33 research outputs found

    Few Cuts Meet Many Point Sets

    Full text link
    We study the problem of how to breakup many point sets in Rd\mathbb{R}^d into smaller parts using a few splitting (shared) hyperplanes. This problem is related to the classical Ham-Sandwich Theorem. We provide a logarithmic approximation to the optimal solution using the greedy algorithm for submodular optimization

    The Complexity of Sharing a Pizza

    Get PDF
    Assume you have a 2-dimensional pizza with 2n ingredients that you want to share with your friend. For this you are allowed to cut the pizza using several straight cuts, and then give every second piece to your friend. You want to do this fairly, that is, your friend and you should each get exactly half of each ingredient. How many cuts do you need? It was recently shown using topological methods that n cuts always suffice. In this work, we study the computational complexity of finding such n cuts. Our main result is that this problem is PPA-complete when the ingredients are represented as point sets. For this, we give a new proof that for point sets n cuts suffice, which does not use any topological methods. We further prove several hardness results as well as a higher-dimensional variant for the case where the ingredients are well-separated

    Linear transformation distance for bichromatic matchings

    Full text link
    Let P=B∪RP=B\cup R be a set of 2n2n points in general position, where BB is a set of nn blue points and RR a set of nn red points. A \emph{BRBR-matching} is a plane geometric perfect matching on PP such that each edge has one red endpoint and one blue endpoint. Two BRBR-matchings are compatible if their union is also plane. The \emph{transformation graph of BRBR-matchings} contains one node for each BRBR-matching and an edge joining two such nodes if and only if the corresponding two BRBR-matchings are compatible. In SoCG 2013 it has been shown by Aloupis, Barba, Langerman, and Souvaine that this transformation graph is always connected, but its diameter remained an open question. In this paper we provide an alternative proof for the connectivity of the transformation graph and prove an upper bound of 2n2n for its diameter, which is asymptotically tight

    Halving Balls in Deterministic Linear Time

    Full text link
    Let \D be a set of nn pairwise disjoint unit balls in Rd\R^d and PP the set of their center points. A hyperplane \Hy is an \emph{mm-separator} for \D if each closed halfspace bounded by \Hy contains at least mm points from PP. This generalizes the notion of halving hyperplanes, which correspond to n/2n/2-separators. The analogous notion for point sets has been well studied. Separators have various applications, for instance, in divide-and-conquer schemes. In such a scheme any ball that is intersected by the separating hyperplane may still interact with both sides of the partition. Therefore it is desirable that the separating hyperplane intersects a small number of balls only. We present three deterministic algorithms to bisect or approximately bisect a given set of disjoint unit balls by a hyperplane: Firstly, we present a simple linear-time algorithm to construct an αn\alpha n-separator for balls in Rd\R^d, for any 0<α<1/20<\alpha<1/2, that intersects at most cn(d−1)/dcn^{(d-1)/d} balls, for some constant cc that depends on dd and α\alpha. The number of intersected balls is best possible up to the constant cc. Secondly, we present a near-linear time algorithm to construct an (n/2−o(n))(n/2-o(n))-separator in Rd\R^d that intersects o(n)o(n) balls. Finally, we give a linear-time algorithm to construct a halving line in R2\R^2 that intersects O(n(5/6)+ϵ)O(n^{(5/6)+\epsilon}) disks. Our results improve the runtime of a disk sliding algorithm by Bereg, Dumitrescu and Pach. In addition, our results improve and derandomize an algorithm to construct a space decomposition used by L{\"o}ffler and Mulzer to construct an onion (convex layer) decomposition for imprecise points (any point resides at an unknown location within a given disk)

    An optimal randomized algorithm for d-variate zonoid depth

    Get PDF
    AbstractA randomized linear expected-time algorithm for computing the zonoid depth [R. Dyckerhoff, G. Koshevoy, K. Mosler, Zonoid data depth: Theory and computation, in: A. Prat (Ed.), COMPSTAT 1996—Proceedings in Computational Statistics, Physica-Verlag, Heidelberg, 1996, pp. 235–240; K. Mosler, Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach, Lecture Notes in Statistics, vol. 165, Springer-Verlag, New York, 2002] of a point with respect to a fixed dimensional point set is presented
    corecore