≺ is transitive, as it may dramatically increase
the number of precedence constraints to quadratic. Moreover, the best known algorithm
computing the transitive closure of the precedence constraints takes O(nκ) time [40].

For many problems, including R||Cmax, R||
∑

j wjCj , 1|prec|
∑

j wjCj and P |prec, pj =
1|

∑
j wjCj , our nearly-linear time algorithms achieve the correspondent best known

polynomial-time approximation ratios, due to Lenstra, Shmoys and Tardos [32], Im and
Li [22], Hall et al. [20], and Li [35] respectively.

▶ Theorem 1.1. For any ϵ > 0, there is a Õϵ(|E|)-time (2 + ϵ)-approximation algorithm for
R||Cmax, i.e., the makespan minimization problem on unrelated machines.

For the problem R||
∑

j wjCj , we believe that showing that the rectangle LP can be
approximated in nearly-linear time is interesting on its own. So we give two theorems for the
problem. Refer to LP(6) for the formal description of the rectangle LP for the problem.

▶ Theorem 1.2. Consider an instance of R||
∑

j wjCj and the rectangle LP (6) for the
instance. Let ϵ > 0 and lp(6) be the value of the LP. Then in Õϵ(|E|) time, we can construct
a solution z to the LP such that:

z satisfies all the constraints in the LP, except that the constraint at most one job is
processed on any machine at any time may be violated by a factor of 1 + ϵ. (Formally,
Constraint (8) is only satisfied with the right-side replaced by 1 + ϵ.)
The value of z to the LP is at most (1 + ϵ)lp(6).

In the theorem, our z will be represented by the list of non-zero coordinates and their
values. Then, we show that the rounding algorithm of Im and Li [22] can indeed run in time
nearly-linear on the support size of the LP solution. This gives the following theorem.

▶ Theorem 1.3. For any ϵ > 0, there is a Õϵ(|E|)-time (1.45+ϵ)-approximation algorithm for
R||

∑
j wjCj , i.e., the weighted completion time minimization problem on unrelated machines.

The following two theorems are for 1|prec|
∑

j wjCj and P |prec, pj = 1|
∑

j wjCj .

▶ Theorem 1.4. For any ϵ > 0, there is a Õϵ((n + κ) log pmax)-time (2 + ϵ)-approximation
algorithm for 1|prec|

∑
j wjCj , i.e., the weighted completion time problem on a single machine

with precedence constraints, where pmax := maxj∈J pj is the maximum job size.

So the algorithm runs in nearly-linear time only when pmax is polynomially bounded.

▶ Theorem 1.5. For any ϵ > 0, there is a Õϵ(n+κ)-time (1+
√

2+ϵ)-approximation algorithm
for P |prec, pj = 1|

∑
j wjCj , i.e., the weighted completion time problem on identical machines

with unit-size jobs and precedence constraints.

Along the way of algorithm design for the identical machine with precedence constraints
setting, we developed a nearly-linear time (1 + ϵ)-approximation algorithm for the single
commodity network flow problem in directed acyclic graphs, with bounded supplies and
demands on sources and sinks, but infinite capacities on edges.

Recently there has been a lot of progress on solving maximum flow problem on undirected
and directed graphs. For undirected graphs, the problem can be approximated within a factor
of 1 + ϵ in nearly-linear time [26, 38, 45], and solved exactly with a slightly weaker running
time of m1+o(1) (this is called almost-linear time) [7]. It was open whether an almost-linear

S. Li 86:5

running time can be achieved for solving maximum flow on directed graphs.6 This was
resolved in the affirmative by a recent breakthrough due to Chen et al. [14]: They developed
an algorithm that computes exact maximum flows on directed graphs with polynomially
bounded integral capacities in m1+o(1) time. Thus, we could use the result as a black-box
for our problem, if we allow the running time to be almost-linear. Nevertheless as our theme
is to design nearly-linear time algorithms, we include in the full version of the paper our
approximate maximum-flow algorithm for the special case with this running time. To the
best of our knowledge, this was not known before.

For the general precedence-constrained scheduling problem P |prec|
∑

j wjCj (on multiple
machines with variant job lengths), we achieve an O(1)-approximation algorithm in nearly-
linear time. However, the approximation ratio of the algorithm is 6 + ϵ, which is worse than
the best polynomial-time ratio of 2 + 2 ln 2 due to Li [35].

▶ Theorem 1.6. For any ϵ > 0, there is a Õϵ((n + κ) log pmax)-time (6 + ϵ)-approximation
algorithm for P |prec|

∑
j wjCj, i.e., the weighted completion time minimization problem on

identical machines with precedence constraints, where pmax := maxj∈J pj is the maximum
job size.

1.2 Our Techniques
All of our algorithms are based on linear programming: We design an LP relaxation of
nearly-linear size, solve it in nearly-linear time to obtain a (1 + ϵ)-approximate solution, and
round the solution into an integral schedule in nearly-linear time.

For R||Cmax, the natural LP relaxation has O(|E|) size, and the mixed packing and
covering form. Thus it can be solved within a factor of 1 + ϵ by the algorithm of Young [51]
in Õϵ(|E|) time. In particular, the algorithm outputs a (1 + ϵ)-approximate solution that
violates the constraints by a factor of 1± ϵ, in O

(
N̄ log m̄

ϵ2

)
= Õϵ(N̄) time, where m̄ and N̄

are the number of constraints and non-zero coefficients in the LP respectively. To round
the fractional solution, we apply the grouping technique of [46] for the so called generalized
assignment problem, but with a (1 + ϵ)-slack. This gives us a bipartite graph H = (V, J, EH)
satisfying |NH(J ′)| ≥ (1 + ϵ)|J ′| for every J ′ ⊆ J , where NH(J ′) is the set of neighbors of
J ′ in H. This allows us to find a matching in H that covers J in nearly-linear time, which
leads to a (2 + ϵ)-approximate solution, matching the current best approximation of 2 in
[32]. We remark that the Õϵ(mn)-running time of [39] comes from both solving the LP, and
rounding the LP solution. So even with the nearly-linear time mixed covering and packing
LP solver, the algorithm of [39] still requires Õϵ(mn) time.

For the problem R||
∑

j wjCj , we give a nearly-linear size mixed packing and covering
LP that (up to a factor of 1 + O(ϵ)) is equivalent to the rectangle LP used by Li [35], Im
and Shadloo [23], Im and Li [22]. In the rectangle LP, there is a variable xijs indicating if a
job j is scheduled on the machine i and has starting time s, and constraints that at most
one job is processed at any time on any machine. To reduce the size of the LP to Õϵ(|E|),
we partition the time horizon into windows, with lengths geometrically increasing by a factor
of 1 + ϵ. We distinguish between two types of scheduling intervals: If a job is scheduled
within a window on some machine i (we call this an inside-window interval), then we do not
need to capture the precise location of the scheduling interval. On the other hand, if the job

6 By repeatedly solving maximum flow instances on residual graphs, one can convert an approximate
maximum flow algorithm on directed graphs to an exact algorithm, without much loss on the running
time. So for directed graphs, allowing (1 + ϵ)-approximation does not give much advantage.

ICALP 2023

86:6 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

starts and ends at two different windows (we call the interval an cross-window interval), we
will approximately capture its starting and ending times. To do so, we divide each window
into 1/ϵ sub-windows, and let the LP variables capture the two sub-windows containing the
starting and completion times. In the LP, we require all the cross-window intervals incur a
congestion of 1: any point t is covered by at most 1 fraction of cross-window intervals. Then
we require the total volume of jobs processed inside each window is at most its length. We
show that up to a factor of 1 + O(ϵ), a solution to the LP can be converted to one for the
rectangle LP with no large cost. Roughly speaking, the width of window is small compared to
its position and so we do not need to know the precise location of an inside-window-interval.
For a cross-window-interval, we may incur an error on its length that is about ϵ times the
total length of its starting window and ending window. As a sub-window has a small length,
and a cross-window-interval covers some window-boundary, the total error incurred will also
be small.

We proceed to our techniques for the weighted completion time problems in the identical
machine with precedence constraints setting, i.e., the problem P |prec|

∑
j wjCj and its

special cases. Due to the precedence constraints, the LP relaxations do not have the mixed
packing and covering form anymore. Nevertheless, the multiplicative weight update (MWU)
framework can still be applied. We enclose the precedence constraints in a polytope Q. In
each iteration of the MWU framework, we guarantee that all these constraints are satisfied,
i.e., the vector we obtain is in Q. Other than the precedence constraints, we have Õϵ(log pmax)
packing inequalities correspondent the m-machine constraint. This is due to that we can
round completion times to integer powers of 1 + ϵ.

The number of iterations the MWU framework takes is Õϵ(m̄), where m̄ is the number
of packing constraints in the LP, without counting the constraints for Q. Fortunately we
have m̄ = Õϵ(log pmax). To obtain the claimed Õϵ((n + κ) log pmax) time, we need to run
each iteration of MWU in nearly-linear time. The bottleneck comes from finding a vector
in Q satisfying one aggregated packing constraint, that maximizes a linear objective with
non-negative coefficients.

A key technical contribution of our paper is an oracle for the problem. For an appropriately
defined directed acyclic graph G = (V, E), the polytope Q can be formulated as {y ∈ [0, 1]V :
yv ≤ yu,∀vu ∈ E}. For two given row vectors a, b ∈ RV

≥0, the aggregated LP in each
iteration of MWU is: max ay subject to y ∈ Q and by ≤ 1. Using LP duality, the problem
is reduced to the special single commodity maximum flow problem we introduced: We have
bounded supplies and demands on sources and sinks, but infinite capacities on edges. When
allowing a (1 + ϵ)-approximation for the scheduling problem, we need to find a flow whose
value is at least the maximum value for the instance with sink capacities scaled by 1

1+ϵ . This
is done by our nearly-linear time maximum-flow algorithm for the special case.

1.3 Other Related Work
The makespan minimization problem in the identical machine setting with precedence con-
straints, i.e., the problem P |prec|Cmax, is another classic problem in scheduling theory. The
seminal work of Graham [18] gives a simple greedy algorithm that achieves a 2-approximation.
On the negative side, Lenstra and Rinnooy Kan [31] proved a (4/3 − ϵ)-hardness for the
problem. Under the stronger version of the Unique Game Conjecture (UGC) introduced by
Bansal and Khot [4], Svensson [48] showed that the problem is hard to approximate within a
factor of 2− ϵ for any ϵ > 0. Much work has focused on the special case where m = O(1) and
all jobs have size 1 [33, 17, 34], for which obtaining a PTAS is a long-standing open problem.

S. Li 86:7

The multiplicative weight update (MWU) method for solving linear programs has played
an important role in a wide range of applications. Some of its foundational work can be
found in a beautiful survey by Arora, Hazan and Kale [3]. There has been a vast literature
on solving packing, covering, and mixed packing and covering LPs approximately to a factor
of 1 + ϵ using iterative methods [44, 39, 36, 50, 16, 28, 27, 51, 1, 13]. In particular, to solve a
mixed packing and covering LP with n̄ variables, m̄ constraints and N̄ non-zero coefficients,
the algorithm of Young [51] returns (1 + ϵ)-approximation deterministically in O

(
N̄ ln m̄

ϵ2

)
time. The dependence on ϵ has been improved slightly by Chekuri and Quanrud [13],
who gave a randomized algorithm with running time Õ

(
N̄
ϵ + m̄

ϵ2 + n̄
ϵ3

)
, where Õ(·) hides a

poly-logarithmic factor.
There has been a recent surge of interest in designing fast or nearly-linear time approxim-

ation algorithms for combinatorial optimization problems [11, 12, 9, 15, 34, 6].

Organization. The rest of the paper is organized as follows. In Section 2, we define some
elementary notations used across the paper, and describe the result of Young [51] on solving
mixed packing and covering LPs, and a template solver for packing LPs over an “easy”
polytope. In Sections 3 and 4, we present our results for R||Cmax and R||

∑
j wjCj . Due

to the page limit, we leave our algorithms for P |prec|
∑

j wjCj and the two special cases
1|prec|

∑
j wjCj and P |prec, pj = 1|

∑
j wjCj to the full version of the paper. The full version

also contains other technicalities, such as how to handle the case where input integers are
not polynomially bounded, how to reduce problems to the promise versions and how to use
the self-balancing binary search tree data structure to run a list scheduling algorithm.

2 Preliminaries

We use bold lowercase letters to denote vectors, and their correspondent italic letters to
denote their coordinates. We use bold uppercase letters to denote matrices. 0 and 1 are used
to denote the all-0 and all-1 vectors whose domain can be inferred from the context. Given a
template vector v over some finite domain, and a subset S of the domain, let v(S) :=

∑
e∈S ve

be the sum of v-values over elements in S.
Given an (undirected) graph H = (VH , EH), we use δH(v), NH(v), δH(U), NH(U) to

respectively denote the sets of incident edges of v ∈ VH , neighbors of v, edges between the
set U ⊆ VH and VH \U , and vertices in VH \U with at least one neighbor in U , in the graph
H. Given a directed graph H = (VH , EH), for every v ∈ VH , we use δ+

H(v) and δ−
H(v) to

denote the sets of outgoing and incoming edges of v respectively. For every U ⊆ VH , let
δ+

H(U) := {uv ∈ EH : u ∈ U, v /∈ U} and δ−
H(U) := {uv ∈ EH : u /∈ U, v ∈ U} be the sets of

edges from U to VH \U and from VH \U to U respectively. When H = G for the graph G in
the context (which can be undirected or directed), we omit the subscript H in the notations.

For cleanness of exposition, we use Õϵ(·) to hide factors that are polynomial in 1
ϵ and

poly-logarithmic in the size of the input. As we gave the first nearly-linear time algorithms
for the studied problems, the hidden factors are small compared to the improvements we
make. The final approximation ratios we get have an additive factor of O(ϵ) (instead of ϵ);
but it can be reduced to ϵ if we start from a smaller ϵ. By default, for an (undirected or
directed) graph H = (VH , EH) we deal with, we assume every vertex is incident to at least
one edge so |EH | = Ω(VH). For any a ∈ R, we define (a)+ as max{a, 0}.

ICALP 2023

86:8 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

2.1 Nearly-Linear Time Mixed Packing and Covering LP Solver
A mixed packing and covering LP is an LP of the following form:

find x such that x ≥ 0, Px ≤ 1 and Cx ≥ 1, (MPC)

where P ∈ Rm̄P×n̄
≥0 and C ∈ Rm̄C×n̄

≥0 for some positive integers n̄, m̄P, m̄C. Let m̄ = m̄P +m̄C

and N̄ be the total number of non-zeros in P and C. Young [51] developed a nearly-linear
time algorithm that solves (MPC) approximately:

▶ Theorem 2.1 ([51]). Given an instance of (MPC) and ϵ > 0, there is an O
(

N̄ log m̄
ϵ2

)
-

time algorithm that either claims (MPC) is infeasible, or outputs an x ∈ Rn̄
≥0 such that

Px ≤ (1 + ϵ)1 and Cx ≥ 1
1+ϵ .

2.2 Template Packing LP Solver over a Simple Polytope
In this section, we describe a template MWU-based LP solver for a packing linear program
with an additional requirement that the solution is inside an “easy” polytope Q. The
framework we describe here is introduced in [10] and later reformulated in [11].

Let P ∈ Rm̄×n̄
≥0 be a non-negative matrix, with N̄ non-zero entries. Let a ∈ Rn̄

≥0 be a row
vector, and Q ⊆ Rn̄

≥0 be a polytope which is defined by “easy” constraints. We focus on the
following linear program:

max ax subject to x ∈ Q and Px ≤ 1. (PQ)

Throughout the paper, we make sure all instances of (PQ) we deal with are feasible.

▶ Definition 2.2. Let ϵ ∈ (0, 1), ϕ > 0 be two parameters. An (ϵ, ϕ)-approximate solution
to (PQ) is a vector x ∈ Q satisfying Px ≤ (1 + ϵ)1 and ax ≥ ax∗ − ϕ, where x∗ ∈ Q is the
optimum solution to (PQ).

As a hindsight, we only allow a loss of an additive factor ϕ in the objective function of
the LP for P |prec|

∑
j wjCj , which will be set to be a polynomially small term. As is typical

in a MWU framework, we need to solve the following LP where the constraints Px ≤ 1 are
aggregated into one constraint by ≤ 1, where b ∈ Rn̄

≥0 is a row vector:

max ay subject to y ∈ Q and by ≤ 1. (1)

Again we guarantee all instances of (1) we encounter are feasible.

▶ Definition 2.3. Let ϵ ∈ (0, 1), ϕ > 0 be two parameters. An (ϵ, ϕ)-approximate solution
to (1) is a vector y ∈ Q satisfying by ≤ 1 + ϵ and ay ≥ ay∗ − ϕ, where y∗ is the optimum
solution to the LP. An (ϵ, ϕ)-oracle for (1) is an algorithm that, given an instance of (1),
and ϵ ∈ (0, 1), ϕ > 0, outputs an (ϵ, ϕ)-approximate solution y to (1).

The template LP solver is described in Algorithm 1, where we use Pi to denote the i-th
row vector of P. By our assumption that (PQ) is feasible, the instance of (1) defined in
every execution of Step 3 is also feasible. The performance of the algorithm is summarized
in the following theorem.

▶ Theorem 2.4. Algorithm 1 will return an (O(ϵ), ϕ)-approximate solution x to (PQ), within
O(m̄ log m̄

ϵ2) iterations of Loop 2.

S. Li 86:9

Algorithm 1 LP Solver for (PQ).

Input: an instance of (PQ), ϵ ∈ (0, 1), ϕ > 0, and (ϵ, ϕ)-oracle O for (1)
Output: an (O(ϵ), ϕ)-approximate solution x for (PQ)

1: t← 0, ρ← ln m̄
ϵ2 , x(0) ← 0 ∈ Rn̄

≥0, u(0) ← 1 ∈ Rm̄
≥0

▷ x(t)’s are column vectors and u(t)’s are row vectors
2: while t < 1 do
3: define b := u(t)

|u(t)|P, and run the oracle O for (1) to obtain an (ϵ, ϕ)-approximate
solution y for (1)

4: δ ← min
{

min
i∈[m̄]

1
ρ ·Piy

, 1− t

}
5: for every i ∈ [m̄] do u

(t+δ)
i ← u

(t)
i · exp

(
δϵρ ·Piy

)
6: x(t+δ) ← x(t) + δy, t← t + δ

7: return x := x(1)

Proof. Focus on one iteration of Loop 2. Let t be the value of t at the beginning of the
iteration, y and δ be the y and δ obtained in Step 3 and 4 in the iteration respectively. Then
we have

|u(t+δ)| =
∑

i∈[m̄]

u
(t+δ)
i =

∑
i∈[m̄]

u
(t)
i exp(δϵρ ·Piy) ≤

∑
i∈[m̄]

u
(t)
i (1 + (1 + ϵ)ϵ · δρ ·Piy)

= |u(t)|+ (1 + ϵ)ϵδρ · u(t)Py ≤ |u(t)|+ (1 + ϵ)2ϵδρ · |u(t)| ≤ |u(t)| exp((1 + ϵ)2ϵδρ).

The inequality in the first line is by that δρ · Piy ∈ [0, 1] for every i ∈ [m̄] and eϵθ ≤
1 + ϵθ + (ϵθ)2 ≤ 1 + ϵθ + ϵ2θ for every ϵ ∈ [0, 1] and θ ∈ [0, 1]. The first inequality in the
second line is by that u(t)

|u(t)| Py = by ≤ 1 + ϵ.
Combining the inequality over all iterations, we have

|u(1)| ≤ |u(0)| exp
(
(1 + ϵ)2ϵρ

)
= m̄ · exp

(
(1 + ϵ)2ϵρ

)
. (2)

For every i ∈ [m̄], we have u
(1)
i = exp (ϵρ ·Pix), where x := x(1) is the returned solution. So,

by (2), we have exp(ϵρ ·Pix) ≤ m̄ · exp((1 + ϵ)2ϵρ), which implies Pix ≤ ln m̄
ϵρ + (1 + ϵ)2 ≤

(1 + ϵ)2 + ϵ = 1 + O(ϵ).
In the end x = x(1) is a convex combination of vectors y obtained in all iterations. As

each y is in Q, we have x ∈ Q. Moreover, for the instance of (1) in any iteration, x∗ is
a valid solution. So, the optimum solution y∗ to the instance of (1) has ay∗ ≥ ax∗, and
the y returned by the oracle has ay ≥ ay∗ − ϕ ≥ ax∗ − ϕ. This implies our final x has
ax ≥ ax∗ − ϕ. Therefore, x is a (O(ϵ), ϕ)-approximate solution to (PQ).

It remains to bound the number of iterations that Loop 2 can take. In every iteration
of loop 2 except for the last one, some i has 1

ρ·Piy = δ, i.e., δϵρ · Piy = ϵ. We say ui

is increased fully in the iteration. Notice by (2), each ui can be increased fully in at

most ln
(

m̄ exp((1+ϵ)2ϵρ)
)

ϵ = ln m̄+(1+ϵ)2ϵρ
ϵ = O

(ln m̄
ϵ2

)
iterations. This bounds the number of

iterations by O
(

m̄ log m̄
ϵ2

)
as there are m̄ different values of i. ◀

For each iteration of loop 2, the steps other than Step 3 takes O(N̄) time. Therefore,
the running time of Algorithm 1 is O

(
m̄ log m̄·N̄

ϵ2

)
, plus the time for running the oracle

O
(

m̄ log m̄
ϵ2

)
times.

ICALP 2023

86:10 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

3 Unrelated Machine Makespan Minimization

In this section, we give the nearly-linear time (2 + ϵ)-approximation algorithm for the
unrelated machine makespan minimization problem, i.e, the problem R||Cmax. Recall that
we are given a bipartite graph G = (M, J, E) and a pij ∈ Z>0 for every ij ∈ E. Recall that
N(j), N(i), δ(j) and δ(i) denote the set of neighbors or incident edges of a job j ∈ J or a
machine i ∈M , in the graph G.

Via a standard technique described in the full version of the paper, we can focus on the
following promise version:

We are given a number P ≥ opt, where opt is the optimal makespan of the instance, and
our goal is to construct an assignment of makespan at most (2 + O(ϵ))P .

For some ij ∈ E with pij > P , we remove ij from E, as the optimum solution does not use
the edge. The following is the natural LP relaxation for the problem:∑

j∈N(i)

pijxij ≤ P,∀i ∈M (3)
∑

i∈N(j)

xij ≥ 1,∀j ∈ J (4) xij ≥ 0,∀ij ∈ E (5)

In the correspondent integer program, xij ∈ {0, 1} for every ij ∈ E indicates whether the
job j is assigned to machine i. (3) requires that the makespan of the schedule to be at most
P , (4) requires every job to be scheduled. In the linear program, we replace the requirement
that xij ∈ {0, 1} with the non-negativity constraint (5).

By the promise that P ≥ opt, the LP is feasible. Therefore, applying Theorem 2.1, we can
solve the LP in Õϵ(|E|) time to obtain an approximate solution x ∈ [0, 1]E . By scaling, we
can assume (4) holds with equalities, and (3) holds with right side replaced by (1 + O(ϵ))P .

To round the solution to an integral assignment in Õϵ(|E|)-time, we use the grouping
idea from [46]: For each machine i ∈ M , we break the fractional jobs assigned to i into
groups, each containing 1

1+ϵ fractional jobs. This gives us a bipartite graph H between
jobs and groups. Any perfect matching (i.e., a matching covering all jobs J) will give a
(2 + O(ϵ))-approximation for the makespan problem. In H, every subset J ′ ⊆ J of jobs has
at least (1 + ϵ)|J ′| neighbors. The (1 + ϵ)-factor allows us to design a Õϵ(|E|)-time algorithm
to find a matching covering all jobs J , as stated in the following lemma:

▶ Lemma 3.1. Assume we are given a bipartite graph H = (S, T, EH) and ϵ > 0 such that
|NH(S′)| ≥ (1 + ϵ)|S′| for every S′ ⊆ S. In O

(
|EH |

ϵ log |S|
)

-time, we can find a matching in
H covering all vertices in S.

Proof. Let L =
⌊
log1+ϵ |S|

⌋
+ 1 > log1+ϵ |S|. Then we use the shortest-augmenting path

algorithm of Hopcroft and Karp [21] to find a matching for which there is no augmenting path
of length at most 2L + 1. The running time of the algorithm can be made to O(|EH |L) =
O(|EH |

ϵ log |S|). It remains to show the following lemma:

▶ Lemma 3.2. Let F be a matching in H for which there is no augmenting path of length at
most 2L + 1. Then all vertices in S are matched in the matching F .

Proof. Let H⃗ be the residual graph of H w.r.t the F : H⃗ is a directed graph over S ∪ T ,
for every edge st ∈ EH , we have st ∈ H⃗, and for every st ∈ F , we have ts ∈ H⃗. We say
a vertex in S is free if it is unmatched in F . For every integer ℓ ∈ [0, L], define Sℓ (T ℓ

resp.) to be the set of vertices in S (T , resp.) to which there exists a path in H⃗ of length
at most 2ℓ (2ℓ + 1, resp.) from a free vertex. So, we have S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ SL and
T 0 ⊆ T 1 ⊆ T 2 ⊆ · · · ⊆ T L.

S. Li 86:11

Notice that T ℓ = NH(Sℓ) for every ℓ ∈ [0, L]. So for every ℓ ∈ [0, L], we have (1 + ϵ)|Sℓ| ≤
|T ℓ| by the condition of the lemma. All vertices in T L are matched by our assumption that
there are no augmenting paths of length at most 2L + 1. So for every ℓ ∈ [0, L− 1], we have
|T ℓ| ≤ |Sℓ+1| as all vertices in T ℓ are matched to Sℓ+1.

Combining the two statements gives us (1 + ϵ)|Sℓ| ≤ |Sℓ+1| for every ℓ ∈ [0, L− 1]. Thus
|SL| ≥ (1 + ϵ)L|S0|, which contradicts the definition of L and that |S0| ≥ 1, |SL| ≤ |S|. ◀

This finishes the proof of Lemma 3.1. ◀

With the lemma, we prove the following theorem using the grouping technique from [39]:

▶ Theorem 3.3. Given x ∈ [0, 1]E satisfying x(δ(j)) = 1 for every j ∈ J , and ϵ ∈ (0, 1), there
is an O

(
|E|
ϵ log n

)
-time algorithm that outputs an assignment σ ∈MJ of jobs to machines

such that σjj ∈ E and xσjj > 0 for every j ∈ J , and for every i ∈M , we have∑
j∈σ−1(i)

pij ≤ (1 + ϵ)
∑

j∈N(i)

pijxij + max
j∈σ−1(i)

pij . (Assume the maximum over ∅ is 0.)

Proof. We construct a bipartite graph H = (V, J, EH), starting with V = ∅ and EH = ∅.
For every machine i ∈M , we run the following procedure. See Figure 1 for an illustration.
(The notations defined in the paragraph depend on i; if a notation does not contain i in the
subscript, it will only be used locally, in this paragraph.) Let Di be the number of jobs j

with positive xij values. Let j1, j2, · · · , jDi
be these jobs j, sorted in non-increasing order

of pij ; that is, we have pij1 ≥ pij2 ≥ · · · ≥ pijDi
. For every integer d ∈ [0, Di], we define

Zd =
∑d

d′=1 xijd′ . Let Ri = ⌈(1 + ϵ)ZDi
⌉ = ⌈(1 + ϵ)x(δ(i))⌉. For every r = 1, 2, 3, · · · , Ri,

we create a vertex ir and add it to V . We add to EH an edge between ir, r ∈ [Ri] and jd,
d ∈ [Di] if (r−1

1+ϵ , r
1+ϵ) ∩ (Zd−1, Zd) ̸= ∅, and we define y(ir)jd

to be the length of the interval.

This finishes the construction of H = (V, J, EH), along with a vector y ∈
(

0, 1
1+ϵ

]EH

.

i

··
·

··
·

j1

j2

j3

jDi

··
·

··
·

0
1

1+ε

2
1+ε

3
1+ε

Ri
1+ε

Ri−1
1+ε

xij1
xij2
xij3
xij4
xij5

··
·

··
·

xijDi

j1
j2
j3

jDi

j4
j5

i1

i2

i3

iRi

Figure 1 Construction of the H for the machine i ∈ M . In the bipartite graph between
{i1, i2, · · · , iDi} and {j1, j2, · · · , jDi } and there is an edge between jd and (ir) iff the interval
correspondent to jd intersects the interval (r−1

1+ϵ
, r

1+ϵ
).

The number of edges in H for each i is at most Di + Ri − 1 ≤ |δ(i)| + (1 + ϵ)x(δ(i)).
Therefore the total number of edges we created in H is at most |E|+ (1 + ϵ)|J | = O(|E|).
For every ij ∈ E, we have

∑
r:(ir)j∈EH

y(ir)j = xij . This implies that for every j ∈ J , we
have y(δH(j)) = 1. For every ir ∈ V , we have y

(
δH(ir)

)
≤ 1

1+ϵ , and the inequality holds
with equality except when r = Ri.

For every set J ′ ⊆ J , we have |NH(J ′)| ≥ (1 + ϵ)|J ′|, as we can view y as a fractional
matching in H where every j ∈ J is matched to an extent of 1 and every ir ∈ V is matched
to an extent of at most 1

1+ϵ . Then we can use Lemma 3.1 7 to find a matching in H that

7 We need to switch the left and right sides when going from the bipartite graph H in Theorem 3.3 to
that in Lemma 3.1. That is, we set S = J and T = V .

ICALP 2023

86:12 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

covers all jobs J . The running time of the algorithm is O
(

|EH |
ϵ log n

)
= O

(
|E|
ϵ log n

)
. The

matching gives an assignment σ ∈MJ : If j is matched to ir, then define σj = i. Fix some
i ∈M with σ−1(i) ̸= ∅; we upper bound

∑
j∈σ−1(i) pij :

∑
j∈σ−1(i)

pij ≤ max
j∈σ−1(i)

pij +
Ri∑

r=2
max

j∈NH (ir)
pij

≤ max
j∈σ−1(i)

pij + (1 + ϵ)
Ri∑

r=2

∑
j∈NH (i(r−1))

pijy(i(r−1))j

≤ max
j∈σ−1(i)

pij + (1 + ϵ)
Ri∑

r=1

∑
j∈NH (ir)

pijy(ir)j = max
j∈σ−1(i)

pij + (1 + ϵ)
∑

j∈N(i)

pijxij .

To see the first inequality, notice that the job j′ matched to i1 (if it exists) has pij′ ≤
maxj∈σ−1(i) pij , and the job j′ matched to each ir, r ∈ [2, Ri], has pij′ ≤ maxj∈δH ((ir)) pij .
Consider the second inequality. For every r ∈ [2, Ri], any j ∈ δH(ir) and any j′ ∈ δH(i(r−1)),
we have pij ≤ pij′ . Moreover, for every r ∈ [2, Ri], we have y

(
δH(i(r − 1))

)
= 1

1+ϵ . The
inequality in the third line follows from replacing r with r + 1. The equality holds since for
every ij ∈ E we have

∑
r:(ir)j∈EH

y(ir)j = xij . ◀

We can then apply Theorem 3.3 with the solution x we obtained from solving LP(3-5).
Clearly we have maxj∈σ−1(i) pij ≤ P for every i ∈M . So, the total load on any machine i

is at most P + (1 + ϵ) ·
∑

j∈N(i) pijxij ≤ P + (1 + ϵ) · (1 + O(ϵ))P = (2 + O(ϵ))P , as (3) is
satisfied with right side replaced by (1 + O(ϵ))P . This finishes the analysis of the algorithm
for R||Cmax and proves Theorem 1.1.

4 Unrelated Machine Weighted Completion Time Minimization

In this section, we give our nearly-linear time algorithm for R||
∑

j wjCj , with an approx-
imation ratio of 1.45 + ϵ, matching the current best ratio of Im and Li [22] achieved in
polynomial time. Our result is based on formulating an LP relaxation that is equivalent
to the rectangle LP introduced by Li [35]. The new LP relaxation has a nearly-linear size
and the mixed packing and covering form; thus it can be solved in nearly-linear time using
Theorem 2.1. We describe the rectangle LP (LP(6)), our new LP relaxation (LP(11)) and
show their equivalence in Sections 4.1, 4.2 and 4.3 respectively.

In the full version of the paper we show how to construct a solution to LP(6) from one
to LP(11) in nearly-linear time, finishing the proof of Theorem 1.2. We also show in the
full version that the rounding algorithm of Im and Li can run in nearly-linear time; this
finishes the proof of Theorem 1.3. Throughout the section, we assume all processing times
are integers bounded by a polynomial of n. The general case is handled in the full version.

4.1 Rectangle LP Relaxation
We describe the rectangle LP relaxation for R||

∑
j wjCj introduced by Li [35]. Let T =∑

j∈J maxi∈N(j) pij so that any schedule will complete by time T . The following is the
rectangle LP:

min
∑
j∈J

wj

∑
i∈N(j),s∈[0,T)

zijs(s + pij) (6)

S. Li 86:13

∑
i∈N(j),s∈[0,T)

zijs ≥ 1 ∀j ∈ J (7)

∑
j∈N(i),s∈[t−pij ,t)

zijs ≤ 1 ∀i ∈M, t ∈ [T] (8)

zijs = 0 ∀ij ∈ E, s > T − pij (9)

zijs ≥ 0 ∀ij ∈ E, s ∈ [0, T) (10)

In the correspondent integer program, zijs for every ij ∈ E and integer s ∈ [0, T) indicates
if job j is scheduled on machine i, with starting time s. The objective gives the weighted
completion time of the schedule. (7) requires that every job j is scheduled. (8) requires
that at any time on machine i, at most one job is being processed. (9) ensures that no
jobs complete after time T . (10) is the non-negativity constraint. Im and Li [22] showed
that given a solution z to LP(6), one can round it to an integral schedule, whose weighted
completion time in expectation is at most 1.45 times the value of z.

4.2 A Nearly-Linear Size LP Relaxation
In this section we formulate the relaxation that can be solved in nearly-linear time, and prove
its equivalence to LP(6) in Section 4.3. We create a list of time points as follows: T0 = 0,
Td = ⌊(1 + ϵ)Td−1⌋+1 for every integer d ≥ 1. Define D = O(log n

ϵ) to be the smallest integer
so that TD ≥ T . We call (Td−1, Td] the d-th window, and the time points T0, T1, · · · , TD

window boundaries (or simply boundaries). Define ∆d = Td − Td−1 to be the length of the
d-th window.

Let ηd := ⌈ϵ∆d⌉. We partition (Td−1, Td] into sub-windows of length ηd, except that the
last sub-window may be shorter. Then qd :=

⌈
∆d

ηd

⌉
≤ 1

ϵ is the number of sub-windows of

(Td−1, Td]. Let τ
(d)
0 = Td−1, τ

(d)
1 , τ

(d)
2 , · · · , τ

(d)
qd = Td be the boundaries of the qd sub-windows.

We describe the variables in the LP. For every ij ∈ E and d ∈ [D] with pij ≤ ∆d, we
introduce a variable xijd, indicating if j is scheduled on i inside the d-th window. Let Sj

and Cj be the starting and completion time of j in the target optimum schedule (which the
algorithm does not know). For every ij ∈ E, 1 ≤ d ≤ e < D, integers u ∈ [0, qd), v ∈ [0, qe+1),
we may introduce a variable yijdeuv indicating if j is scheduled on i, Sj ∈ [τ (d)

u , τ
(d)
u+1) and

Cj ∈ (τ (e+1)
v , τ

(e+1)
v+1]. That means, the scheduling interval (Sj , Cj] of j contains the d′-th

window for every d′ ∈ [d + 1, e], and a non-empty part of the d-th and (e + 1)-th windows.
u and v approximately give the volumes of j processed in the two windows. It is disjoint
from all other windows. As a hindsight, a sub-window is short enough and we can afford to
incur an error equaling its length for every window. We only introduce a y-variable if the
correspondent event can happen. That is, the following conditions need to be satisfied for
the existence of yijdeuv: τ

(e+1)
v − τ

(d)
u+1 + 2 ≤ pij ≤ τ

(e+1)
v+1 − τ

(d)
u . Notice when yijdeuv = 1,

then the scheduling interval (Sj , Cj] of j intersects at least two windows.
For a variable yijdeuv and an integer d′ ∈ [D], we define

Qijdeuvd′ :=

0 if d′ ≤ d− 1 or d′ ≥ e + 2
∆d′ if d + 1 ≤ d′ ≤ e

Td − τ
(d)
u+1 + 1 if d′ = d

τ
(e+1)
v − Te + 1 if d′ = e + 1

.

Assuming j starts at time τ
(d)
u+1 − 1 and ends at time τ

(e+1)
v + 1 on machine i, we have that

Qijdeuvd′ is the volume of job j processed in the d′-th window. So, if yijdeuv = 1 in a schedule,
then Qijdeuvd′ gives a lower bound on the volume.

ICALP 2023

86:14 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

We say the quadruple deuv left-covers the pair d′u′ if the sub-window (τ (d′)
u′−1, τ

(d′)
u′] is

between the sub-windows (τ (d)
u , τ

(d)
u+1] (exclusive) and (τ (e+1)

v , τ
(e+1)
v+1] (inclusive) in the time

horizon, or if (τ (d′)
u′−1, τ

(d′)
u′] = (τ (d)

u , τ
(d)
u+1] and τ

(d′)
u′ − τ

(d′)
u′−1 = 1. So if deuv left-covers d′u′ and

yijdeuv = 1, then the scheduling interval of j will surely cover the left-most time unit of the
sub-window (τ (d′)

u′−1, τ
(d′)
u′].

With the necessary definitions, we can formulate the LP relaxation as LP(11). For the
sake of convenience, we assume if a variable does not exist, then it is not included in a
summation.

min
∑
ijd

wj · (Td−1 + 1) · xijd +
∑

ijdeuv

wj · (Te + 1) · yijdeuv (11)

∑
id

xijd +
∑

ideuv

yijdeuv ≥ 1 ∀j ∈ J (12)∑
jdeuv : deuv

left-covers d′u′

yijdeuv ≤ 1 ∀i ∈M, d′ ∈ [D], u′ ∈ [qd′] (13)

∑
j

pij · xijd′ +
∑

jdeuv

Qijdeuvd′ · yijdeuv ≤ ∆d′ ∀i ∈M, d′ ∈ [D] (14)

all variables are non-negative (15)

Consider the correspondent integer program and an integral schedule. If xijd = 1, then
the completion time of j is in (Td−1, Td]. If yijdeuv = 1, then it is in (Te, Te+1]. So, the
objective (11) approximates and underestimates the total weighted completion time of the
schedule.8 (12) requires that every job is scheduled: either the scheduling interval of a job
j is inside some window, or it overlaps with at least two windows. (13) follows from the
definition of deuv left-covering d′u′. If xijd′ = 1, then the pij units of job j is processed in
the d′-th window on machine i. If yijdeuv = 1, then at least Qijdeuvd′ units is processed.
So (14) is valid as the volume of the jobs processed in the d′-th window is at most ∆d′ .
Therefore, LP(11) is valid, and its value is at most the weighted completion time of the
optimum schedule for the instance.

There are at most D|E| x-variables. We then count the number of tuples ijdeuv such
that yijdeuv is a variable in the LP. For fixed ij ∈ E, d ∈ D and u ∈ [0, qd), there are at
most O(1) possibilities for (e, v), as the lengths of sub-windows do not decrease from left
to right in the time horizon, except for the last sub-window of each window. Hence the
number of y-variables is at most O

(D|E|
ϵ

)
= O

(|E| log n
ϵ2

)
.9 The number of constraints is

O(n + m|D|
ϵ) = O

(
n + m log n

ϵ2

)
. The number of non-zeros is at most O

(|E| log2 n
ϵ4

)
as each

variable appears in at most O(D
ϵ) constraints.

Therefore, by Theorem 2.1, in O
(

|E| log3 n
ϵ6

)
= Õϵ(|E|) time, we can find a solution (x, y)

satisfying the following conditions: Its cost is at most 1 + ϵ times that of the optimum
solution to the LP, all variables are non-negative, (12) holds with equalities, and (13) and

8 A more precise estimation for the case yijdeuv = 1 is τ
(e+1)
v + 1. But the estimation Te + 1 is good

enough.
9 By cutting job lengths pij by a factor of ϵ, one can reduce the number of y variables to O

(
|E|

(
1
ϵ2 + log n

ϵ

))
.

But we prioritize on giving a clean algorithm, rather than optimizing the poly(log n, 1
ϵ)-factor in the

running time.

S. Li 86:15

(14) hold with right sides replaced by 1 + ϵ and (1 + ϵ)∆d′ respectively. For convenience, we
call such a solution a (1 + ϵ)-approximate solution to LP(11); but keep in mind that it may
violate (13) and (14) by a factor of 1 + ϵ.

4.3 Equivalence of LP(11) and LP(6)
We use lp(6) and lp(11) to denote the values of LP(6) and LP(11) respectively. It is easy
to show that lp(11) ≤ lp(6), as one can convert a solution to LP(6) into one to LP(11)
with smaller or equal value. The following theorem gives the other direction, proving the
equivalence of the two LPs up to a 1 + O(ϵ) factor:

▶ Theorem 4.1 (Equivalence of LP(11) and LP(6)). Let (x, y) be a (1 + ϵ)-approximate
solution to LP(11). Then in Õϵ(|E|)-time we can find a solution z to LP(6) except that (8)
is only satisfied with the right-side replaced by 1 + ϵ, such that the following is true for an
absolute constant c ≥ 1, every ij ∈ E and integer t ≥ 0:∑

s+pij>(1+cϵ)t

zijs ≤
∑

d:Td−1+1>t

xijd +
∑

deuv:Te+1>t

yijdeuv.

In words, for every ij ∈ E, and every time t ≥ 0, the fraction of job j scheduled on i with
completion time after (1 + cϵ)t in z is at most the fraction with completion time after t in
(x, y). Then, the following corollary is immediate:

▶ Corollary 4.2. Let (x, y) and z be defined as in Theorem 4.1. Then the value of z to LP(6)
is at most 1 + cϵ times that of (x, y) to LP(11). This implies that the value of z to LP(6) is
at most (1 + cϵ)(1 + ϵ) · lp(11) ≤ (1 + O(ϵ)) · lp(6).

To better present the ideas behind the proof, we only show the existence of such a vector
z in this section. That is, we are not concerned with the running time of the algorithm
that constructs z. In the full version of the paper we show how z can be constructed in
nearly-linear time.

So the rest of this section is dedicated to proving the existence of z satisfying the conditions
in Theorem 4.1. Till the end, we fix the solution (x, y). We assume all variables in (x, y)
have values being integer multiplies of 1/Φ, and (1 + ϵ)Φ is an integer, for a large enough
integer Φ > 0. We fix a machine i ∈ M and show how to construct the z values for this i.
We create (1 + ϵ)Φ mini-machines, each serving as 1/Φ fraction of the machine i. We create
two types of mini-jobs:

For every variable xijd with positive value, we create Φxijd mini-jobs of length pij ; we
call them inside-mini-jobs. Each such inside-mini-job has an intended completion time of
Td−1 + 1; this is the estimation used in the objective (11).
For every variable yijdeuv with positive value, we create Φyijdeuv mini-jobs of length
τ

(e+1)
v − τ

(d)
u+1 + 2; we call them cross-mini-jobs. Notice the length may be smaller than

pij . Similarly, the cross-mini-jobs have an intended completion time of Te + 1. We define
the blocking interval of these mini-jobs to be the union of the sub-windows (τ (d′)

u′−1, τ
(d′)
u′]

such that deuv left-covers d′u′. This is indeed an interval. As (13) holds with right side
replaced by 1 + ϵ, every time point is covered by blocking intervals of at most (1 + ϵ)Φ
cross-mini-jobs.

Our goal becomes to schedule all the mini-jobs on the (1 + ϵ)Φ mini-machines integrally,
guaranteeing that the completion time of each mini-job is at most 1 + 5ϵ times its intended
completion time (after we extend the lengths of cross-mini-jobs). The construction of the

ICALP 2023

86:16 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

schedule is given in Algorithm 2; recall that we are not concerned with the running time in
this proof. The solution z to LP(6) will be the integral schedule scaled by a factor of 1

Φ : zijs

is 1
Φ times the number of mini-jobs for j that start at time s in the schedule.

Algorithm 2 Scheduling of mini-jobs on mini-machines for a machine i ∈ M .

1: define a vector σ : cross-mini-jobs→ mini-machines, so that for every mini-machine h,
the blocking intervals of σ−1(h) are disjoint.

2: for d′ ← 1 to D do
3: for every cross-mini-job k for some variable yijdeuv with d ≤ d′ ≤ e + 1 do
4: loadσk

← loadσk
+ Qijdeuvd′

5: if d′ = e + 1 then append k to the mini-machine σk

6: for every inside-mini-job k for some variable xijd′ do
7: let h be the mini-machine with the smallest loadh

8: loadh ← loadh + pij , append k to the mini-machine h

9: extend the length of each cross-mini-job for a variable yijdeuv to pij in the constructed
schedule

Step 1 of Algorithm 2 is possible since each point is covered by at most (1 + ϵ)Φ blocking
intervals. When we schedule an inside-mini-job k on a mini-machine h, we increase loadh by
the length of k (Step 8). The scheduling of a cross-mini-job k for some variable yijdeuv is
done differently. First the mini-machine σk for k is pre-defined. Second, we append k to σk

only in iteration d′ = e + 1 (Step 5), but we add the length of k to loadσk
piece by piece: In

iterations d′ = d, d + 1, · · · , e + 1, we increase the load by Qijdeuvd′ (Step 4). Still we ensure
that the load to σk contributed by k is equal to the length of k. A mini-job for a variable
yijdeuv may have length smaller than the desired length pij , so in Step 9 we extend these
mini-jobs.

▶ Lemma 4.3. At the end of iteration d′ of Loop 2, every mini-machine has a load of at
most Td′ − 1 + ∆d′ .

Proof. There are two types of loads added to mini-machines during iteration d′ of Loop 2:
those from cross-mini-jobs, and those from inside-mini-jobs. The total load (from both cross-
and inside-mini-jobs) added to all mini-machines is at most (1 + ϵ)Φ∆d′ : it is precisely Φ
times the left-side of (14) for the machine i and d′, which is at most (1 + ϵ)Φ∆d′ as the
constraint is violated only by a factor of 1 + ϵ.

The total load from cross-mini-jobs added to a mini-machine h in iteration d′ is at most
∆d′ as the blocking intervals of all mini-jobs in σ−1(h) are disjoint. We need to check the
case when one mini-job k ∈ σ−1(h) has blocking interval ending at τ

(d′)
u′ and another mini-job

k′ ∈ σ−1(h) has blocking interval starting at the time. If the length of the sub-window
(τ (d′)

u′−1, τ
(d′)
u′] is at least 2, then the statement holds as we only gave 1 unit length to k and k′

in this sub-window. If the length is 1, then because we handled the case in a special way in
the definition of left-covering, we did not give any length to k′ for the sub-window.

With the observations, we can prove the lemma. Before we add an inside-mini-job k

for xijd′ to a mini-machine h in iteration d′, the total load of all mini-machines is strictly
less than (1 + ϵ)Φ

∑d′

d′′=1 ∆d′′ = (1 + ϵ)ΦTd′ (as the length of k has not been added to
the loads yet). Therefore loadh < Td′ before we append k to h. After that, we have
loadh ≤ Td′ − 1 + pij ≤ Td′ − 1 + ∆d′ .

Assume towards the contradiction that the lemma does not hold and consider the first time
when the condition is violated. Assume this is at iteration d′, and some mini-machine has a
load of at least Td′ + ∆d′ . This must be due to that we add the loads from cross-mini-jobs to

S. Li 86:17

the machine. By our assumption, every mini-machine has a load of at most Td′−1− 1 + ∆d′−1
at the end of iteration d′−1. (A special case is when d′ = 1; but this can be handled trivially.)
As we argued, we add a load of at most ∆d′ from cross-mini-jobs to each mini-machine in
iteration d′. Therefore after we add the loads, every mini-machine has a load of at most
Td′−1 − 1 + ∆d′−1 + ∆d′ = Td′ − 1 + ∆d′−1 ≤ Td′ − 1 + ∆d′ , a contradiction. ◀

Now we consider how Step 9 changes the completion times. The length of a cross-mini-job
for a variable yijdeuv is increased by at most ηd− 1 + ηe+1− 1 ≤ ϵ∆d + ϵ∆e+1 ≤ 2ϵ(∆d + ∆e).
For all cross-mini-jobs assigned to the same mini-machine h, the correspondent intervals
{d, d + 1, · · · , e} are disjoint. Therefore, a mini-job scheduled in iteration d′ of Loop 2
is delayed by at most 2ϵ(∆1 + ∆2 + · · · + ∆d′) = 2ϵTd′ units time. In the final schedule
constructed by Algorithm 2 the completion time of a mini-job scheduled in iteration d is at
most

Td − 1 + ∆d + 2ϵTd ≤ Td − 1 + ((1 + ϵ)Td−1 + 1)− Td−1 + 2ϵTd

= Td + ϵTd−1 + 2ϵTd ≤ (1 + 5ϵ)(Td−1 + 1).

Setting c = 5, Theorem 4.1 follows from that Td−1 + 1 is the intended completion time of
the mini-job.

References
1 Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly-linear time positive LP solver with faster

convergence rate. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of
Computing (STOC 2015), pages 229–236, 2015.

2 Måns Alskog. Implementation of a fast approximation algorithm for precedence constrained
scheduling. Master’s thesis, Linköping University, Applied Mathematics, Faculty of Science
and Engineering, 2022.

3 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012. doi:10.4086/
toc.2012.v008a006.

4 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In Proceedings of
the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pages
453–462, 2009.

5 Nikhil Bansal, Aravind Srinivasan, and Ola Svensson. Lift-and-round to improve weighted
completion time on unrelated machines. In Proceedings of the Forty-eighth Annual ACM
Symposium on Theory of Computing (STOC 2016), pages 156–167, 2016.

6 Yair Bartal and Lee-Ad Gottlieb. Near-linear time approximation schemes for steiner tree
and forest in low-dimensional spaces. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2021), pages 1028–1041, 2021. doi:10.1145/
3406325.3451063.

7 A. Bernstein, M. Gutenberg, and T. Saranurak. Deterministic decremental sssp and ap-
proximate min-cost flow in almost-linear time. In Proceedings of the 62nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2021), pages 1000–1008, 2021.
doi:10.1109/FOCS52979.2021.00100.

8 Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear
programs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC 2020), pages 775–788, 2020. doi:10.1145/3357713.3384309.

9 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast lp-based approximations for
geometric packing and covering problems. In Proceedings of the Thirty-First Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2020), pages 1019–1038, 2020.

ICALP 2023

https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1145/3406325.3451063
https://doi.org/10.1145/3406325.3451063
https://doi.org/10.1109/FOCS52979.2021.00100
https://doi.org/10.1145/3357713.3384309

86:18 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

10 Chandra Chekuri, T.S. Jayram, and Jan Vondrak. On multiplicative weight updates for
concave and submodular function maximization. In Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science (ITCS 2015), pages 201–210, 2015.

11 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some
implicit fractional packing problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2017), pages 801–820, 2017.

12 Chandra Chekuri and Kent Quanrud. Fast approximations for metric-tsp via linear program-
ming. arXiv, abs/1802.01242, 2018. arXiv:1802.01242.

13 Chandra Chekuri and Kent Quanrud. Randomized MWU for positive LPs. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018),
pages 358–377, 2018.

14 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In Proceedings of
the 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2022), pages
612–623, 2022. doi:10.1109/FOCS54457.2022.00064.

15 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic con-
nectivity, flows, and beyond. In Sandy Irani, editor, Proceedings of the 61st Annual IEEE
Annual Symposium on Foundations of Computer Science (FOCS 2020), pages 1158–1167, 2020.
doi:10.1109/FOCS46700.2020.00111.

16 Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. SIAM Journal on Computing, 37(2):630–652, 2007.
doi:10.1137/S0097539704446232.

17 Shashwat Garg. Quasi-PTAS for scheduling with precedences using LP hierarchies. In
Proceedings of 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018), pages 59:1–59:13, 2018.

18 R. L. Graham. Bounds on multiprocessing timing anomalies. Siam Journal on Applied
Mathematics, 17(2):416–429, 1969.

19 R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math.,
4:287–326, 1979.

20 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms. Math. Oper. Res.,
22(3):513–544, August 1997.

21 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

22 Sungjin Im and Shi Li. Improved approximations for unrelated machine scheduling. In
Proceedings of the Thirty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2023), pages 2917–2946, 2023. doi:10.1137/1.9781611977554.ch111.

23 Sungjin Im and Maryam Shadloo. Weighted completion time minimization for unrelated
machines via iterative fair contention resolution [extended abstract]. In Proceedings of the
Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), pages
2790–2809, 2020.

24 Klaus Jansen and Lars Rohwedder. On the configuration-LP of the restricted assignment
problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), pages 2670–2678, 2017.

25 Klaus Jansen and Lars Rohwedder. A quasi-polynomial approximation for the restricted
assignment problem. SIAM Journal on Computing, 49(6):1083–1108, 2020.

26 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), pages 217–226, 2014.

https://arxiv.org/abs/1802.01242
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS46700.2020.00111
https://doi.org/10.1137/S0097539704446232
https://doi.org/10.1137/0202019
https://doi.org/10.1137/1.9781611977554.ch111

S. Li 86:19

27 Christos Koufogiannakis and N. Young. A nearly linear-time ptas for explicit fractional packing
and covering linear programs. Algorithmica, 70:648–674, 2013.

28 Christos Koufogiannakis and Neal E. Young. Beating simplex for fractional packing and
covering linear programs. In 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), pages 494–504, 2007. doi:10.1109/FOCS.2007.62.

29 Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear
programming. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS 2015), pages 230–249, 2015.

30 Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current
matrix multiplication time. In Proceedings of the Thirty-Second Conference on Learning
Theory (COLT 2019), pages 2140–2157, 2019.

31 J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence
constraints. Oper. Res., 26(1):22–35, 1978.

32 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

33 Elaine Levey and Thomas Rothvo. A (1+ϵ)-approximation for makespan scheduling with
precedence constraints using lp hierarchies. SIAM Journal on Computing, 50(3):STOC16–201–
STOC16–217, 2021.

34 Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2021), pages 384–395, 2021.
doi:10.1145/3406325.3451114.

35 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations. SIAM Journal on Computing, 49(4):FOCS17–409–FOCS17–440,
2020.

36 Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing (STOC 1993), pages 448–457, 1993. doi:10.1145/167088.167211.

37 Alix Munier, Maurice Queyranne, and Andreas S. Schulz. Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems. In Integer Programming
and Combinatorial Optimization (IPCO 1998), pages 367–382, 1998.

38 Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016),
pages 1862–1867, 2016.

39 Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for
fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–301,
1995. doi:10.1287/moor.20.2.257.

40 Paul Purdom. A transitive closure algorithm. BIT Numerical Mathematics, 10:76–94, 1970.
41 Maurice Queyranne and Andreas S. Schulz. Approximation bounds for a general class of

precedence constrained parallel machine scheduling problems. SIAM J. Comput., 35(5):1241–
1253, May 2006.

42 Andreas S. Schulz and Martin Skutella. Scheduling unrelated machines by randomized rounding.
SIAM J. Discret. Math., 15(4):450–469, April 2002.

43 Jay Sethuraman and Mark S. Squillante. Optimal scheduling of multiclass parallel machines.
In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1999), pages 963–964, 1999.

44 Farhad Shahrokhi and D. W. Matula. The maximum concurrent flow problem. J. ACM,
37(2):318–334, April 1990. doi:10.1145/77600.77620.

45 Jonah Sherman. Area-convexity, ℓ∞ regularization, and undirected multicommodity flow. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC
2017), pages 452–460, 2017. doi:10.1145/3055399.3055501.

46 David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment
problem. Math. Program., 62(1–3):461–474, February 1993.

ICALP 2023

https://doi.org/10.1109/FOCS.2007.62
https://doi.org/10.1145/3406325.3451114
https://doi.org/10.1145/167088.167211
https://doi.org/10.1287/moor.20.2.257
https://doi.org/10.1145/77600.77620
https://doi.org/10.1145/3055399.3055501

86:20 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

47 Martin Skutella. Convex quadratic and semidefinite programming relaxations in scheduling.
J. ACM, 48(2):206–242, March 2001.

48 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines.
In Proceedings of the Forty-second ACM Symposium on Theory of Computing (STOC 2010),
pages 745–754, 2010.

49 Ola Svensson. Santa Claus schedules jobs on unrelated machines. SIAM Journal on Computing,
41(5):1318–1341, 2012.

50 Neal E. Young. Randomized rounding without solving the linear program. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pages
170–178, 1995.

51 Neal E. Young. Nearly linear-work algorithms for mixed packing/covering and facility-location
linear programs, 2014. arXiv:1407.3015.

https://arxiv.org/abs/1407.3015

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Other Related Work

	2 Preliminaries
	2.1 Nearly-Linear Time Mixed Packing and Covering LP Solver
	2.2 Template Packing LP Solver over a Simple Polytope

	3 Unrelated Machine Makespan Minimization
	4 Unrelated Machine Weighted Completion Time Minimization
	4.1 Rectangle LP Relaxation
	4.2 A Nearly-Linear Size LP Relaxation
	4.3 Equivalence of LP(11) and LP(6)

