935 research outputs found

    Novel CMOS RFIC Layout Generation with Concurrent Device Placement and Fixed-Length Microstrip Routing

    Full text link
    With advancing process technologies and booming IoT markets, millimeter-wave CMOS RFICs have been widely developed in re- cent years. Since the performance of CMOS RFICs is very sensi- tive to the precision of the layout, precise placement of devices and precisely matched microstrip lengths to given values have been a labor-intensive and time-consuming task, and thus become a major bottleneck for time to market. This paper introduces a progressive integer-linear-programming-based method to gener- ate high-quality RFIC layouts satisfying very stringent routing requirements of microstrip lines, including spacing/non-crossing rules, precise length, and bend number minimization, within a given layout area. The resulting RFIC layouts excel in both per- formance and area with much fewer bends compared with the simulation-tuning based manual layout, while the layout gener- ation time is significantly reduced from weeks to half an hour.Comment: ACM/IEEE Design Automation Conference (DAC), 201

    Analog layout design automation: ILP-based analog routers

    Get PDF
    The shrinking design window and high parasitic sensitivity in the advanced technology have imposed special challenges on the analog and radio frequency (RF) integrated circuit design. In this thesis, we propose a new methodology to address such a deficiency based on integer linear programming (ILP) but without compromising the capability of handling any special constraints for the analog routing problems. Distinct from the conventional methods, our algorithm utilizes adaptive resolutions for various routing regions. For a more congested region, a routing grid with higher resolution is employed, whereas a lower-resolution grid is adopted to a less crowded routing region. Moreover, we strengthen its speciality in handling interconnect width control so as to route the electrical nets based on analog constraints while considering proper interconnect width to address the acute interconnect parasitics, mismatch minimization, and electromigration effects simultaneously. In addition, to tackle the performance degradation due to layout dependent effects (LDEs) and take advantage of optical proximity correction (OPC) for resolution enhancement of subwavelength lithography, in this thesis we have also proposed an innovative LDE-aware analog layout migration scheme, which is equipped with our special routing methodology. The LDE constraints are first identified with aid of a special sensitivity analysis and then satisfied during the layout migration process. Afterwards the electrical nets are routed by an extended OPC-inclusive ILP-based analog router to improve the final layout image fidelity while the routability and analog constraints are respected in the meantime. The experimental results demonstrate the effectiveness and efficiency of our proposed methods in terms of both circuit performance and image quality compared to the previous works

    SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs

    Full text link
    Motivation: We introduce SneakySnake, a highly parallel and highly accurate pre-alignment filter that remarkably reduces the need for computationally costly sequence alignment. The key idea of SneakySnake is to reduce the approximate string matching (ASM) problem to the single net routing (SNR) problem in VLSI chip layout. In the SNR problem, we are interested in finding the optimal path that connects two terminals with the least routing cost on a special grid layout that contains obstacles. The SneakySnake algorithm quickly solves the SNR problem and uses the found optimal path to decide whether or not performing sequence alignment is necessary. Reducing the ASM problem into SNR also makes SneakySnake efficient to implement on CPUs, GPUs, and FPGAs. Results: SneakySnake significantly improves the accuracy of pre-alignment filtering by up to four orders of magnitude compared to the state-of-the-art pre-alignment filters, Shouji, GateKeeper, and SHD. For short sequences, SneakySnake accelerates Edlib (state-of-the-art implementation of Myers's bit-vector algorithm) and Parasail (state-of-the-art sequence aligner with a configurable scoring function), by up to 37.7x and 43.9x (>12x on average), respectively, with its CPU implementation, and by up to 413x and 689x (>400x on average), respectively, with FPGA and GPU acceleration. For long sequences, the CPU implementation of SneakySnake accelerates Parasail and KSW2 (sequence aligner of minimap2) by up to 979x (276.9x on average) and 91.7x (31.7x on average), respectively. As SneakySnake does not replace sequence alignment, users can still obtain all capabilities (e.g., configurable scoring functions) of the aligner of their choice, unlike existing acceleration efforts that sacrifice some aligner capabilities. Availability: https://github.com/CMU-SAFARI/SneakySnakeComment: To appear in Bioinformatic

    3D Global Router: a Study to Optimize Congestion, Wirelength and Via for Circuit Layout

    Get PDF
    The increasing size of integrated circuits and aggressive shrinking process feature size for IC manufacturing process poses signicant challenges on traditional physical design problems. Various design rules signicantly complicate the physical design problems and large problem size abides nothing but extremely e cient techniques. Leading physical design tools have to be powerful enough to handle complex design demands and be nimble enough to waste no runtime. This thesis studies the challenges faced by global routing problem, one of the traditional physical design problems that needs to be pushed to its new limit. This work proposes three e ective tools to tackle congestion, wire and via optimization in global routing process, from three di erent aspects. The number of vias generated during the global routing stage is a critical factor for the yield of integrated circuits. However, most global routers only approach the problem by charging a cost for vias in the maze routing cost function. The first work of this thesis, FastRoute 4.0 presents a global router that addresses the via number optimization problem throughout the entire global routing ow. It introduces the via aware Steiner tree generation, 3-bend routing and layer assignment with careful ordering to reduce via count. The integration of these three techniques with existing academic global routers achieves signicant reduction in via count without any sacrice in runtime. Despite of the recent development for popular rip-up and reroute framework, the congestion elimination process remains arbitrary and requires signicant tuning. Global routing has congestion elimination as the first and foremost priority and congestion issue becomes increasingly severe due to timing requirements, design for manufacturability. The second work of this thesis, an auction algorithm based pre-processing framework (APF) for global routing focuses on how to eliminate congestion e ectively. In order to achieve more consistent congestion elimination, the framework uses auction based detour techniques to alleviate the impacts of greedy sequential manner of maze routing, which remains as a major drawback in the most popular global routing framework. In the framework, APF first identies the most congested global routing locations by an interval over ow lower bound technique. Then APF uses auction based detour algorithm to compute which nets to detour and where to detour. The framework can be applied to any global routers and would help them to achieve signicant improvement in both solution quality and runtime. The third work in this thesis combines the advantage of the two framework used to minimize via usage in global routing: 3D routers with good solution quality and e cient 2D routers with layer assignment process. It results in a new multi-level 3D global router called MGR (multi-level global router) that combines the advantage of both kinds. MGR resorts to an e cient multi-level framework to reroute nets in the congested region on the 3D grid graph. Routing on the coarsened grid graph speeds up the global router while 3D routing introduces less vias. The powerful multi-level rerouting framework wraps three innovative routing techniques together: an adaptive resource reservation technique in coarsening process, a new 3-terminal maze routing algorithm and a network flow based solution propagation method in uncoarsening process. As a result, MGR can achieve the solution quality close to 3D routers with comparable runtime of 2D routers

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Practical Techniques for Improving Performance and Evaluating Security on Circuit Designs

    Get PDF
    As the modern semiconductor technology approaches to nanometer era, integrated circuits (ICs) are facing more and more challenges in meeting performance demand and security. With the expansion of markets in mobile and consumer electronics, the increasing demands require much faster delivery of reliable and secure IC products. In order to improve the performance and evaluate the security of emerging circuits, we present three practical techniques on approximate computing, split manufacturing and analog layout automation. Approximate computing is a promising approach for low-power IC design. Although a few accuracy-configurable adder (ACA) designs have been developed in the past, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. We investigate a simple ACA design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. The simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% less area. One variant of this design provides finer-grained and larger tunability than that of the previous works. Moreover, we propose a delay-adaptive self-configuration technique to further improve the accuracy-delay-power tradeoff. Split manufacturing prevents attacks from an untrusted foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We develop a new attack technique based on structural pattern matching. Experimental comparison with existing attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with the k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing. Analog layout automation is still far behind its digital counterpart. We develop the layout automation framework for analog/mixed-signal ICs. A hierarchical layout synthesis flow which works in bottom-up manner is presented. To ensure the qualified layouts for better circuit performance, we use the constraint-driven placement and routing methodology which employs the expert knowledge via design constraints. The constraint-driven placement uses simulated annealing process to find the optimal solution. The packing represented by sequence pairs and constraint graphs can simultaneously handle different kinds of placement constraints. The constraint-driven routing consists of two stages, integer linear programming (ILP) based global routing and sequential detailed routing. The experiment results demonstrate that our flow can handle complicated hierarchical designs with multiple design constraints. Furthermore, the placement performance can be further improved by using mixed-size block placement which works on large blocks in priority

    A complete design path for the layout of flexible macros

    Get PDF
    XIV+172hlm.;24c

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems
    corecore